Category Archives: Nutrition

Gluten: definition, structure, properties, wheat, cereal list

Gluten is not a single protein but a mixture of cereal proteins, about 80% of its dry weight (for example gliadins and glutenins in wheat grains), lipids, 5-7%, starch, 5-10%, water, 5-8%, and mineral substances, <2%.
It forms when components naturally present in the grain of cereals, the caryopsis, and in their flours, are joined together by means of mechanical stress in aqueous environment, i.e. during the formation of the dough.
The term is also related to the family of proteins that cause problems for celiac patients (see below).
Isolated for the first time in 1745 from wheat flour by the Italian chemist Jacopo Bartolomeo Beccari, it can be extracted from the dough by washing it gently under running water: starch, albumins and globulins, that are water-soluble, are washed out, and a sticky and elastic mass remains, precisely the gluten (it means glue in Latin).

CONTENTS

Cereals containing gluten

It is present in:

  • wheat, such as:

durum wheat (Triticum durum); groats and semolina for dry pasta making are obtained from it;
common wheat or bread wheat (Triticum aestivum), so called because it is used in bread and fresh pasta making, and in bakery products;

  • rye (Secale cereale);
  • barley (Hordeum vulgare);
  • spelt, in the three species:

einkorn (Triticun monococcum);
emmer (Triticum dicoccum Schrank);
spelta (Triticum spelta);

  • khorasan wheat (Triticum turanicum); a variety of it is Kamut®;
  • triticale (× Triticosecale Wittmack), which is a hybrid of rye and common wheat;
  • bulgur, which is whole durum wheat, sprouted and then processed;
  • seitan, which is not a cereal, but a wheat derivative, also defined by some as “gluten steak”.

Given that most of the dietary intake of gluten comes from wheat flour, of which about 700 million tons per year are harvested, representing about 30% of the global cereal production, the following discussion will focus on wheat gluten, and mainly on its proteins.

Note: The term gluten is also used to indicate the protein fraction that remains after removal of starch and soluble proteins from the dough obtained with corn flour: however, this “corn gluten” is “functionally” different from that obtained from wheat flour.

Cereal grain proteins

The study of cereal grain proteins, as seen, began with the work of Beccari. 150 years later, in 1924, the English chemist Osborne T.B., which can rightly be considered the father of plant protein chemistry, developed a classification based on their solubility in various solvents.
The classification, still in use today, divides plant proteins into 4 families.

  • Albumins, soluble in water.
  • Globulins, soluble in saline solutions; for example avenalin of oat.
  • Prolamins, soluble in 70% alcohol solution, but not in water or absolute alcohol.
    They include:

gliadins of wheat;
zein of corn;
avenin of oats;
hordein of barley;
secalin of rye.

They are the toxic fraction of gluten for celiac patients.

  • Glutelins, insoluble in water and neutral salt solutions, but soluble in acidic and basic solutions.
    They include glutenins of wheat.
Gluten
Fig. 1 – Cereal Grain Proteins

Albumins and globulins are cytoplasmic proteins, often enzymes, rich in essential amino acids, such as lysine, tryptophan and methionine. They are found in the aleurone layer and embryo of the caryopsis.
Prolamins and glutelins are the storage proteins of cereal grains. They are rich in glutamine and proline, but very low in lysine, tryptophan and methionine. They are found in the endosperm, and are the vast majority of the proteins in the grains of wheat, corn, barley, oat, and rye.
Although Osborne classification is still widely used, it would be more appropriate to divide cereal grain proteins into three groups: structural and metabolic proteins, storage proteins, and defense proteins.

Wheat gluten proteins

Proteins represent 10-14% of the weight of the wheat caryopsis (about 80% of its weight consists of carbohydrates).
According to the Osborne classification, albumins and globulins represent 15-20% of the proteins, while prolamins and glutelins are the remaining 80-85%, composed respectively of gliadins, 30-40%, and glutenins, 40-50%. Therefore, and unlike prolamins and glutelins in the grains of other cereals, gliadins and glutenins are present in similar amounts, about 40% (see Fig. 2).

Gluten
Fig. 2 – Wheat Grain Proteins

Technologically, gliadins and glutenins are very important. Why?
These proteins are insoluble in water, and in the dough, that contains water, they bind to each other through a combination of intermolecular bonds, such as:

  • covalent bonds, i.e. disulfide bridges;
  • noncovalent bonds, such as hydrophobic interactions, van der Waals forces, hydrogen bonds, and ionic bonds.

Thanks to the formation of these intermolecular bonds, a three-dimensional lattice is formed. This structure entraps starch granules and carbon dioxide bubbles produced during leavening, and gives strength and elasticity to the dough, two properties of gluten widely exploited industrially.
In the usual diet of the European adult population, and in particular in Italian diet that is very rich in derivatives of wheat flour, gliadin and glutenin are the most abundant proteins, about 15 g per day. What does this mean? It means that gluten-free diet engages celiac patients both from a psychological and social point of view.

Note: The lipids of the gluten are strongly associated with the hydrophobic regions of gliadins and glutenins and, unlike what you can do with the flour, they are extracted with more difficulty (the lipid content of the gluten depends on the lipid content of the flour from which it was obtained).

Gliadins: extensibility and viscosity

Gliadins are hydrophobic monomeric prolamins, of globular nature and with low molecular weight. On the basis of electrophoretic mobility in low pH conditions, they are separated into the following types:

  • alpha/beta, and gamma, rich in sulfur, containing cysteines, that are involved in the formation of intramolecular disulfide bonds, and methionines;
  • omega, low in sulfur, given the almost total absence of cysteine and methionine.

They have a low nutritional value and are toxic to celiac patients because of the presence of particular amino acid sequences in the primary structure, such as proline-serine-glutamine-glutamine and glutamine-glutamine-glutamine-proline.
Gliadins are associated with each other and with glutenins through noncovalent interactions; thanks to that, they act as “plasticizers” in dough making. Indeed, they are responsible for viscosity and extensibility of gluten, whose three-dimensional lattice can deform, allowing the increase in volume of the dough as a result of gas production during leavening. This property is important in bread-making.
Their excess leads to the formation of a very extensible dough.

Glutenins: elasticity and toughness

Glutenins are polymeric proteins, that is, formed of multiple subunits, of fibrous nature, linked together by intermolecular disulfide bonds. The reduction of these bonds allows to divide them, by SDS-PAGE, into two groups.

  • High molecular weight (HMW) subunits, low in sulfur, that account for about 12% of total gluten proteins. The noncovalent bonds between them are responsible for the elasticity and tenacity of the gluten protein network, that is, of the viscoelastic properties of gluten, and so of the dough.
  • Low molecular weight (LMW) subunits, rich in sulfur (cysteine residues).
    These proteins form intermolecular disulfide bridges to each other and with HMW subunits, leading to the formation of a glutenin macropolymer.

Glutenins allow dough to hold its shape during mechanical (kneading) and not mechanical stresses (increase in volume due to both the leavening and the heat of cooking that increases the volume occupied by gases present) which is submitted. This property is important in pasta making.
If in excess, glutenins lead to the formation of a strong and rigid dough.

Properties of wheat gluten

From the nutritional point of view, gluten proteins do not have a high biological value, being low in lysine, an essential amino acid. Therefore, a gluten-free diet does not cause any important nutritional deficiencies.
On the other hand, it is of great importance in food industry: the combination, in aqueous solution, of gliadins and glutenins to form a three-dimensional lattice, provides viscoelastic properties, that is, extensibility-viscosity and elasticity-tenacity, to the dough, and then, a good structure to bread, pasta, and in general, to all foods made with wheat flour.
It has a high degree of palatability.
It has a high fermenting power in the small intestine.
It is an exorphin: some peptides produced from intestinal digestion of gluten proteins may have an effect in central nervous system.

Gluten-free cereals

The following is a list of gluten-free cereals, minor cereals, and pseudocereals used as foods.

  • Cereals

corn or maize (Zea mays)
rice (Oryza sativa)

  • Minor cereals
    They are defined “minor” not because they have a low nutritional value, but because they are grown in small areas and in lower quantities than wheat, rice and maize.

Fonio (Digitaria exilis)
Millet (Panicum miliaceum)
Panic (Panicum italicum)
Sorghum (Sorghum vulgare)
Teff (Eragrostis tef)
Teosinte; it is a group of four species of the genus Zea. They are plants that grow in Mexico (Sierra Madre), Guatemala and Venezuela.

  • Pseudocereals.
    They are so called because they combine in their botany and nutritional properties characteristics of cereals and legumes, therefore of another plant family.

Amaranth; the most common species are:

Amaranthus caudatus;
Amaranthus cruentus;
Amarantus hypochondriacus.

Buckwheat (Fagopyrum esculentum)
Quinoa (Chenopodium quinoa), a pseudocereal with excellent nutritional properties, containing fibers, iron, zinc and magnesium. It belongs to Chenopodiaceae family, such as beets.

  • Cassava, also known as tapioca, manioc, or yuca (Manihot useful). It is grown mainly in the south of the Sahara and South America. It is an edible root tuber from which tapioca starch is extracted.

It should be noted that naturally gluten-free foods may not be truly gluten-free after processing. Indeed, the use of derivatives of gliadins in processed foods, or contamination in the production chain may occur, and this is obviously important because even traces of gluten are harmful for celiac patients.

Oats and gluten

Oats (Avena sativa) is among the cereals that celiac patients can eat. Recent studies have shown that it is tolerated by celiac patients, adult and child, even in subjects with dermatitis herpetiformis. Obviously, oats must be certified as gluten-free (from contamination).

References

Beccari J.B. De Frumento. De bononiensi scientiarum et artium instituto atque Academia Commentarii, II. 1745:Part I.,122-127

Bender D.A. “Benders’ dictionary of nutrition and food technology”. 8th Edition. Woodhead Publishing. Oxford, 2006

Berdanier C.D., Dwyer J., Feldman E.B. Handbook of nutrition and food. 2th Edition. CRC Press. Taylor & Francis Group, 2007

Phillips G.O., Williams P.A. Handbook of food proteins. 1th Edition. Woodhead Publishing, 2011

Shewry P.R. and Halford N.G. Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 2002:53(370);947-958. doi:10.1093/jexbot/53.370.947

Yildiz F. Advances in food biochemistry. CRC Press, 2009

Calories burned, and water and minerals loss during running

Calorie, carbohydrate, fat, and protein expenditure, and water and mineral losses during runningDuring running, athletes burn calorie, and lose water and salts in amounts depending on various factors such as the technique, training level, environmental conditions, and physiological characteristics of each runner. The knowledge of these factors allows to plan an adequate diet both during workout  and recovery, with the aim of optimizing performance.
Below we will analyze the energy expenditure of runners engaged in workouts on various distances, the amounts of carbohydrates, lipids, and proteins oxidized to meet the energy requirements, and which minerals are lost in sweat.

CONTENTS

Energy expenditure during running

During running energy expenditure is equal to 0.85-1.05 kcal per kilogram per kilometer.
This range is due to the fact that athletes with a good technique spend less than those with a poor technique.
A 70 kilogram (154 pound) athlete has an energy expenditure per kilometer between:

70 x 0.85 x 1 = 59.5 kcal
and
70 x 1.05 x 1 = 73.5 kcal

The table shows the calculations to determine the energy expenditure of the athlete to run 10, 20, 30, and 40 kilometers.

Distance

Energy expenditure

10 km 0.85 x 70 x 10 = 595 kcal
1.05 x 70 x 10 = 735 kcal
20 km 0.85 x 70 x 20 = 1190 kcal
1.05 x 70 x 20 = 1470 kcal
30 km 0.85 x 70 x 30 = 1785 kcal
1.05 x 70 x 30 = 2205 kcal
40 km 0.85 x 70 x 40 = 2380 kcal
1.05 x 70 x 40 = 2940 kcal

Note: who has started running for a short time ago has an energy expenditure even higher than 1.05 kcal per kilogram per kilometer.

During running, the energy for muscle work derives from the oxidation of carbohydrates, lipids, and proteins. Carbohydrates and lipids are the main energy source, and their oxidation rate depends on the intensity of exercise: as it increases, the percentage of lipid oxidation decreases whereas that of carbohydrates increases, as summarized below.

Intensity Fuel
30% VO2max Mainly fats
40-60% VO2max Equally fats and carbohydrates
75% VO2max Mainly carbohydrates
80% VO2max Almost only carbohydrates

Note: The failure to use the suitable fuel can promote fatigue and lead to overtraining.

Then, when running above the anaerobic threshold, the oxidation of carbohydrates can provide the entire energy requirement. At marathon pace, carbohydrates provide 60-70% of the energy requirement, whereas at lower pace they provide less than 50% of energy requirement.
Below, the amounts of carbohydrates, lipids, and proteins oxidized during workout are analyzed. During workout ,the energy expenditure is covered for about 60% by carbohydrates, for about 40% by lipids, whereas the residual percentage, between 3 and 5%, by proteins.

Carbohydrate oxidation during workout

For a 70 kilogram runner the amount of carbohydrates oxidized per kilometer is between:

(0.6 x 59.5) /4 = 8.9 g/km
and
(0.6 x 73.5) /4 = 11 g/km

Note: carbohydrates provide, on average, 4 kcal per gram.
The table shows the calculations to determine the amount of carbohydrates oxidized when the athlete runs 10, 20, 30, and 40 kilometers.

Distance Carbohydrate expenditure

10 km

[(0.85 x 70 x 10) x 0.6 ] / 4 = 89 g
[(1.05 x 70 x 10) x 0.6 ] / 4 = 110 g

20 km

[(0.85 x 70 x 20) x 0.6] / 4 = 179 g
[(1.05 x 70 x 20) x 0.6] / 4 = 221 g

30 km

[(0.85 x 70 x 30) x 0.6] / 4 = 268 g
[(1.05 x 70 x 30) x 0.6] / 4 = 331 g

40 km

[(0.85 x 70 x 40) x 0.6] / 4 = 357 g
[(1.05 x 70 x 40) x 0.6] / 4 = 441 g

Lipid oxidation during workout

By calculations similar to those for carbohydrates, we determine the amount of lipids oxidized per kilometer, which is between:

(0.4 x 59.5) / 9 = 2.6 g/km
and
(0.4 x 73.5) / 9 = 3.3 g/km

Note: lipids provide, on average, 9 kcal per gram.
The table shows the calculations to determine the amount of lipids oxidized when the athlete runs 10, 20, 30, and 40 kilometers.

Distance

Lipid expenditure

10 km [(0.85 x 70 x 10) x 0.4] / 9 = 26 g
[(1.05 x 70 x 10) x 0.4] / 9 = 33 g
20 km [(0.85 x 70 x 20) x 0.4] / 9 = 53 g
[(1.05 x 70 x 20) x 0.4] / 9 = 65 g
30 km [(0.85 x 70 x 30) x 0.4] / 9 = 79 g
((1.05 x 70 x 30) x 0.4] / 9 = 98 g
40 km [(0.85 x 70 x 40) x 0.4] / 9 = 106 g
[(1.05 x 70 x 40) x 0.4] / 9 = 131 g

Protein oxidation during workout

Protein requirements of adults are equal to 0.9 grams per kilogram of body weight, and, for a 70 kilogram athlete is:

70 x 0.9 = 63 g

During workout  the energy expenditure is covered for about 3-5% by protein oxidation.

The table shows the calculations to determine the amount of proteins oxidized when the athlete runs 10, 20, 30, and 40 kilometers, and proteins provide 3% of the energy requirement.

Distance

Protein expenditure (3%)

10 km [(0.85 x 70 x 10) x 0.03)] / 4 = 4.5 g
[(1.05 x 70 x 10) x 0.03)] / 4 = 5.5 g
20 km [(0.85 x 70 x 20) x 0.03)] / 4 = 8.9 g
[(1.05 x 70 x 20) x 0.03)] / 4 = 11 g
30 km [(0.85 x 70 x 30) x 0.03)] / 4 = 13.4 g
[(1.05 x 70 x 30) x 0.03)] / 4 = 16.5 g
40 km [(0.85 x 70 x 40) x 0.03)] /4 = 17.9 g
[(1.05 x 70 x 40) x 0.03)] /4 = 22.1 g

Note: proteins provide, on average, 4 kcal per gram.

For energy expenditure of 0.85 and 1.05 kcal per kilogram per kilometer, the average additional protein oxidation per kilogram to run 10, 20, 30, and 40 kilometers, rounded to the second decimal place, is:

  • 10 km: [(4.5 + 5.5) / 2] / 70 = 0.07 g
  • 20 km: [(4.5 + 5.5) / 2] / 70 = 0.14 g
  • 30 km: [(4.5 + 5.5) / 2] / 70 = 0.21 g
  • 40 km: [(4.5 + 5.5) / 2] / 70 = 0.29 g

Finally, adding the daily protein requirement of adults, the total protein requirement of a 70 kilogram runner, for the four distances, is:

  • 10 km: 0.07 + 0.9 = 0.97 g
  • 20 km: 0.14 + 0.9 = 1.04 g
  • 30 km: 0.21 + 0.9 = 1.11 g
  • 40 km: 0.29 + 0.9 = 1.19 g

By calculations similar to the previous ones, we determine the overall protein requirement when proteins provide 5% of the energy requirement.

  • 10 km: 0.12 + 0.9 = 1.02 g
  • 20 km: 0.24 + 0.9 = 1.14 g
  • 30 km: 0.36 + 0.9 = 1.26 g
  • 40 km: 0.48 + 0.9 = 1.38 g

Excluding athletes who run 30 kilometers or more every day, the values are slightly higher than 0.9 grams per kilogram of body weight.
In reality, the daily protein requirement is just slightly higher because a certain amount of nitrogen, hence proteins, is lost, as well as in the urine, also through sweating.

Water and minerals loss during running

Water losses depend on the amount of sweat produced, that depends on:

  • air temperature and humidity;
  • solar radiation.

The loss will be greater the higher these values are.
Finally, the amount of sweat produced is different from person to person.

Minerals lost in sweat are mostly:

  • sodium (Na+) and chlorine (Cl), about 1 gram per liter of sweat in heat acclimatized athletes;
  • potassium (K+), in an amount equal to about 15% of the sodium lost;
  • magnesium (Mg2+), in an amount equal to about 1% of the sodium lost.

The amount of minerals lost depends on how much sweat is produced, and it increases in non-heat acclimatized athletes.

The table shows the values, in grams per liter, of the minerals lost in sweat for non-heat and heat-acclimated athletes.

  Non-heat acclimated athletes

heat acclimated athetes

Sodium

1.38

0.92

Chlorine

1.5

1.00

Potassium

0.20

0.15

Magnesium

0.01

0.01

Total

3.09

2.08

Therefore, during physical activity, sodium is the mineral we need most of all.
After physical activity, runner, or who sweats heavily, tends to eat saltier food. This effect, known as selective hunger, was discovered, for sodium, in studies conducted on foundry workers. Probably, the selective hunger doesn’t not exist for potassium and magnesium.

References

Mahan L.K., Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Sawka M.N., Burke L.M., Eichner E.R., Maughan, R.J., Montain S.J., Stachenfeld N.S. American College of Sports Medicine position stand: exercise and fluid replacement. Med Sci Sport Exercise 2007;39(2):377-390 doi:10.1249/mss.0b013e31802ca597

Shils M.E., Olson J.A., Shike M., Ross A.C.: “Modern nutrition in health and disease” 9th ed. 1999

Shirreffs S., Sawka M.N. Fluid and electrolyte needs for training, competition and recovery. J Sport Sci 2011;29:sup1, S39-S46 doi:10.1080/02640414.2011.614269

Weight loss and green tea: myth and legend

In the phase of weight loss, as during weight maintenance, it is important to maintain as constant as possible the daily energy expenditure.
Indeed, daily caloric consumption usually decreases during weight loss.
Since the 90s of last century, it has been proposed that green tea, thanks to  its content of caffeine and catechins, particularly epigallocatechin gallate (EGCG), which are also present in oolong tea and white tea, could be of help for:

  • maintaining , or even increasing, the daily energy expenditure;
  • increasing fat oxidation, thus acting as a fat-burning food.
Weight Loss and Green Tea
Fig. 1 – Waist Circumference

Therefore, it was attributed to green tea the ability to cause a fat loss, and so to be of help for overweight or obese adults in achieving the ideal weight.
In addition to these potential lipolytic and thermogenic effects, catechins and caffeine may be useful by acting on other targets, such as the intestinal absorption of fat and the energy intake, probably through their impact on the gut microbiota and gene expression.
Therefore, products for weight loss and weight maintenance based on green tea extracts have been marketed. It should be noted that these products contain catechins and caffeine in amount much greater than the classic drink.

How much truth is there in green tea “fat burning” properties?

The issue seems to have been resolved by a careful meta-analysis of 15 studies on weight loss and intake of these “fat burning” products.
Eight of the 15 analyzed studies were conducted in Japan, and the rest outside of Japan, for a total number of 1945 subjects, which were followed for a period of between 12 and 13 weeks.
The study showed that the consumption of green tea-based products induces, in overweight and obese adults, a weight loss that is:

  • not statistically significant;
  • very small;
  • probably not clinically important.

These “fat burning” products have not proved to be useful not even in weight maintenance.
Thus, on the basis of scientific evidence, green tea does not seem to be helpful in fat loss nor in weight maintenance.
There are no magic bullets: the only way to lose weight (body fat) and avoid future increases is to control your daily calorie intake and take part in physical activity on a regular basis.

References

Hursel R. and Westerterp-Plantenga M.S. Catechin- and caffeine-rich teas for control of body weight in humans. Am J Clin Nutr 2013;98:1682S-1693S doi:10.3945/ajcn.113.058396

Hursel R., Viechtbauer W. and Westerterp-Plantenga M.S. The effects of green tea on weight loss and weight maintenance: a meta-analysis. Int J Obesity 2009;33:956-961 doi:10.1038/ijo.2009.135

Jurgens T.M., Whelan A.M., Killian L., Doucette S., Kirk S., Foy E. Green tea for weight loss and weight maintenance in overweight or obese adults. Editorial group: Cochrane Metabolic and Endocrine Disorders Group. 2012:12 Art. No.: CD008650 doi:10.1002/14651858.CD008650.pub2

Maltodextrin, fructose and endurance sports

Carbohydrate ingestion can improve endurance capacity and performance.
The ingestion of different types of carbohydrates, which use different intestinal transporters, can:

  • increase total carbohydrate absorption;
  • increase exogenous carbohydrate oxidation;
  • and therefore improve performance.

Glucose and fructose

When a mixture of glucose and fructose is ingested (in the analyzed literature, respectively 1.2 and 0.6 g/min, ratio 2:1, for total carbohydrate intake rate to 1.8 g/min), there is less competition for intestinal absorption compared with the ingestion of an iso-energetic amount of glucose or fructose,  two different intestinal transporters being involved. Furthermore, fructose absorption is stimulated by the presence of glucose.

This can:

  • contribute to a faster rate of monosaccharide absorption;
  • increase the availability of exogenous carbohydrates in the bloodstream;
  • cause the higher exogenous carbohydrate oxidation rates in fructose plus glucose combination compared to high glucose intake alone.

The combined ingestion of glucose and fructose allows to obtain exogenous carbohydrate oxidation rate around 1,26 g/min, therefore, higher than the rate reported with glucose alone (1g/min), also in high concentration.
The observed difference (+0,26 g/min) can be fully attributed to the oxidation of ingested fructose.

Sucrose and glucose

The ingestion of sucrose and glucose, in the same conditions of the ingestion of glucose and fructose (therefore, respectively 1.2 and 0.6 g/min, ratio 2:1, for total carbohydrate intake rate to 1.8 g/min), gives similar results.

Glucose, sucrose and fructose

Very high oxidation rates are found with a mixture of glucose, sucrose, and fructose (in the analyzed literature, respectively 1.2, 0.6 and 0.6 g/min, ratio 2:1:1, for total carbohydrate intake rate to 2.4 g/min; however, note the higher amounts of ingested carbohydrates).

Maltodextrin and fructose

High oxidation rates are also observed with combinations of maltodextrin and fructose, in the same conditions of the ingestion of glucose plus fructose (therefore, respectively 1.2 and 0.6 g/min, ratio 2:1, for total carbohydrate intake rate to 1.8 g/min).

Such high oxidation rates can be achieved with carbohydrates ingested in a beverage, in a gel or in a low-fat, low protein, low-fiber energy bar.

The best combination of carbohydrates ingested during exercise seems to be the mixture of maltodextrin and fructose in a 2:1 ratio, in a 5% solution, and in a dose around 80-90 g/h.

Maltodextrin and Fructose: Oxidation of Ingested Carbohydrates
Fig. 1 – Oxidation of Ingested Carbohydrates

Why?

  • This mixture has the best ratio between amount of ingested carbohydrates and their oxidation rate and it means that smaller amounts of carbohydrates remain in the stomach or gut reducing the risk of gastrointestinal complication/discomfort during prolonged exercise (see brackets grafa in the figure).
  • A solution containing a combination of multiple transportable carbohydrates and a carbohydrate content not exceeding 5% optimizes gastric emptying rate and improves fluid delivery.

Example of a 5% carbohydrate solution containing around 80-90 g of maltodextrin and fructose in a 2:1 rate; ingestion time around 1 h.

  • 1.5 L solution: 80 g of carbohydrates, including around 55 g of maltodextrin and around 25 of fructose.
  • 1.8 L solution: 90 g of carbohydrates, including 60 g of maltodextrin and 30 of fructose.

Conclusion

During prolonged exercise, when high exogenous carbohydrate oxidation rates are needed, the ingestion of multiple transportable carbohydrates is preferred above that of large amounts of a single carbohydrate.
The best mixture seems to be maltodextrin and , in a 2:1 ratio, in a 5% concentration solution, and at ingestion rate of around 80-90 g/h.

References

Burke L.M., Hawley J.A., Wong S.H.S., & Jeukendrup A. Carbohydrates for training and competition. J Sport Sci 2011;29:Sup1,S17-S27. doi:10.1080/02640414.2011.585473

Jentjens R.L.P.G., Moseley L., Waring R.H., Harding L.K., and Jeukendrup A.E. Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol 2004:96;1277-1284. doi:10.1152/japplphysiol.00974.2003

Jentjens R.L.P.G., Venables M.C., and Jeukendrup A.E. Oxidation of exogenous glucose, sucrose, and maltose during prolonged cycling exercise. J Appl Physiol 2004:96;1285-1291. doi:10.1152/japplphysiol.01023.2003

Jeukendrup A.E. Carbohydrate feeding during exercise. Eur J Sport Sci 2008:2;77-86. doi:10.1080/17461390801918971

Jeukendrup A.E. Nutrition for endurance sports: marathon, triathlon, and road cycling. J Sport Sci 2011:29;sup1, S91-S99. doi:10.1080/02640414.2011.610348

Prolonged exercise and carbohydrate ingestion

Prolonged Exercise: Open Water Swimming
Fig. 1 – Open Water Swimming

During prolonged exercise (>90 min), like marathon, Ironman, cross-country skiing, road cycling or open water swimming, the effects of supplementary carbohydrates on performance are mainly metabolic rather than central and include:

  • the provision of an additional muscle fuel source when glycogen stores become depleted;
  • muscle glycogen sparing;
  • the prevention of low blood glucose concentrations.

How many carbohydrates should an athlete take?

The optimal amount of ingested carbohydrate is that which results in the maximal rate of exogenous carbohydrate oxidation without causing gastrointestinal discomfort”. (Jeukendrup A.E., 2008, see References).

Prolonged exercise: which carbohydrates should an athlete take?

Until 2004 it was believed that carbohydrates ingested during exercise (also prolonged exercise) could be oxidized at a rate no higher than 1 g/min, that is, 60 g/h, independent of the type of carbohydrate.
Exogenous carbohydrate oxidation is limited by their intestinal absorption and the ingestion of more than around 60 g/min of a single type of carbohydrate will not increase carbohydrate oxidation rate but it is likely to be associated with gastrointestinal discomfort (see later).
Why?
At intestinal level, the passage of glucose (and galactose) is mediated by a sodium dependent transporter called SGLT1. This transporter becomes saturated at a carbohydrate intake about 60 g/h and this (and/or glucose disposal by the liver that regulates its transport into the bloodstream) limits the oxidation rate to 1g/min or 60 g/h. For this reason, also when glucose is ingested at very high rate (>60 g/h), exogenous carbohydrate oxidation rates higher 1.0-1.1 g/min are not observed.

The rate of oxidation of ingested maltose, sucrose, maltodextrins and glucose polymer is fairly similar to that of ingested glucose.

Fructose uses a different sodium independent transporter called GLUT5. Compared with glucose, fructose has, like galactose, a lower oxidation rate, probably due to its lower rate of intestinal absorption and the need to be converted into glucose in the liver, again like galactose, before it can be oxidized.
However, if the athlete ingests different types of carbohydrates, which use different intestinal transporters, exogenous carbohydrate oxidation rate can increase significantly.
It seems that the best mixture is maltodextrins and fructose.

Prolonged Exercise: Maltodextrin and Fructose: Oxidation of Ingested Carbohydrates
Fig. 1 – Oxidation of Ingested Carbohydrates

Note: the high rates of carbohydrate ingestion may be associated with delayed gastric emptying and fluid absorption; this can be minimized by ingesting combinations of multiple transportable carbohydrates that enhance fluid delivery compared with a single carbohydrate. This also causes relatively little gastrointestinal distress.

Conclusion

The ingestion of different types of carbohydrates that use different intestinal transporters can:

  • increase total carbohydrate absorption;
  • increase exogenous carbohydrate oxidation;
  • improve performance.
References

Burke L.M., Hawley J.A., Wong S.H.S., & Jeukendrup A. Carbohydrates for training and competition. J Sport Sci 2011;29:Sup1,S17-S27. doi:10.1080/02640414.2011.585473

Jentjens R.L.P.G., Moseley L., Waring R.H., Harding L.K., and Jeukendrup A.E. Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol 2004:96;1277-1284. doi:10.1152/japplphysiol.00974.2003

Jentjens R.L.P.G., Venables M.C., and Jeukendrup A.E. Oxidation of exogenous glucose, sucrose, and maltose during prolonged cycling exercise. J Appl Physiol 2004:96;1285-1291. doi:10.1152/japplphysiol.01023.2003

Jeukendrup A.E. Carbohydrate feeding during exercise. Eur J Sport Sci 2008:2;77-86. doi:10.1080/17461390801918971

Jeukendrup A.E. Nutrition for endurance sports: marathon, triathlon, and road cycling. J Sport Sci 2011:29;sup1, S91-S99. doi:10.1080/02640414.2011.610348

Mahan L.K., Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Shils M.E., Olson J.A., Shike M., Ross A.C.: “Modern nutrition in health and disease” 9th ed. 1999

Carbohydrate ingestion during exercise of relatively short duration and high intensity

High Intensity: During-Exercise Nutrition
Fig. 1- During-Exercise Nutrition

Carbohydrate ingestion during intermittent high intensity or prolonged (>90 min) sub-maximal exercise can:

  • increase exercise capacity;
  • improve exercise performance;
  • postpone fatigue.

The intake of very small amounts of carbohydrates or carbohydrate mouth rinsing (for example with a 6% maltodextrin solution) may improve exercise performance by 2-3% when the exercise is of relatively short duration (<1 h) and high intensity (>75% VO2max), that is, an exercise not limited by the availability of muscle glycogen stores, given adequate diet.
The underlying mechanisms for the ergogenic effect of carbohydrates during this type of activity are not metabolic but may reside in the central nervous system: it seems that carbohydrates are detected in the oral cavity by unidentified receptors, promoting an enhanced sense of well-being and improving pacing.
These effects are independent of taste or sweet and non-sweet of carbohydrates but are specific to carbohydrates.

It should be noted that performance effects with drink ingestion are similar to the mouth rinse; therefore athletes, when they don’t complain of gastrointestinal distress when ingesting too much fluid, may have an advantage taking the drink (in endurance sports, dehydration and carbohydrate depletion are the most likely contributors to fatigue).

Conclusion
It seems that during exercise of relatively short duration (<1 h) and high intensity (>75% VO2max) it is not necessary to ingest large amounts of carbohydrates: a carbohydrate mouth rinsing or the intake of very small amounts of carbohydrates may be sufficient to obtain a performance benefit.

References

Burke L.M., Hawley J.A., Wong S.H.S., & Jeukendrup A. Carbohydrates for training and competition. J Sport Sci 2011;29:Sup1,S17-S27. doi:10.1080/02640414.2011.585473

Jentjens R.L.P.G., Moseley L., Waring R.H., Harding L.K., and Jeukendrup A.E. Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol 2004:96;1277-1284. doi:10.1152/japplphysiol.00974.2003

Jentjens R.L.P.G., Venables M.C., and Jeukendrup A.E. Oxidation of exogenous glucose, sucrose, and maltose during prolonged cycling exercise. J Appl Physiol 2004:96;1285-1291. doi:10.1152/japplphysiol.01023.2003

Jeukendrup A.E. Carbohydrate feeding during exercise. Eur J Sport Sci 2008:2;77-86. doi:10.1080/17461390801918971

Mahan L.K., Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Shils M.E., Olson J.A., Shike M., Ross A.C.: “Modern nutrition in health and disease” 9th ed. 1999

Hydration before endurance sports

Pre-hydration
Fig. 1 – Pre-hydration

In endurance sports, like Ironman, open water swimming, road cycling, marathon, or cross-country skiing, the most likely contributors to fatigue are dehydration and carbohydrate (especially liver and muscle glycogen) depletion.

Pre-hydration

Due to sweat loss needed to dissipate the heat generated during exercise, dehydration can compromise exercise performance.
It is important to start exercising in a euhydrated state, with normal plasma electrolyte levels, and attempt to maintain this state during any activity.
When an adequate amount of beverages with meals are consumed and a protracted recovery period (8-12 hours) has elapsed since the last exercise, the athlete should be euhydrated.
However, if s/he has not had adequate time or fluids/electrolytes volume to re-establish euhydration, a pre-hydration program may be useful to correct any previously incurred fluid-electrolyte deficit prior to initiating the next exercise.

Pre-hydration program

If during exercise the nutritional target is to reduce sweat loss to less than 2–3% of body weight, prior to exercise the athlete should drink beverages at least 4 hours before the start of the activity, for example, about 5-7 mL/kg body weight.
But if the urine is still dark (highly concentrated) and/or is minimal, s/he should slowly drink more beverages, for example, another 3-5 mL/kg body weight, about 2 hours before the start of activity so that urine output normalizes before starting the event.

It is advisable to consume small amounts of sodium-containing foods or salted snacks and/or beverages with sodium that help to stimulate thirst and retain the consumed fluids.
Moreover, palatability of the ingested beverages is important to promote fluid consumption before, during, and after exercise. Fluid palatability is influenced by several factors, such as:

  • temperature, often between 15 and 21 °C;
  • sodium content;
  • flavoring.

And hyper-hydration?

Hyper-hydration, especially in the heat, could improve thermoregulation and exercise performance, therefore, it might be useful for those who lose body water at high rates, as during exercise in hot conditions or who have difficulty drinking sufficient amounts of fluid during exercise.
However there are several risks:

  • fluids that expand the intra- and extra-cellular spaces (e.g. glycerol solutions plus water) greatly increase the risk of having to void during exercise;
  • hyper-hydration may dilute and lower plasma sodium which increases the risk of dilutional hyponatraemia, if during exercise, fluids are replaced aggressively.

Finally, it must be noted that plasma expanders or hyper-hydrating agents are banned by the World Anti-Doping Agency (WADA).

Conclusion
“Pre-hydrating with beverages, if needed, should be initiated at least several hours before the exercise task to enable fluid absorption and allow urine output to return toward normal levels. Consuming beverages with sodium and/or salted snacks or small meals with beverages can help stimulate thirst and retain needed fluids” (Sawka et al., 2007, see References).

References

Jeukendrup A.E. Nutrition for endurance sports: marathon, triathlon, and road cycling. J Sport Sci 2011:29;sup1, S91-S99. doi:10.1080/02640414.2011.610348

Mahan L.K., Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Sawka M.N., Burke L.M., Eichner E.R., Maughan, R.J., Montain S.J., Stachenfeld N.S. American College of Sports Medicine position stand: exercise and fluid replacement. Med Sci Sport Exercise 2007;39:377-390. doi:10.1249/mss.0b013e31802ca597

Shils M.E., Olson J.A., Shike M., Ross A.C.: “Modern nutrition in health and disease” 9th ed. 1999

Shirreffs S., Sawka M.N. Fluid and electrolyte needs for training, competition and recovery. J Sport Sci 2011;29:sup1, S39-S46. doi:10.1080/02640414.2011.614269

Hypoglycemia and carbohydrate ingestion 60 min before exercise

Hypoglycemia: Fatigue
Fig. 1 – Fatigue

From several studies it appears that the risk of developing hypoglycemia (blood glucose < 3.5 mmol /l or < 63 mg/l) is highly individual: some athletes are very prone to develop it and others are much more resistant.

Strategies to limit hypoglycemia in susceptible subjects

A strategy to minimize glycemic and insulinemic responses during exercise is to delay carbohydrate ingestion just prior to exercise: in the last 5-15 min before exercise or during warm-up (even though followed by a short break).
Why?

  • Warm-up and then exercise increase catecholamine concentrations blunting insulin response.
  • Moreover, it has been shown that ingestion of carbohydrate-containing beverages during a warm-up (even if followed by a short break) does not lead to rebound hypoglycemia, independent of the amount of carbohydrates, but instead increases glycemia. When carbohydrates are ingested within 10 min before the onset of the exercise, exercise will start before the increase of insulin concentration.

Therefore, this timing strategy would provide carbohydrates minimizing the risk of a possible reactive hypoglycaemia.
In addition, it is possible to choose low glycemic index carbohydrates that lead to more stable glycemic and insulinemic responses during subsequent exercise.

Example: a 5-6% carbohydrate solution, often maltodextrin (i.e. 50-60 g maltodextrin in 1000 ml) or maltodextrin plus fructose (e.g. respectively 33 g plus 17 g in 1000 ml).

An intriguing observation is the lack of a clear relation between hypoglycaemia and its symptoms (likely related to a reduced delivery of glucose to the brain). In fact, symptoms are often reported in the absence of true hypoglycemia and hypoglycemia is not always associated with symptoms. Though the cause of the symptoms is still unknown, it is clearly not related to a glycemic threshold.

Conclusion
Some athletes develop symptoms similar to those of hypoglycemia, even though they aren’t always linked to actual low glycemia. To minimize these symptoms, for these subjects an individual approach is advisable. It may include:

  • carbohydrate ingestion just before the onset of exercise or during warm-up;
  • choose low-to-moderate GI carbohydrates that result in more stable glycemic and insulinemic responses;
  • or avoid carbohydrates 90 min before the onset of exercise.
References

Jeukendrup A.E. Carbohydrate feeding during exercise. Eur J Sport Sci 2008:2;77-86. doi:10.1080/17461390801918971

Jeukendrup A.E., C. Killer S.C. The myths surrounding pre-exercise carbohydrate feeding. Ann Nutr Metab 2010;57(suppl 2):18-25. doi:10.1159/000322698

Mahan L.K., Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Moseley L., Lancaster G.I, Jeukendrup A.E. Effects of timing of pre-exercise ingestion of carbohydrate on subsequent metabolism and cycling performance. Eur J Appl Physiol 2003;88:453-8. doi:10.1007/s00421-002-0728-8

Shils M.E., Olson J.A., Shike M., Ross A.C.: “Modern nutrition in health and disease” 9th ed. 1999

Carbohydrate loading before competition

Carbohydrate loading is a good strategy to increase fuel stores in muscles before the start of the competition.

What does the muscle “eat” during endurance exercise?

Carbohydrate loading: Alberto Sordi and SpaghettiMuscle “eats” carbohydrates, in the form of glycogen, stored in the muscles and liver, carbohydrates ingested during the exercise or just before that, and fat.

During endurance exercise, the most likely contributors to fatigue are dehydration and carbohydrate depletion, especially of muscle and liver glycogen.
To prevent the “crisis” due to the depletion of muscle and liver carbohydrates, it is essential having high glycogen stores before the start of the activity.

What does affect glycogen stores?

  • The diet in the days before the competition.
  • The level of training (well-trained athletes synthesize more glycogen and have potentially higher stores, because they have more efficient enzymes).
  • The activity in the day of the competition and the days before (if muscle doesn’t work it doesn’t lose glycogen). Therefore, it is better to do light trainings in the days before the competition, not to deplete glycogen stores, and to take care of nutrition.

The “Swedish origin” of carbohydrate loading

Very high muscle glycogen levels (the so-called glycogen supercompensation) can improve performance, i.e. time to complete a predetermined distance, by 2-3% in the events lasting more than 90 minutes, compared with low to normal glycogen, while benefits seem to be little or absent when the duration of the event is less than 90 min.
Well-trained athletes can achieve glycogen supercompensation without the depletion phase prior to carbohydrate loading, the old technique discovered by two Swedish researchers, Saltin and Hermansen, in 1960s.
The researchers discovered that muscle glycogen concentration could be doubled in the six days before the competition following this diet:

  • three days of low carb menu (a nutritional plan very poor in carbohydrates, i.e. without pasta, rice, bread, potatoes, legumes, fruits etc.);
  • three days of high carbohydrate diet, the so-called carbohydrate loading (a nutritional plan very rich in carbohydrates).

This diet causes a lot of problems: the first three days are very hard and there may be symptoms similar to depression due to low glucose delivery to brain, and the benefits are few.
Moreover, with the current training techniques, the type and amount of work done, we can indeed obtain high levels of glycogen: above 2.5 g/kg of body weight.

The “corrent” carbohydrate loading

If we compete on Sunday, a possible training/nutritional plan to obtain supercompensation of glycogen stores can be the following:

  • Wednesday, namely four days before the competition, moderate training and then dinner without carbohydrates;
  • from Thursday on, namely the three days before the competition, hyperglucidic diet and light trainings.
Carbohydrate Loading
Fig. 1 – Carbohydrate Loading: 2500 kcal Diet

The amount of dietary carbohydrates needed to recover glycogen stores or to promote glycogen loading depends on the duration and intensity of the training programme, and they span from 5 to 12 g/kg of body weight/d, depending on the athlete and his activity. With higher carbohydrate intake you can achieve higher glycogen stores but this does not always results in better performance; moreover, it should be noted that glycogen storage is associated with weight gain due to water retention (approximately 3 g per gram of glycogen), and this may not be desirable in some sports.

References

Burke L.M., Hawley J.A., Wong S.H.S., & Jeukendrup A. Carbohydrates for training and competition. J Sport Sci 2011;29:Sup1,S17-S27. doi:10.1080/02640414.2011.585473

Hargreaves M., Hawley J.A., & Jeukendrup A.E. Pre-exercise carbohydrate and fat ingestion: effects on metabolism and performance. J Sport Sci 2004;22:31-38. doi10.1080/0264041031000140536

Jeukendrup A.E., C. Killer S.C. The myths surrounding pre-exercise carbohydrate feeding. Ann Nutr Metab 2010;57(suppl 2):18-25. doi:10.1159/000322698

Mahan L.K., Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Moseley L., Lancaster G.I, Jeukendrup A.E. Effects of timing of pre-exercise ingestion of carbohydrate on subsequent metabolism and cycling performance. Eur J Appl Physiol 2003;88:453-8. doi:10.1007/s00421-002-0728-8

Shils M.E., Olson J.A., Shike M., Ross A.C.: “Modern nutrition in health and disease” 9th ed. 1999

Alkaline diet and health benefits

The acid-ash hypothesis posits that protein and grain foods, with a low potassium intake, produce a diet acid load, net acid excretion, increased urine calcium, and release of calcium from the skeleton, leading to osteoporosis.” (Fenton et al., 2009, see References).
Is it true?
Calcium, present in bones in form of carbonates and phosphates, represents a large reservoir of base in the body. In response to an acid load such as the high protein diets these salts are released into the circulation to bring about pH homeostasis. This calcium is lost in the urine and it has been estimated that the quantity lost with the such diet over time could be as high as almost 480 g over 20 years or almost half the skeletal mass of calcium!
Even these losses of calcium may be buffered by ingestion of foods that are alkali rich as fruit and vegetables, and on-line information promotes an alkaline diet for bone health as well as a number of books, a recent meta-analysis has shown that the causal association between osteoporotic bone disease and dietary acid load is not supported by evidence and there is no evidence that the alkaline diet is protective of bone health (but it is protective against the risk for kidney stones).

Note: it is possible that fruit and vegetables are beneficial to bone health through mechanisms other than via the acid-ash hypothesis.

And protein?
Excess dietary protein with high acid renal load may decrease bone density, if not buffered by ingestion of foods that are alkali rich, that is fruit and vegetables. However, an adequate protein intake is needed for the maintenance of bone integrity. Therefore, increasing the amount of fruit and vegetables may be necessary rather than reducing protein too much.
Therefore it is advisable to consume a normo-proteic diet rich in fruits and vegetables and poor in sodium, that is, a Mediterranean Diet-like eating patterns, eating foods with a negative acid load together with foods with a positive acid load. Example: pasta plus vegetables or meats plus vegetables and fruits (see figure below).

Alkaline Diet: Food and Acid Load
Food and Acid Load

Alkaline diet and muscle mass


As we age, there is a loss of muscle mass, which predispose to falls and fractures. A diet rich in potassium, obtained from fruits and vegetables, as well as a reduced acid load, results in preservation of muscle mass in older men and women.

Alkaline diet and growth hormone

In children, severe forms of metabolic acidosis are associated with low levels of growth hormone with resultant short stature; its correction with potassium or bicarbonate citrate increases growth hormone significantly and improves growth. In postmenopausal women, the use of enough potassium bicarbonate in the diet to neutralize the daily net acid load resulted in a significant increase in growth hormone and resultant osteocalcin.
Improving growth hormone levels may reduce cardiovascular risk factors, improve quality of life, body composition, and even memory and cognition.

Conclusion

Alkaline diet may result in a number of health benefits.

  • Increased fruits and vegetables would improve the K/Na ratio and may benefit bone health, reduce muscle wasting, as well as mitigate other chronic diseases such as hypertension and strokes.
  • The increase in growth hormone may improve many outcomes from cardiovascular health to memory and cognition.
  • The increase in intracellular magnesium is another added benefit of the alkaline diet (e.g. magnesium, required to activate vitamin D, would result in numerous added benefits in the vitamin D systems).

It should be noted that one of the first considerations in an alkaline diet, which includes more fruits and vegetables, is to know what type of soil they were grown in since this may significantly influence the mineral content and therefore their buffering capacity.

References

Fenton T.R., Lyon A.W., Eliasziw M., Tough S.C., Hanley D.A. Meta-analysis of the effect of the acid-ash hypothesis of osteoporosis on calcium balance. J Bone Miner Res 2009;24(11):1835-40. doi:10.1359/jbmr.090515

Fenton T.R., Lyon A.W., Eliasziw M., Tough S.C., Hanley D.A. Phosphate decreases urine calcium and increases calcium balance: a meta-analysis of the osteoporosis acid-ash diet hypothesis. Nutr J 2009;8:41. doi:10.1186/1475-2891-8-41

Fenton T.R., Tough S.C., Lyon A.W., Eliasziw M., Hanley D.A. “Causal assessment of dietary acid load and bone disease: a systematic review and meta-analysis applying Hill’s epidemiologic criteria for causality.” Nutr J 2011;10:41. doi:10.1186/1475-2891-10-41

Schwalfenberg G.K. The alkaline diet: is there evidence that an alkaline pH diet benefits health? J Environ Public Health 2012; Article ID 727630. doi:10.1155/2012/727630