Category Archives: Nutrition

Human gut microbiota: definition, composition, and diet

The human gastrointestinal tract is one of the most fierce and competitive ecological niches. It harbors viruses, eukaryotes, bacteria, and one member of Archaebacteria, Methanobrevibacter smithii.
Bacteria vary in proportion and amount all along the gastrointestinal tract; the greatest amount is found in the colon, which contains over 400 different species belonging to 9 phyla or divisions (of the 30 recognized phyla), and hereafter you refer to them as gut microbiota.
These are the phyla and some of their most represented genera.

  • Actinobacteria (Gram-positive bacteria); Bifidobacterium, Collinsella, Eggerthella, and Propionibacterium.
  • Bacteroidetes (Gram-negative bacteria); more than 20 genera including Bacteroides, Prevotella and Corynebacterium.
  • Cyanobacteria (Gram-negative bacteria).
  • Firmicutes (Gram-positive bacteria); at least 250 genera, including Mycoplasma, Bacillus, Clostridium, Dorea, Faecalibacterium, Ruminococcus, Eubacterium, Staphylococcus, Streptococcus, Lactobacillus, Lactococcus, Enterococcus, Sporobacter, and Roseburia.
  • Fusobacteria (Gram-negative bacteria);
  • Lentisphaerae (Gram-negative bacteria).
  • Proteobacteria (Gram-negative bacteria); Escherichia, Klebsiella, Shigella, Salmonella, Citrobacter, Helicobacter, and Serratia.
  • Spirochaeates (Gram-negative bacteria).
  • Verrucomicrobia (Gram-negative bacteria).

The presence of a small subset of the bacterial world in the colon is the result of a strong selective pressure which acted, during evolution, on both the microbial colonizers, selecting organisms very well adapted to this environment, and the intestinal niche. And nevertheless, each individual harbors an unique bacterial community in his gut.
Despite the high variability existing both with regard to taxa and between individuals, it has been proposed, but not accepted by all researchers, that in most adults the bacterial gut microbiota can be classified into variants or “enterotypes”, on the basis of the ratio of the abundance of the genera Bacteroides and Prevotella. This seems to indicate that there is a limited number of well balanced symbiotic states, which could respond differently to factors such as diet, age, genetics, and drug intake (see below).

Adult’s gut harbors a large and diverse community of DNA and RNA viruses made up of about 2,000 different genotypes, none of which is dominant. Indeed, the most abundant virus accounts for only about 6% of the community, whereas in infants the most abundant virus accounts over 40% of the community. The majority of DNA viruses are bacteriophages or phages, that is, viruses that infect bacteria (they are the most abundant biological entity on earth, with an estimated population of about 1031 units), whereas the majority of RNA viruses are plant viruses.


Factors affecting gut microbiota composition and development

The intestinal bacterial community is regulated by several factors, most of which are listed below.

  • The diet of the host.
    It seems to be the most important factor.
    Traditionally considered sterile, mother’s milk harbors a rich microbiota consisting of more than 700 species, dominated by staphylococci, streptococci, bifidobacteria and lactic acid bacteria. Therefore, it is a major source for the colonization of the breastfed infant gut, and it was suggested that this mode of colonization is closely correlated with infant’s health status, because, among other functions, it could protect against infections and contribute to the maturation of the immune system. Breast milk affects intestinal microbiota also indirectly, through the presence of oligosaccharides with prebiotic activity that stimulate the growth of specific bacterial groups including staphylococci and bifidobacteria.
    A recent study has compared the intestinal microbiota of European and African children (respectively from Florence and a rural village in Burkina Faso) between the ages of 1 and 6 years old. It has highlighted the dominant role of diet over variables such as climate, geography, hygiene and health services (it was also observed the absence of significant differences in the expression of key genes regulating the immune function, which suggests a functional similarity between the two groups). Indeed infants, as long as they are breastfed, have a very similar gut microbiota, rich in Actinobacteria, mainly Bifidobacterium (see below). The subsequent introduction of solid foods in the two groups, a Western diet rich in animal fats and proteins in European children, and low in animal protein but rich in complex carbohydrates in African children, leads to a differentiation in the Firmicutes/Bacteroidetes ratio between the two groups. Gram-positive bacteria, mainly Firmicutes, were more abundant than Gram-negative bacteria in European children, whereas Gram-negative bacteria, mainly Bacteroidetes, prevailed over Gram-positive bacteria in African children.
    And the long-term diets are strongly associated to the enterotype partitioning. Indeed, it has been observed that:

a diet high in animal fats and proteins, i.e. a Western-type diet, leads to a gut microbiota dominated by the Bacteroides enterotype;
a diet high in complex carbohydrates, typical of agrarian societies, leads to the prevalence of the Prevotella enterotype.

Similar results emerged from the aforementioned study on children. In the Europeans, gut microbiota was dominated by taxa typical of Bacteroides enterotype, whereas in the Burkina Faso children, Prevotella enterotype dominates.
With short-term changes in the diet (10 days), such as the switch from a low-fat and high-fiber diet to a high-fat and low-fiber diet and vice versa, changes were observed in the composition of the microbiome (within 24 hours), but no stable change in the enterotype partitioning. And this underlines as a long-term diet is needed for a change in the enterotypes of the gut microbiota.
Dietary interventions can also result in changes in the gut virome, which moves to a new state, that is, changes occur in the proportions of the pre-existing viral populations, towards which subjects on the same diet converge.

  • pH, bile salts and digestive enzymes.
    The stomach, due to its low pH, is a hostile environment for bacteria, which are not present in high numbers, about 102-103 bacterial cells/gram of tissue. In addition to Helicobacter pylori, able to cause gastritis and gastric ulcers, microorganisms of the genus Lactobacillus are also present.
    Reached the duodenum, an increase in bacterial cell number occurs, 104-105 bacterial cells/gram of tissue; and similar bacterial concentrations are present in the jejunum and proximal ileum. The low number of microorganisms present in the small intestine is due to the inhospitable environment, consequent to the fact that there is the opening of the ampulla of Vater in the descending part of the duodenum, which pours pancreatic juice and bile into the duodenum, that is, pancreatic enzymes and bile salts, which damage microorganisms.
    In the terminal portion of the ileum, where the activities of pancreatic enzymes and bile salts are lower, there are about 107 bacterial cells/gram of tissue, and up to 1012-1014 bacterial cells/gram of tissue in the colon, so that bacteria represent a large proportion, about 40%, of the fecal mass.
    The distribution of bacteria along the intestine is strategic. In the duodenum and jejunum, the amount of available nutrients is much higher than that found in the terminal portion of the ileum, where just water, fiber, and electrolytes remain. Therefore, the presence of large number of bacteria in the terminal portion of the ileum, and even more in the colon, is not a problem. The problem would be to find a high bacterial concentration in the duodenum, jejunum, and proximal parts of the ileum; and there is a disease condition, called small intestinal bacterial overgrowth or SIBO, in which the number of bacteria in the small intestine increases by about 10-15 times. This puts them in a position to compete with the host for nutrients and give rise to gastrointestinal disturbances such as diarrhea.
  • The geographical position and the resulting differences in lifestyle, diet, religion etc.
    For example, a kind of geographical gradient occurs in the microbiota of European infants, with a higher number of Bifidobacterium species and some of Clostridium in Northern infants, whereas Southern infants have higher levels of Bacteroides, Lactobacillus and Eubacterium.
  • The mode of delivery (see below).
  • The genetics of the host.
  • The health status of the infant and mother.
    For example, in mothers with inflammatory bowel disease or IBD, Faecalibacterium prausnitzii, a bacterium that produces butyrate (an important source of energy for intestinal cells), and with anti-inflammatory activity is depleted, whereas there is an increase in the number of adherent Escherichia coli.
  • The treatment with antibiotics.
  • Bacterial infections and predators.
    Bacteriocins, i.e. proteins with antibacterial activity, and bacteriophages.
    Phages play an important role in controlling the abundance and composition of the gut microbiota. In particular, they could play a major role in the colonization of the newborn, infecting the dominant bacteria thus allowing to another bacterial strain to become abundant.
    This model of predator-prey dynamics, called “kill the winner”, suggests that the blooms of a specific bacterial species would lead to blooms of their corresponding bacteriophages, followed by a decline in their abundance. Therefore, the most abundant bacteriophage genotype will not be the same at different times. And although some the gene sequences present in the infant gut virome are stable over the first three months of life, dramatic changes occur in the overall composition of the viral community between the first and second week of life. During this time period also the bacterial community is extremely dynamic (see below).
  • The competition for space and nutrients.

Composition throughout life

The development of the intestinal microbial ecosystem is a complex and crucial event in human life, highly variable from individual to individual, and influenced by the factors outlined above.

Development and modifications of gut microbiota throughout life

In utero, the gut is considered sterile, but is rapidly colonized by microbes at birth, as the infant is born with an immunological tolerance instructed by the mother.
However, recent studies show the presence of bacteria in the placental tissue, umbilical cord blood, fetal membranes and amniotic fluid from healthy newborns without signs of infection or inflammation. And for example, the meconium of premature infants, born to healthy mothers, contains a specific microbiota, with Firmicutes as the main phylum, and predominance of staphylococci, whereas Proteobacteria, in particular species such as Escherichia coli, Klebsiella pneumoniae, Serratia marcescens, but also enterococci are more abundant in the faeces.
Note: The meconium is free of detectable viruses.
It seems that both vaginal and gut bacteria may gain access to the fetus, although via different route of entry: by ascending entry the vaginal ones, by dendritic cells of the immune system the gut ones. Therefore, there could exist a fetal microbiota.

Colonization occurs during delivery by a maternal inoculum, generally composed of aerobic and facultative bacteria (the newborn’s gut initially contains oxygen), then replaced by obligate anaerobes,  bacteria typically present in adulthood, to which they have created a hospitable environment.
Furthermore, there is a small number of different taxa, with a relative dominance of the phyla Actinobacteria and Proteobacteria, that remains unchanged during the first month of life, but not in the subsequent ones as there is a large increase in variability and new genetic variants. Many studies underline that the initial exposure is important in defining the “trajectories” which will lead to the adult ecosystems. Additionally, these initial communities may act as a source of protective or pathogenic microorganisms.

Mother’s vaginal and fecal microbiotas are the main sources of inoculum in vaginally delivered infants. Indeed, infants harbor microbial communities dominated by species of the genera Lactobacillus (the most abundant genus in the vaginal microbiota and early gut microbiota) Bifidobacterium, Prevotella, or Sneathia. And it seems likely that anaerobes, such as members of the phyla Firmicutes and Bacteroidetes, not growing outside of their host, rely on the close contact between mother and offspring for transmission. Finally, due to the presence of oxygen in infant gut, the transmission of strict anaerobes could occur not directly at birth but at a later stage by means of spores.
The first bacteria encountered by infants born by caesarean section are those of the skin and hospital environment, and gut microbiota is dominated by species of the genera Corynebacterium, Staphylococcus and Propionibacterium, with a lower bacterial count and diversity in first weeks of life than infants born vaginally.
Further evidence supporting the hypothesis of vertical transmission is the similarity between the microbiota of meconium and samples obtained from possible sites of contamination.
These “maternal bacteria” do not persist indefinitely, and are replaced by other populations within the first year of life.
Objects, animals, mouths and skin of relatives, and breast milk are secondary sources of inoculum; and breast milk (see below) seems to have a primary role in determining the microbial succession in the gut.
The variation and diversity among children reflect instead the individuality of these microbial exposures.
Note: The delivery mode seems also to influence the immune system during the first year of life, perhaps via the influence on the development of gut microbiota. Infants born by cesarean section have:

  • a lower bacterial count in stool samples at one month of age, mainly due to the higher number of bifidobacteria in infants born vaginally;
  • a higher number of antibody secreting cells, which could reflect an excessive antigen exposure (the intestinal barrier would be more vulnerable to the passage of antigens).

Within a days after birth, a thriving community is established. This community is less stable over time and more variable in composition than that of adults. Very soon, it will be more numerous than that of the child’s cells, evolving according to a temporal pattern highly variable from individual to individual.
Viruses, absent at birth, reach about 108 units/gram wet weight of faeces by the end of the first week of life, therefore representing a dynamic and abundant component of the developing gut microbiota. However, viral community has an extremely low diversity, like bacteria, and is dominated by phages, which probably influence the abundance and diversity of co-occurring bacteria, as seen above. The initial source of the viruses is unknown; of course, maternal and/or environmental inocula are among the possibilities. Notably, the earliest viruses could be the result of induction of prophages from the “newborn” gut bacterial flora, hypothesis supported by the observation that more than 25% of the phage sequences seem to be very similar to those of phages infecting bacteria such as Lactococcus, Lactobacillus, Enterococcus, and Streptococcus, which are abundant in breast milk.

By the end of the first month of life it is thought that the initial phase of rapid acquisition of microorganism is over.
In 1-month-old-infants, the most abundant bacteria belong to the genera Bacteroides and Escherichia, whereas Bifidobacterium, along with Ruminococcus, appear and grow to become dominant in the gastrointestinal tract of the breastfed infants between 1 and 11 months. Bifidobacteria such as Bifidobacterium longum subspecies infantis:

  • are known to be closely related to breastfeeding;
  • are among the best characterized commensal bacteria;
  • are considered probiotics, that is, microorganisms which can confer health benefits to the host.

Their abundance confers also benefits through competitive exclusion, that is, they are an obstacle to colonization by pathogens. And indeed, Escherichia and Bacteroides can become preponderant if Bifidobacterium is not adequately present in the gut.
In contrast, bacteria of the genera Escherichia (e.g. E. coli), Clostridium (e.g. C. difficile), Bacteroides (e.g. B. fragilis) and Lactobacillus are present in higher levels in formula-fed infants than in breastfed infants.
Although breast-fed infants receive only breast milk until weaning, their microbiota can show a large variability in the abundances of bacterial taxa, with differences between individuals also with regard to the temporal patterns of variation. These variations may be due to diseases, treatments with antibiotics, changes in host lifestyle, random colonization events, as well as differences in immune responses to the gut colonizing microbes. However, it is not yet clear how these factors contribute to shape infant gut microbiota.
It seems that also the virome changes rapidly after birth, as the majority of the viral sequences present in the first week of life are not found after the second week. Moreover, the repertoire expands rapidly in number and diversity during the first three months. This is in contrast with the stability observed in the adult virome, where 95% of the sequences are conserved over time.

In normal condition, towards the end of the first year of life, babies have consumed an adult-like diet for a significant time period and should have developed a microbial community with characteristics similar to those found in the adult gut, such as:

  • a more stable composition, phylogenetically more complex, and progressively more similar among different subjects;
  • a preponderance of Firmicutes and Bacteroidetes, followed by Verrucomicrobia and a very low abundance of Proteobacteria;
  • an increase in short-chain fatty acid (SCFA) levels and bacterial load in the feces;
  • an increase of genes associated with xenobiotic degradation, vitamin biosynthesis, and carbohydrate utilization.

Interestingly, the significant turnover of taxa occurring from birth to the end of the first year is accompanied by a remarkable constancy in the overall functional capabilities.
Towards the end of the first year of life also the early viral colonizers were replaced by a community specific to the child.

The gut microbiota reaches maturity at about 2.5 years of age, fully resembling the adult gut microbiota.
The selection of the most adapted bacteria is the result of various factors.

  • The transition to an adult diet.
  • An increased fitness to the intestinal environment of the taxa that typically dominate the adult gut microbiota than the early colonizers.
  • The significant changes in the intestinal environment, result of the developmental changes in the intestinal mucosa.
  • The effects of the microbiota itself.

Therefore, the first 2-3 years of life are the most critical period in which you can intervene to shape the microbiota as best as possible, and so optimize child growth and development.

From a chaotic beginning, all this leads to the establishment of the gut ecosystem typical of the young adult, which is relatively stable over time until old age (viral, archaeal and eukaryotic components included), and dominated, at least in the western population, by members of the phyla Firmicutes, about 60% of the bacterial communities, Bacteroidetes and Actinobacteria (mainly belonging to the Bifidobacterium genus), each comprising about 10% of the bacterial community, followed by Proteobacteria and Verrucomicrobia. The genera Bacteroides, Clostridium, Faecalibacterium, Ruminococcus and Eubacterium make up, together with Methanobrevibacter smithii, the large majority of the adult gut microbial community.
It should be noted that different data were obtained from analysis of populations of African rural areas, as seen above.
And the gut microbiota is sufficiently similar among subjects to allow the identification of a shared core microbiome.
Stability and resilience, however, are subject to numerous variables among which, as previously said, diet seems to be one of the most important. Therefore, in order to maintain the stability of the gut microbiota, the variables have to be kept constant, or in the case of diseases prevented (also through vaccinations). However, the stability and resilience could be harmful if the dominant community is pathogenic.

The gut microbiota undergoes substantial changes in the elderly. In a study conducted in Ireland on 161 healthy people aged 65 years and over, the gut microbiota is distinct from that of younger adults in the majority of subjects, with a composition that seems to be dominated by the phyla Bacteroidetes, the main ones, and Firmicutes, with almost inverted percentages than those found in younger adults (although large variations across subjects were observed). And there are Faecalibacterium, about 6% of the main genera, followed by species of the genera Ruminococcus, Roseburia and Bifidobacterium (the latter about 0.4%) among the most abundant genera.
Also the variability in the composition of the community is greater than in younger adults; this could be due to the increase in morbidities associated with aging and the subsequent increased intake of medications, as well as to changes in the diet.


Breitbart M., Haynes M., Kelley S., Angly F., Edwards R.A., Felts B., Mahaffy J.M., Mueller J., Nulton J., Rayhawk S., Rodriguez-Brito B., Salamon P., Rohwer F. Viral diversity and dynamics in an infant gut. Res Microbiol 2008;159:367-373. doi:10.1016/j.resmic.2008.04.006

Claesson M.J., Cusack S., O’Sullivan O., Greene-Diniz R., de Weerd H., Flannery E., Marchesi J.R., Falush D., Dinan T., Fitzgerald G., et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA 2011;108(Suppl 1);4586-4591. doi:10.1073/pnas.1000097107

Clemente J.C., Ursell L.K., Wegener Parfrey L., and Knight R. The impact of the gut microbiota on human health: an integrative view. Cell 2012;148:1258-1270. doi:10.1016/j.cell.2012.01.035

De Filippo c., Cavalieri D., Di Paola M., Ramazzotti M., Poullet J.B., Massart S., Collini S., Pieraccini G., and Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci 2010;107(33):14691-14696. doi:10.1073/pnas.1005963107

Dominguez-Bello M.G., Costello E.K., Contreras M., Magris M., Hidalgo G., Fierer N., and Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci 2010;107:11971-11975. doi:10.1073/pnas.1002601107

Fernández L., Langa S., Martín V., Maldonado A., Jiménez E., Martín R., Rodríguez J.M. The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res 2013;69(1):1-10. doi:10.1073/pnas.1002601107

Huurre A., Kalliomäki M., Rautava S., Rinne M., Salminen S., and Isolauri E. Mode of delivery-effects on gut microbiota and humoral immunity. Neonatology 2008;93:236-240. doi:10.1159/000111102

Koenig J.E., Spor A., Scalfone N., Fricker A.D., Stombaugh J., Knight R., Angenent L.T., and Ley R.E. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci 2011;108(1):4578-4585. doi:10.1073/pnas.1000081107

Ley R.E., Peterson D.A., and Gordon J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006;124(4):837-848. doi:10.1016/j.cell.2006.02.017

Minot S., Sinha R., Chen J., Li H., Keilbaugh S.A., Wu G.D., Lewis J.D., and Bushman F.D. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res 2011;21:1616-1625. doi:10.1101/gr.122705.111

Moreno-Indias I.M., Cardona F., Tinahones F.J. and Queipo-Ortuño M.I. Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front Microbiol 2014;5(190):1-10. doi:10.3389/fmicb.2014.00190

Newburg D.S. & Morelli L. Human milk and infant intestinal mucosal glycans guide succession of the neonatal intestinal microbiota. Pediatr Res 2015;77:115-120. doi:10.1038/pr.2014.178

Palmer C., Bik E.M., DiGiulio D.B., Relman D.A., and Brown P.O. Development of the human infant intestinal microbiota. PLoS Biol 2007;5(7):e177. doi:10.1371/journal.pbio.0050177

Rodrıguez J.M., Murphy K., Stanton C., Ross R.P., I. Kober O.I., Juge N., Avershina E., Rudi K., Narbad A., Jenmalm M.C., Marchesi J.R. and Collado M.C. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis 2015;26:26050. doi:10.3402/mehd.v26.26050

Wu G.D., Chen J., Hoffmann C., Bittinger K., Chen Y.Y., Keilbaugh S.A., Bewtra M., Knights D., Walters W.A., Knight R., et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011;334:105-108. doi:10.1126/science.1208344

Human microbiota: definition, composition, function, and effect of antibiotics

It has been known for almost a century that humans harbor a microbial ecosystem, known as human microbiota, remarkably dense and diverse, made up of a  number of viruses and cells much higher than those of the human body, and that accounts for one to three percent of body weight. All the genes encoded by the human body’s microbial ecosystem, which are about 1,000 times more numerous than those of our genome, make up the human microbiome. Microorganisms colonize all the surfaces of the body that are exposed to the environment. Indeed, distinct microbial communities are found on the skin, in the vagina, in the respiratory tract, and along the whole intestinal tract, from the mouth up to rectum, the last part of the intestine.


Composition of the human microbiota

It is composed of organisms from all taxa.

  • Bacteria, at least 100 trillion (1014) cells, a number ten times greater than that of the human body. They are found in very high concentration in the intestinal tract, up to 1012-1014/gram of tissue, where they form one of the most densely populated microbial habitats on Earth. In the gut, bacteria mainly belong to the Firmicutes, Bacteroidetes and Actinobacteria phyla. Fusobacteria (oropharynx), Tenericutes, Proteobacteria, and Verrucomicrobia are other phyla present in our body.
    Note: Bacterial communities in a given body region resemble themselves much more across individuals than those from different body regions of the same individual; for example, bacterial communities of the upper respiratory tract are much more similar across individuals than those of the skin or intestine of the same individual.
  • Viruses, by far the most numerous organisms, about quadrillion units. The genomes of all the viruses harbored in the human body make up the human virome. In the past, viruses and eukaryotes (see below) have been studied focusing on pathogenic microorganisms, but in recent years the attention has also shifted on many non-pathogenic members of these groups. And many of the viral gene sequences found are new, which suggests that there is still much to learn about the human virome. Finally, just like for bacteria, there is considerable interpersonal variability.
  • Archaebacteria, primarily those belonging to the order Methanobacteriales, with Methanobrevibacter smithii predominant in the human gut (up to 10% of all anaerobes).
  • Eukaryotes, and the parasites of the genera Giardia and Entamoeba have probably been among the first to be identified. But there is also a great abundance and diversity of fungal species, belonging to genera such as Candida, Penicillium, Aspergillus, Hemispora, Fusarium, Geotrichum, Hormodendrum, Cryptococcus, Saccharomyces, and Blastocystis.

Candida albicans, a component of Human Microbiota

Based on the relationships with the human host, microorganisms may be classified as commensals or pathogens.

  • Commensals cause no harm to the host, with which they establish a symbiotic relationship that generally brings benefits to both.
  • On the contrary, pathogens are able to cause diseases, but fortunately represent a small percentage of the human microbiota. These microorganisms establish a symbiosis with the human host and benefit from it at the expense of the host. They can cause disease:

if they move from their niche, such as the intestine, into another one where they do not usually reside, such as the vagina or bladder (as in the case of Candida albicans, normally present in the intestine, but in very small quantities);
in patients with impaired immunological defenses, such as after an immunosuppressive therapy.

Functions of the human microbiota

Sometimes referred to as “the forgotten organ“, human microbiota, mainly with its intestinal bacterial members, plays many important functions that can lead to nutritional, immunological, and developmental benefits, but can also cause diseases. Here are some examples.

  • It is involved in the development of the gastrointestinal system of the newborn, as shown by experiments carried out on germ-free animals in which, for example, the thickness of the intestinal mucosa is thinner than that of colonized animals, therefore more easily subject to rupture.
  • It contributes to energy harvest from nutrients, due to its ability to ferment indigestible carbohydrates, promote the absorption of monosaccharides and the storage of the derived energy. This has probably been a very strong evolutionary force that has played a major role in favor of the fact that these bacteria became our symbionts.
  • It contributes to the maintenance of the acidic pH of the skin and in the colon.
  • It is involved in the metabolism of xenobiotics and several polyphenols.
  • It improves water and mineral absorption in the colon.
  • It increases the speed of intestinal transit, slower in germ-free animals.
  • It has an important role in resistance to colonization by pathogens, primarily in the vagina and gut.
  • It is involved in the biosynthesis of isoprenoids and vitamins through the methylerythritol phosphate pathway.
  • It stimulates angiogenesis.
  • In the intestinal tract, it interacts with the immune system, providing signals for promoting the maturation of immune cells and the normal development of immune functions. And this is perhaps the most important effect of the symbiosis between the human host and microorganisms. Experiments carried out on germ-free animals have shown, for example, that:

macrophages, the cells that engulf pathogens and then present their antigens to the immune system, are found in much smaller amounts than those present in the colonized intestine, and if placed in the presence of bacteria they fail to find and therefore engulf them, unlike macrophages extracted from a colonized intestine;
there is not the chronic non-specific inflammation, present in the normal intestine as a result of the presence of bacteria (and of what we eat).

  • Changes in its composition can contribute to the development of obesity and metabolic syndrome.
  • It protects against the development of type I diabetes.
  • Many diseases, both in children and adults, such as stomach cancer, lymphoma of mucosa-associated lymphoid tissue, necrotizing enterocolitis (an important cause of morbidity and mortality in premature babies) or chronic intestinal diseases, are, and others seem to be, related to the gut microbiota.

In conclusion, it seems very likely that the human body represents a superorganism, result of years of evolution and made up of human cells, and the resulting metabolic and physiological capacities, as well as an additional organ, the microbiota.

Human Microbiome Project

The bacterial component of the human microbiota is the subject of most studies including a large-scale project started in 2008 called “Human Microbiome Project“, whose aim is to characterize the microbiome associated with multiple body sites, such as the skin, mouth, nose, vagina and intestine, in 242 healthy adults. These studies have shown a great variability in the composition of the human microbiota; for example, twins share less than 50% of their bacterial taxa at the species level, and an even smaller percentage of viruses. The factors that shape the composition of bacterial communities begin to be understood: for example, the genetic characteristics of the host play an important, although this is not true for the viral community. And metagenomic studies have shown that, despite the great interpersonal variability in microbial community composition, there is a core of shared genes encoding signaling and metabolic pathways. It appears namely that the assembly and the structure of the microbial community does not occur according to the species but the more functional set of genes. Therefore, disease states of these communities might be better identified by atypical distribution of functional classes of genes.

Effect of antibiotics

The microbiota in healthy adult humans is generally stable over time. However, its composition can be altered by factors such as dietary changes, urbanization, travel, and especially the use of broad-spectrum antibiotics. Here are some examples of the effect of antibiotic treatments.

  • There is a long-term reduction in microbial diversity.
  • The taxa affected vary from individual to individual (even up to a third of the taxa).
  • Several taxa do not recover even after 6 months from treatment.
  • Once the bacterial communities have reshaped, a reduced resistance to colonization occurs. This allows foreign and/or pathogen bacteria, able to grow more than the commensals, to cause permanent changes in human microbiota structure, as well as acute diseases, such as the dangerous pseudomembranous colitis, and chronic diseases, as it is suspected for asthma following the use and abuse of antibiotics in childhood. Moreover, their repeated use has been suggested to increase the pool of antibiotic-resistance genes in our microbiome. In support of this hypothesis, a decrease in the number of antibiotic-resistant pathogens has been observed in some European countries following the reduction in the number of antibiotics prescribed.

Finally, you must not underestimate the fact that the intestinal microflora is involved in many chemical transformations, and its alteration could be implicated in the development of cancer and obesity. However, regarding use of antibiotics, you should be underlined that if western population has a life expectancy higher than in the past is also because you do not die of infectious diseases!


Burke C., Steinberg P., Rusch D., Kjelleberg S., and Thomas T. Bacterial community assembly based on functional genes rather than species. Proc Natl Acad Sci USA 2011;108:14288-14293. doi:10.1073/pnas.1101591108

Clemente J.C., Ursell L.K., Wegener Parfrey L., and Knight R. The impact of the gut microbiota on human health: an integrative view. Cell 2012;148:1258-1270. doi:10.1016/j.cell.2012.01.035

Gill S.R., Pop M., Deboy R.T., Eckburg P.B., Turnbaugh P.J., Samuel B.S., Gordon J.I., Relman D.A., Fraser-Liggett C.M., and Nelson K.E. Metagenomic analysis of the human distal gut microbiome. Science 2006;312:1355-1359. doi:10.1126/science.1124234

Palmer C., Bik E.M., DiGiulio D.B., Relman D.A., and Brown P.O. Development of the human infant intestinal microbiota. PLoS Biol 2007;5(7):e177. doi:10.1371/journal.pbio.0050177

Turnbaugh P.J., Gordon J.I. The core gut microbiome, energy balance and obesity. J Physiol 2009;587:4153-4158. doi:10.1113/jphysiol.2009.174136

Zhang, T., Breitbart, M., Lee, W., Run, J.-Q., Wei, C., Soh, S., Hibberd, M., Liu, E., Rohwer, F., Ruan, Y. Prevalence of plant viruses in the RNA viral community of human feces. PLoS Biol 2006;4(1):e3. doi:10.1371/journal.pbio.0040003

Gluten: definition, gliadins, glutenins, and containing grains

Gluten is not a single protein but a mixture of cereal proteins, about 80% of its dry weight (for example gliadins and glutenins in wheat grains), lipids, 5-7%, starch, 5-10%, water, 5-8%, and mineral substances, <2%.
It forms when components naturally present in the grain of cereals, the caryopsis, and in their flours, are joined together by means of mechanical stress in aqueous environment, i.e. during the formation of the dough.
The term is also related to the family of proteins that cause problems for celiac patients (see below).
Isolated for the first time in 1745 from wheat flour by the Italian chemist Jacopo Bartolomeo Beccari, it can be extracted from the dough by washing it gently under running water: starch, albumins and globulins, that are water-soluble, are washed out, and a sticky and elastic mass remains, precisely the gluten (it means glue in Latin).


Cereals containing gluten

It is present in:

  • wheat, such as:

durum wheat (Triticum durum); groats and semolina for dry pasta making are obtained from it;
common wheat or bread wheat (Triticum aestivum), so called because it is used in bread and fresh pasta making, and in bakery products;

  • rye (Secale cereale);
  • barley (Hordeum vulgare);
  • spelt, in the three species:

einkorn (Triticun monococcum);
emmer (Triticum dicoccum Schrank);
spelta (Triticum spelta);

  • khorasan wheat (Triticum turanicum); a variety of it is Kamut®;
  • triticale (× Triticosecale Wittmack), which is a hybrid of rye and common wheat;
  • bulgur, which is whole durum wheat, sprouted and then processed;
  • seitan, which is not a cereal, but a wheat derivative, also defined by some as “gluten steak”.

Given that most of the dietary intake of gluten comes from wheat flour, of which about 700 million tons per year are harvested, representing about 30% of the global cereal production, the following discussion will focus on wheat gluten, and mainly on its proteins.

Note: The term gluten is also used to indicate the protein fraction that remains after removal of starch and soluble proteins from the dough obtained with corn flour: however, this “corn gluten” is “functionally” different from that obtained from wheat flour.

Cereal grain proteins

The study of cereal grain proteins, as seen, began with the work of Beccari. 150 years later, in 1924, the English chemist Osborne T.B., which can rightly be considered the father of plant protein chemistry, developed a classification based on their solubility in various solvents.
The classification, still in use today, divides plant proteins into 4 families.

  • Albumins, soluble in water.
  • Globulins, soluble in saline solutions; for example avenalin of oat.
  • Prolamins, soluble in 70% alcohol solution, but not in water or absolute alcohol.
    They include:

gliadins of wheat;
zein of corn;
avenin of oats;
hordein of barley;
secalin of rye.

They are the toxic fraction of gluten for celiac patients.

  • Glutelins, insoluble in water and neutral salt solutions, but soluble in acidic and basic solutions.
    They include glutenins of wheat.
Proteins found in cereal grains: albumins, globulins, prolamins, glutelins
Cereal Grain Proteins

Albumins and globulins are cytoplasmic proteins, often enzymes, rich in essential amino acids, such as lysine, tryptophan and methionine. They are found in the aleurone layer and embryo of the caryopsis.
Prolamins and glutelins are the storage proteins of cereal grains. They are rich in glutamine and proline, but very low in lysine, tryptophan and methionine. They are found in the endosperm, and are the vast majority of the proteins in the grains of wheat, corn, barley, oat, and rye.
Although Osborne classification is still widely used, it would be more appropriate to divide cereal grain proteins into three groups: structural and metabolic proteins, storage proteins, and defense proteins.

Wheat gluten proteins

Proteins represent 10-14% of the weight of the wheat caryopsis (about 80% of its weight consists of carbohydrates).
According to the Osborne classification, albumins and globulins represent 15-20% of the proteins, while prolamins and glutelins are the remaining 80-85%, composed respectively of gliadins, 30-40%, and glutenins, 40-50%. Therefore, and unlike prolamins and glutelins in the grains of other cereals, gliadins and glutenins are present in similar amounts, about 40% (see Fig. 2).

Gluten and other proteins found in wheat grains
Wheat Grain Proteins

Technologically, gliadins and glutenins are very important. Why?
These proteins are insoluble in water, and in the dough, that contains water, they bind to each other through a combination of intermolecular bonds, such as:

  • covalent bonds, i.e. disulfide bridges;
  • noncovalent bonds, such as hydrophobic interactions, van der Waals forces, hydrogen bonds, and ionic bonds.

Thanks to the formation of these intermolecular bonds, a three-dimensional lattice is formed. This structure entraps starch granules and carbon dioxide bubbles produced during leavening, and gives strength and elasticity to the dough, two properties of gluten widely exploited industrially.
In the usual diet of the European adult population, and in particular in Italian diet that is very rich in derivatives of wheat flour, gliadin and glutenin are the most abundant proteins, about 15 g per day. What does this mean? It means that gluten-free diet engages celiac patients both from a psychological and social point of view.

Note: The lipids of the gluten are strongly associated with the hydrophobic regions of gliadins and glutenins and, unlike what you can do with the flour, they are extracted with more difficulty (the lipid content of the gluten depends on the lipid content of the flour from which it was obtained).

Gliadins: extensibility and viscosity

Gliadins are hydrophobic monomeric prolamins, of globular nature and with low molecular weight. On the basis of electrophoretic mobility in low pH conditions, they are separated into the following types:

  • alpha/beta, and gamma, rich in sulfur, containing cysteines, that are involved in the formation of intramolecular disulfide bonds, and methionines;
  • omega, low in sulfur, given the almost total absence of cysteine and methionine.

They have a low nutritional value and are toxic to celiac patients because of the presence of particular amino acid sequences in the primary structure, such as proline-serine-glutamine-glutamine and glutamine-glutamine-glutamine-proline.
Gliadins are associated with each other and with glutenins through noncovalent interactions; thanks to that, they act as “plasticizers” in dough making. Indeed, they are responsible for viscosity and extensibility of gluten, whose three-dimensional lattice can deform, allowing the increase in volume of the dough as a result of gas production during leavening. This property is important in bread-making.
Their excess leads to the formation of a very extensible dough.

Glutenins: elasticity and toughness

Glutenins are polymeric proteins, that is, formed of multiple subunits, of fibrous nature, linked together by intermolecular disulfide bonds. The reduction of these bonds allows to divide them, by SDS-PAGE, into two groups.

  • High molecular weight (HMW) subunits, low in sulfur, that account for about 12% of total gluten proteins. The noncovalent bonds between them are responsible for the elasticity and tenacity of the gluten protein network, that is, of the viscoelastic properties of gluten, and so of the dough.
  • Low molecular weight (LMW) subunits, rich in sulfur (cysteine residues).
    These proteins form intermolecular disulfide bridges to each other and with HMW subunits, leading to the formation of a glutenin macropolymer.

Glutenins allow dough to hold its shape during mechanical (kneading) and not mechanical stresses (increase in volume due to both the leavening and the heat of cooking that increases the volume occupied by gases present) which is submitted. This property is important in pasta making.
If in excess, glutenins lead to the formation of a strong and rigid dough.

Properties of wheat gluten

From the nutritional point of view, gluten proteins do not have a high biological value, being low in lysine, an essential amino acid. Therefore, a gluten-free diet does not cause any important nutritional deficiencies.
On the other hand, it is of great importance in food industry: the combination, in aqueous solution, of gliadins and glutenins to form a three-dimensional lattice, provides viscoelastic properties, that is, extensibility-viscosity and elasticity-tenacity, to the dough, and then, a good structure to bread, pasta, and in general, to all foods made with wheat flour.
It has a high degree of palatability.
It has a high fermenting power in the small intestine.
It is an exorphin: some peptides produced from intestinal digestion of gluten proteins may have an effect in central nervous system.

Gluten-free cereals

The following is a list of gluten-free cereals, minor cereals, and pseudocereals used as foods.

  • Cereals

corn or maize (Zea mays)
rice (Oryza sativa)

  • Minor cereals
    They are defined “minor” not because they have a low nutritional value, but because they are grown in small areas and in lower quantities than wheat, rice and maize.

Fonio (Digitaria exilis)
Millet (Panicum miliaceum)
Panic (Panicum italicum)
Sorghum (Sorghum vulgare)
Teff (Eragrostis tef)
Teosinte; it is a group of four species of the genus Zea. They are plants that grow in Mexico (Sierra Madre), Guatemala and Venezuela.

  • Pseudocereals.
    They are so called because they combine in their botany and nutritional properties characteristics of cereals and legumes, therefore of another plant family.

Amaranth; the most common species are:

Amaranthus caudatus;
Amaranthus cruentus;
Amarantus hypochondriacus.

Buckwheat (Fagopyrum esculentum)
Quinoa (Chenopodium quinoa), a pseudocereal with excellent nutritional properties, containing fibers, iron, zinc and magnesium. It belongs to Chenopodiaceae family, such as beets.

  • Cassava, also known as tapioca, manioc, or yuca (Manihot useful). It is grown mainly in the south of the Sahara and South America. It is an edible root tuber from which tapioca starch is extracted.

It should be noted that naturally gluten-free foods may not be truly gluten-free after processing. Indeed, the use of derivatives of gliadins in processed foods, or contamination in the production chain may occur, and this is obviously important because even traces of gluten are harmful for celiac patients.

Oats and gluten

Oats (Avena sativa) is among the cereals that celiac patients can eat. Recent studies have shown that it is tolerated by celiac patients, adult and child, even in subjects with dermatitis herpetiformis. Obviously, oats must be certified as gluten-free (from contamination).


Beccari J.B. De Frumento. De bononiensi scientiarum et artium instituto atque Academia Commentarii, II. 1745:Part I.,122-127

Bender D.A. “Benders’ dictionary of nutrition and food technology”. 8th Edition. Woodhead Publishing. Oxford, 2006

Berdanier C.D., Dwyer J., Feldman E.B. Handbook of nutrition and food. 2th Edition. CRC Press. Taylor & Francis Group, 2007

Phillips G.O., Williams P.A. Handbook of food proteins. 1th Edition. Woodhead Publishing, 2011

Shewry P.R. and Halford N.G. Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 2002:53(370);947-958. doi:10.1093/jexbot/53.370.947

Yildiz F. Advances in food biochemistry. CRC Press, 2009

Calories burned, and water and minerals lost during running

Calorie, carbohydrate, fat, and protein expenditure, and water and mineral losses during runningDuring running, athletes burn calorie, and lose water and salts in amounts depending on various factors such as the technique, training level, environmental conditions, and physiological characteristics of each runner. The knowledge of these factors allows to plan an adequate diet both during workout  and recovery, with the aim of optimizing performance.
Below we will analyze the energy expenditure of runners engaged in workouts on various distances, the amounts of carbohydrates, lipids, and proteins oxidized to meet the energy requirements, and which minerals are lost in sweat.


Energy expenditure during running

During running energy expenditure is equal to 0.85-1.05 kcal per kilogram per kilometer.
This range is due to the fact that athletes with a good technique spend less than those with a poor technique.
A 70 kilogram (154 pound) athlete has an energy expenditure per kilometer between:

70 x 0.85 x 1 = 59.5 kcal
70 x 1.05 x 1 = 73.5 kcal

The table shows the calculations to determine the energy expenditure of the athlete to run 10, 20, 30, and 40 kilometers.


Energy expenditure

10 km 0.85 x 70 x 10 = 595 kcal
1.05 x 70 x 10 = 735 kcal
20 km 0.85 x 70 x 20 = 1190 kcal
1.05 x 70 x 20 = 1470 kcal
30 km 0.85 x 70 x 30 = 1785 kcal
1.05 x 70 x 30 = 2205 kcal
40 km 0.85 x 70 x 40 = 2380 kcal
1.05 x 70 x 40 = 2940 kcal

Note: who has started running for a short time ago has an energy expenditure even higher than 1.05 kcal per kilogram per kilometer.

During running, the energy for muscle work derives from the oxidation of carbohydrates, lipids, and proteins. Carbohydrates and lipids are the main energy source, and their oxidation rate depends on the intensity of exercise: as it increases, the percentage of lipid oxidation decreases whereas that of carbohydrates increases, as summarized below.

Intensity Fuel
30% VO2max Mainly fats
40-60% VO2max Equally fats and carbohydrates
75% VO2max Mainly carbohydrates
80% VO2max Almost only carbohydrates

Note: The failure to use the suitable fuel can promote fatigue and lead to overtraining.

Then, when running above the anaerobic threshold, the oxidation of carbohydrates can provide the entire energy requirement. At marathon pace, carbohydrates provide 60-70% of the energy requirement, whereas at lower pace they provide less than 50% of energy requirement.
Below, the amounts of carbohydrates, lipids, and proteins oxidized during workout are analyzed. During workout ,the energy expenditure is covered for about 60% by carbohydrates, for about 40% by lipids, whereas the residual percentage, between 3 and 5%, by proteins.

Carbohydrate oxidation during workout

For a 70 kilogram runner the amount of carbohydrates oxidized per kilometer is between:

(0.6 x 59.5) /4 = 8.9 g/km
(0.6 x 73.5) /4 = 11 g/km

Note: carbohydrates provide, on average, 4 kcal per gram.
The table shows the calculations to determine the amount of carbohydrates oxidized when the athlete runs 10, 20, 30, and 40 kilometers.

Distance Carbohydrate expenditure

10 km

[(0.85 x 70 x 10) x 0.6 ] / 4 = 89 g
[(1.05 x 70 x 10) x 0.6 ] / 4 = 110 g

20 km

[(0.85 x 70 x 20) x 0.6] / 4 = 179 g
[(1.05 x 70 x 20) x 0.6] / 4 = 221 g

30 km

[(0.85 x 70 x 30) x 0.6] / 4 = 268 g
[(1.05 x 70 x 30) x 0.6] / 4 = 331 g

40 km

[(0.85 x 70 x 40) x 0.6] / 4 = 357 g
[(1.05 x 70 x 40) x 0.6] / 4 = 441 g

Lipid oxidation during workout

By calculations similar to those for carbohydrates, we determine the amount of lipids oxidized per kilometer, which is between:

(0.4 x 59.5) / 9 = 2.6 g/km
(0.4 x 73.5) / 9 = 3.3 g/km

Note: lipids provide, on average, 9 kcal per gram.
The table shows the calculations to determine the amount of lipids oxidized when the athlete runs 10, 20, 30, and 40 kilometers.


Lipid expenditure

10 km [(0.85 x 70 x 10) x 0.4] / 9 = 26 g
[(1.05 x 70 x 10) x 0.4] / 9 = 33 g
20 km [(0.85 x 70 x 20) x 0.4] / 9 = 53 g
[(1.05 x 70 x 20) x 0.4] / 9 = 65 g
30 km [(0.85 x 70 x 30) x 0.4] / 9 = 79 g
((1.05 x 70 x 30) x 0.4] / 9 = 98 g
40 km [(0.85 x 70 x 40) x 0.4] / 9 = 106 g
[(1.05 x 70 x 40) x 0.4] / 9 = 131 g

Protein oxidation during workout

Protein requirements of adults are equal to 0.9 grams per kilogram of body weight, and, for a 70 kilogram athlete is:

70 x 0.9 = 63 g

During workout  the energy expenditure is covered for about 3-5% by protein oxidation.

The table shows the calculations to determine the amount of proteins oxidized when the athlete runs 10, 20, 30, and 40 kilometers, and proteins provide 3% of the energy requirement.


Protein expenditure (3%)

10 km [(0.85 x 70 x 10) x 0.03)] / 4 = 4.5 g
[(1.05 x 70 x 10) x 0.03)] / 4 = 5.5 g
20 km [(0.85 x 70 x 20) x 0.03)] / 4 = 8.9 g
[(1.05 x 70 x 20) x 0.03)] / 4 = 11 g
30 km [(0.85 x 70 x 30) x 0.03)] / 4 = 13.4 g
[(1.05 x 70 x 30) x 0.03)] / 4 = 16.5 g
40 km [(0.85 x 70 x 40) x 0.03)] /4 = 17.9 g
[(1.05 x 70 x 40) x 0.03)] /4 = 22.1 g

Note: proteins provide, on average, 4 kcal per gram.

For energy expenditure of 0.85 and 1.05 kcal per kilogram per kilometer, the average additional protein oxidation per kilogram to run 10, 20, 30, and 40 kilometers, rounded to the second decimal place, is:

  • 10 km: [(4.5 + 5.5) / 2] / 70 = 0.07 g
  • 20 km: [(4.5 + 5.5) / 2] / 70 = 0.14 g
  • 30 km: [(4.5 + 5.5) / 2] / 70 = 0.21 g
  • 40 km: [(4.5 + 5.5) / 2] / 70 = 0.29 g

Finally, adding the daily protein requirement of adults, the total protein requirement of a 70 kilogram runner, for the four distances, is:

  • 10 km: 0.07 + 0.9 = 0.97 g
  • 20 km: 0.14 + 0.9 = 1.04 g
  • 30 km: 0.21 + 0.9 = 1.11 g
  • 40 km: 0.29 + 0.9 = 1.19 g

By calculations similar to the previous ones, we determine the overall protein requirement when proteins provide 5% of the energy requirement.

  • 10 km: 0.12 + 0.9 = 1.02 g
  • 20 km: 0.24 + 0.9 = 1.14 g
  • 30 km: 0.36 + 0.9 = 1.26 g
  • 40 km: 0.48 + 0.9 = 1.38 g

Excluding athletes who run 30 kilometers or more every day, the values are slightly higher than 0.9 grams per kilogram of body weight.
In reality, the daily protein requirement is just slightly higher because a certain amount of nitrogen, hence proteins, is lost, as well as in the urine, also through sweating.

Water and minerals loss during running

Water losses depend on the amount of sweat produced, that depends on:

  • air temperature and humidity;
  • solar radiation.

The loss will be greater the higher these values are.
Finally, the amount of sweat produced is different from person to person.

Minerals lost in sweat are mostly:

  • sodium (Na+) and chlorine (Cl), about 1 gram per liter of sweat in heat acclimatized athletes;
  • potassium (K+), in an amount equal to about 15% of the sodium lost;
  • magnesium (Mg2+), in an amount equal to about 1% of the sodium lost.

The amount of minerals lost depends on how much sweat is produced, and it increases in non-heat acclimatized athletes.

The table shows the values, in grams per liter, of the minerals lost in sweat for non-heat and heat-acclimated athletes.

  Non-heat acclimated athletes

heat acclimated athetes
















Therefore, during physical activity, sodium is the mineral we need most of all.
After physical activity, runner, or who sweats heavily, tends to eat saltier food. This effect, known as selective hunger, was discovered, for sodium, in studies conducted on foundry workers. Probably, the selective hunger doesn’t not exist for potassium and magnesium.


Sawka M.N., Burke L.M., Eichner E.R., Maughan, R.J., Montain S.J., Stachenfeld N.S. American College of Sports Medicine position stand: exercise and fluid replacement. Med Sci Sport Exercise 2007;39(2):377-390. doi:10.1249/mss.0b013e31802ca597

Shirreffs S., Sawka M.N. Fluid and electrolyte needs for training, competition and recovery. J Sport Sci 2011;29:sup1, S39-S46. doi:10.1080/02640414.2011.614269

Green tea consumption and weight loss

In the phase of weight loss, as during weight maintenance, it is important to maintain as constant as possible the daily energy expenditure.
Indeed, daily caloric consumption usually decreases during weight loss.
Since the 90s of last century, it has been proposed that green tea, thanks to  its content of caffeine and catechins, particularly epigallocatechin gallate (EGCG), which are also present in oolong tea and white tea, could be of help for:

  • maintaining , or even increasing, the daily energy expenditure;
  • increasing fat oxidation, thus acting as a fat-burning food.

Weight Loss and Green Tea

Therefore, it was attributed to green tea the ability to cause a fat loss, and so to be of help for overweight or obese adults in achieving the ideal weight.
In addition to these potential lipolytic and thermogenic effects, catechins and caffeine may be useful by acting on other targets, such as the intestinal absorption of fat and the energy intake, probably through their impact on the gut microbiota and gene expression.
Therefore, products for weight loss and weight maintenance based on green tea extracts have been marketed. It should be noted that these products contain catechins and caffeine in amount much greater than the classic drink.

How much truth is there in green tea “fat burning” properties?

The issue seems to have been resolved by a careful meta-analysis of 15 studies on weight loss and intake of these “fat burning” products.
Eight of the 15 analyzed studies were conducted in Japan, and the rest outside of Japan, for a total number of 1945 subjects, which were followed for a period of between 12 and 13 weeks.
The study showed that the consumption of green tea-based products induces, in overweight and obese adults, a weight loss that is:

  • not statistically significant;
  • very small;
  • probably not clinically important.

These “fat burning” products have not proved to be useful not even in weight maintenance.
Thus, on the basis of scientific evidence, green tea does not seem to be helpful in fat loss nor in weight maintenance.
There are no magic bullets: the only way to lose weight (body fat) and avoid future increases is to control your daily calorie intake and take part in physical activity on a regular basis.


Hursel R. and Westerterp-Plantenga M.S. Catechin- and caffeine-rich teas for control of body weight in humans. Am J Clin Nutr 2013;98:1682S-1693S. doi:10.3945/ajcn.113.058396

Hursel R., Viechtbauer W. and Westerterp-Plantenga M.S. The effects of green tea on weight loss and weight maintenance: a meta-analysis. Int J Obesity 2009;33:956-961. doi:10.1038/ijo.2009.135

Jurgens T.M., Whelan A.M., Killian L., Doucette S., Kirk S., Foy E. Green tea for weight loss and weight maintenance in overweight or obese adults. Editorial group: Cochrane Metabolic and Endocrine Disorders Group. 2012:12 Art. No.: CD008650. doi:10.1002/14651858.CD008650.pub2

Human health and carotenoids

Carotenoids belong to the category of bioactive compounds taken up with diet, that is, molecules able to provide protection against many diseases such as cardiovascular diseases, cancer and macular degeneration. They are also important for the proper functioning of the immune system.
Among the mechanisms that seem to be at the basis of their human health-promoting effects have been reported (Olson, 1999, see References):

  • the capability to quench singlet oxygen (see above);
  • the scavenging of peroxyl radicals and reactive nitrogen species;
  • the modulation of carcinogen metabolism;
  • the inhibition of cell proliferation;
  • the enhancement of the immune response;
  • a filtering action of blue light;
  • the enhancement of cell differentiation;
  • stimulation of cell-to-cell communication

Carotenoids and antioxidant activity

Carotenoids, with the adaptation of organisms to aerobic environment, and therefore to the presence of oxygen, have offered protection against oxidative damage from free radicals, particularly by singlet oxygen, a powerful oxidizing agent (see also below).
Carotenoids stabilize singlet oxygen acting both chemical and physical point of view:

  • chemical action involves the union between the two molecules;
  • in physical action, the radical transfers its excitation energy to the carotenoid. The result is a low energy free radical and an excited carotenoid; later, the energy acquired by the carotenoid is released as heat to the environment, and the molecule, that remains intact, is ready to carry out another cycle of stabilization of singlet oxygen, and so on.
Human health and carotenoids
Fig. 1 – Free Radical

The capability of carotenoids to quench singlet oxygen is due to the conjugated double-bond system present in the molecule, and the maximum protection is given by those molecules that have nine or more double bonds (moreover, the presence of oxygen in the molecule, as in xanthophylls, seems to have a role).
Carotenoids are involved not only in singlet oxygen quenching, but also in the scavenging of other reactive species both of oxygen, as peroxyl radicals (therefore contributing to the reduction of lipid peroxidation) and nitrogen. These reactive molecules are generated during the aerobic metabolism but also in the pathological processes.

Lycopene, xanthophylls and human health

Lycopene, a carotene, canthaxanthin and astaxanthin, two xanthophylls present in foods of animal origin, are better antioxidants than beta-carotene but also than zeaxanthin that, with lutein, is involved in prevention of age-related macular degeneration.
Lycopene, in addition to act on oxygen free radicals, acts as antioxidant also on the radicals of vitamin C and vitamin E, that are generated during the antioxidant processes in which these vitamins are involved, “repairing them”.
Finally, lycopene exerts its antioxidant action also indirectly, inducing the synthesis of enzymes involved in the protection against the action of oxygen free radicals and other electrophilic species; these enzymes are quinone reductase, glutathione S-transferase and superoxide dismutase (they are part of the enzymatic antioxidant system).

Vitamin A and human health

Vitamin A, whose deficiency affects annually more than 100 million children worldwide, causing more than a million deaths and half million cases of blindness, is a well-known carotenoid derivative with many biological actions, being essential for reproduction, growth, vision, immune function and general human health.
In the human diet, the major sources of vitamin A are the preformed vitamin, which is found in foods of animal origins (meat, milk, eggs, etc), and provitamin A carotenoids, present in fruits and vegetables. In economically deprived countries, fruits and vegetables are the main source of vitamin A being less expensive than food of animal origin.
Of the more than 750 different carotenoids identified in natural sources, only about 50 have provitamin A activity, and among these, beta-carotene (precisely, all-trans-beta-carotene isomer) is the main precursor of the vitamin A.
Among the other carotenoids precursors of vitamin A, alpha-carotene, gamma-carotene, beta-cryptoxanthin, alpha-cryptoxanthin, and beta-carotene-5,6-epoxide have about half the bioactivity of beta-carotene.

Human health and vitamin A
Fig. 2 – Provitamin A Activity

Spinach, carrots, pumpkins, sweet potatoes (yellow) are example of vegetables rich in beta-carotene and other provitamin A carotenoids.
Acyclic carotenes, such as lycopene (the main carotenoid in the human diet), and xanthophylls, except those mentioned above (beta-cryptoxanthin, alpha-cryptoxanthin, and beta-carotene-5,6-epoxide), cannot be converted to vitamin A.


de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Johnson E.J. The role of carotenoids in human health. Nutr Clin Care 2002;5(2):56-65. doi:10.1046/j.1523-5408.2002.00004.x

Olson, J.A. 1999. Carotenoids. p. 525-541. In: Shils M.E., Olson J.A., Shike M., Ross A.C. “Modern nutrition in health and disease” 9th ed., by Lippincott, Williams & Wilkins, 1999

Ross A.B., Thuy Vuong L., Ruckle J., Synal H.A., Schulze-König T., Wertz K., Rümbeli R., Liberman R.G., Skipper P.L., Tannenbaum S.R., Bourgeois A., Guy P.A., Enslen M., Nielsen I.L.F., Kochhar S., Richelle M., Fay L.B., and Williamson G. Lycopene bioavailability and metabolism in humans: an accelerator mass spectrometry study. Am J Clin Nutr 2011;93:1263-1273. doi:10.3945/ajcn.110.008375

Role of carotenoids in plants and foods

Through the course of evolution, carotenoids, thank to their unique physical and chemical properties, have proven to be highly versatile molecules, being able to perform many functions in many different organisms, like plants.

Carotenoids in photosynthesis

Carotenoids, in the early stages of the emergence of single-celled photosynthetic organisms, are probably been used for light harvesting at wavelengths different from those covered by chlorophyll. Therefore carotenoids, acting as light absorbing accessory pigments, have allowed to expand the range of solar radiation absorbed and so utilized for photosynthesis, energy that is then transferred to chlorophyll itself.
The major carotenoids involved in light harvesting, that accumulate in green plant tissues, are beta-carotene, lutein, neoxanthin, and violaxanthin, that absorb light energy in the 400- to 500-nm range.
Moreover, they protect chlorophyll from photooxidation (in humans, they may contribute to the protection of photo-oxidative damage caused by UV rays, thus acting as a endogenous photo-protective agents).

Carotenoids and autumn leaf color

Leaf color of deciduous plants in different seasons, green, yellow, orange or red, is due to the presence in them of natural pigments.
In spring and summer, the predominant pigment present in the leaf is chlorophyll, and therefore the color is green.
Carotenoids and PlantsDuring the fall, the color changes from green to yellow, orange or red, depending on the type of plant: this is a consequence of the change, both qualitative and quantitative, in the pigment content.
In fact, as a result of the decrease of the temperature and daylight hours, the production of chlorophyll is interrupted and that already present is demolished into colorless metabolites. In this way the predominant pigments become carotenoids (yellow-orange), molecules much more stable than the chlorophyll, which remain in the leaf coloring it (it do not seem to be synthesized de novo), and anthocyanins (red-purple), which, unlike carotenoids, are not present during the growing season, but are synthesized in autumn, just before leaf fall. Therefore, it can be concluded that the red-purple color assumed from the leaves of certain plants is not a side effect of leaf senescence but results from anthocyanins de-novo synthesis.
Depending on the prevalence of carotenoids or anthocyanins, leaf color changes from green to yellow/orange, as in Ginkgo biloba (yellow), or red-purple as in some maples.

And plants with non green leaves?
Their color is not due to the absence of chlorophyll but the presence of very high amounts of other pigments, typically carotenoids and anthocyanins, that “cover” the chlorophyll, determining the color of the leaf.

Some functions of apocarotenoids in plants and foods

These oxygenated carotenoids, containing fewer than 40 carbon atoms, have many functions in plants and animals and are also important for the aroma and flavor of foods.
Some of their main functions include the following.

  • Apocarotenoids have significant roles in the response signals involved in the development and in the response to the environment (for example abscisic acid).
  • They can act as visual or volatile signals to attract pollinators.
  • They are important in the defense mechanisms of plants.
  • They have a role in regulating plant architecture.
  • An apocarotenal, trans-beta-apo-8′-carotenal, found in citrus fruits and spinach, with a low provitamin A activity, is used in pharmaceuticals and cosmetics, and is also a food additive (E160e) legalized by the European Commission for human consumption.
  • Apocarotenoids make an important contribution to the nutritional quality and flavor of many types of foods such as fruits, wine and tea. Two natural apocarotenoids, crocetin and bixina, have economic importance as they are used as pigments and aroma in foods.
  • Finally, a broad range of apocarotenals derive from oxidative reactions that occur in food processing; these molecules are intermediates in the formation of smaller molecules, important for the color and flavor of the food.


Archetti, M., Döring T.F., Hagen S.B., Hughes N.M., Leather S.R., Lee D.W., Lev-Yadun S., Manetas Y., Ougham H.J. Unravelling the evolution of autumn colours: an interdisciplinary approach. Trends Ecol Evol 2009;24(3):166-73. doi:10.1016/j.tree.2008.10.006

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Maltodextrin, fructose and endurance sports

Carbohydrate ingestion can improve endurance capacity and performance.
The ingestion of different types of carbohydrates, which use different intestinal transporters, can:

  • increase total carbohydrate absorption;
  • increase exogenous carbohydrate oxidation;
  • and therefore improve performance.

Glucose and fructose

When a mixture of glucose and fructose is ingested (in the analyzed literature, respectively 1.2 and 0.6 g/min, ratio 2:1, for total carbohydrate intake rate to 1.8 g/min), there is less competition for intestinal absorption compared with the ingestion of an iso-energetic amount of glucose or fructose,  two different intestinal transporters being involved. Furthermore, fructose absorption is stimulated by the presence of glucose.

This can:

  • contribute to a faster rate of monosaccharide absorption;
  • increase the availability of exogenous carbohydrates in the bloodstream;
  • cause the higher exogenous carbohydrate oxidation rates in fructose plus glucose combination compared to high glucose intake alone.

The combined ingestion of glucose and fructose allows to obtain exogenous carbohydrate oxidation rate around 1,26 g/min, therefore, higher than the rate reported with glucose alone (1g/min), also in high concentration.
The observed difference (+0,26 g/min) can be fully attributed to the oxidation of ingested fructose.

Sucrose and glucose

The ingestion of sucrose and glucose, in the same conditions of the ingestion of glucose and fructose (therefore, respectively 1.2 and 0.6 g/min, ratio 2:1, for total carbohydrate intake rate to 1.8 g/min), gives similar results.

Glucose, sucrose and fructose

Very high oxidation rates are found with a mixture of glucose, sucrose, and fructose (in the analyzed literature, respectively 1.2, 0.6 and 0.6 g/min, ratio 2:1:1, for total carbohydrate intake rate to 2.4 g/min; however, note the higher amounts of ingested carbohydrates).

Maltodextrin and fructose

High oxidation rates are also observed with combinations of maltodextrin and fructose, in the same conditions of the ingestion of glucose plus fructose (therefore, respectively 1.2 and 0.6 g/min, ratio 2:1, for total carbohydrate intake rate to 1.8 g/min).

Such high oxidation rates can be achieved with carbohydrates ingested in a beverage, in a gel or in a low-fat, low protein, low-fiber energy bar.

The best combination of carbohydrates ingested during exercise seems to be the mixture of maltodextrin and fructose in a 2:1 ratio, in a 5% solution, and in a dose around 80-90 g/h.

Maltodextrin and Fructose: Oxidation of Ingested Carbohydrates
Fig. 1 – Oxidation of Ingested Carbohydrates


  • This mixture has the best ratio between amount of ingested carbohydrates and their oxidation rate and it means that smaller amounts of carbohydrates remain in the stomach or gut reducing the risk of gastrointestinal complication/discomfort during prolonged exercise (see brackets grafa in the figure).
  • A solution containing a combination of multiple transportable carbohydrates and a carbohydrate content not exceeding 5% optimizes gastric emptying rate and improves fluid delivery.

Example of a 5% carbohydrate solution containing around 80-90 g of maltodextrin and fructose in a 2:1 rate; ingestion time around 1 h.

  • 1.5 L solution: 80 g of carbohydrates, including around 55 g of maltodextrin and around 25 of fructose.
  • 1.8 L solution: 90 g of carbohydrates, including 60 g of maltodextrin and 30 of fructose.


During prolonged exercise, when high exogenous carbohydrate oxidation rates are needed, the ingestion of multiple transportable carbohydrates is preferred above that of large amounts of a single carbohydrate.
The best mixture seems to be maltodextrin and , in a 2:1 ratio, in a 5% concentration solution, and at ingestion rate of around 80-90 g/h.


Burke L.M., Hawley J.A., Wong S.H.S., & Jeukendrup A. Carbohydrates for training and competition. J Sport Sci 2011;29:Sup1,S17-S27. doi:10.1080/02640414.2011.585473

Jentjens R.L.P.G., Moseley L., Waring R.H., Harding L.K., and Jeukendrup A.E. Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol 2004:96;1277-1284. doi:10.1152/japplphysiol.00974.2003

Jentjens R.L.P.G., Venables M.C., and Jeukendrup A.E. Oxidation of exogenous glucose, sucrose, and maltose during prolonged cycling exercise. J Appl Physiol 2004:96;1285-1291. doi:10.1152/japplphysiol.01023.2003

Jeukendrup A.E. Carbohydrate feeding during exercise. Eur J Sport Sci 2008:2;77-86. doi:10.1080/17461390801918971

Jeukendrup A.E. Nutrition for endurance sports: marathon, triathlon, and road cycling. J Sport Sci 2011:29;sup1, S91-S99. doi:10.1080/02640414.2011.610348

Prolonged exercise and carbohydrates

During prolonged exercise (>90 min), like marathon, Ironman, cross-country skiing, road cycling or open water swimming, the effects of supplementary carbohydrates on performance are mainly metabolic rather than central and include:

  • the provision of an additional muscle fuel source when glycogen stores become depleted;
  • muscle glycogen sparing;
  • the prevention of low blood glucose concentrations.

How many carbohydrates should an athlete take?

The optimal amount of ingested carbohydrate is that which results in the maximal rate of exogenous carbohydrate oxidation without causing gastrointestinal discomfort”. (Jeukendrup A.E., 2008, see References).

Prolonged exercise: which carbohydrates should an athlete take?

Until 2004 it was believed that carbohydrates ingested during exercise (also prolonged exercise) could be oxidized at a rate no higher than 1 g/min, that is, 60 g/h, independent of the type of carbohydrate.
Exogenous carbohydrate oxidation is limited by their intestinal absorption and the ingestion of more than around 60 g/min of a single type of carbohydrate will not increase carbohydrate oxidation rate but it is likely to be associated with gastrointestinal discomfort (see later).
At intestinal level, the passage of glucose (and galactose) is mediated by a sodium dependent transporter called SGLT1. This transporter becomes saturated at a carbohydrate intake about 60 g/h and this (and/or glucose disposal by the liver that regulates its transport into the bloodstream) limits the oxidation rate to 1g/min or 60 g/h. For this reason, also when glucose is ingested at very high rate (>60 g/h), exogenous carbohydrate oxidation rates higher 1.0-1.1 g/min are not observed.

The rate of oxidation of ingested maltose, sucrose, maltodextrins and glucose polymer is fairly similar to that of ingested glucose.

Fructose uses a different sodium independent transporter called GLUT5. Compared with glucose, fructose has, like galactose, a lower oxidation rate, probably due to its lower rate of intestinal absorption and the need to be converted into glucose in the liver, again like galactose, before it can be oxidized.
However, if the athlete ingests different types of carbohydrates, which use different intestinal transporters, exogenous carbohydrate oxidation rate can increase significantly.
It seems that the best mixture is maltodextrins and fructose.

Note: the high rates of carbohydrate ingestion may be associated with delayed gastric emptying and fluid absorption; this can be minimized by ingesting combinations of multiple transportable carbohydrates that enhance fluid delivery compared with a single carbohydrate. This also causes relatively little gastrointestinal distress.


The ingestion of different types of carbohydrates that use different intestinal transporters can:

  • increase total carbohydrate absorption;
  • increase exogenous carbohydrate oxidation;
  • improve performance.


Burke L.M., Hawley J.A., Wong S.H.S., & Jeukendrup A. Carbohydrates for training and competition. J Sport Sci 2011;29:Sup1,S17-S27. doi:10.1080/02640414.2011.585473

Jentjens R.L.P.G., Moseley L., Waring R.H., Harding L.K., and Jeukendrup A.E. Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol 2004:96;1277-1284. doi:10.1152/japplphysiol.00974.2003

Jentjens R.L.P.G., Venables M.C., and Jeukendrup A.E. Oxidation of exogenous glucose, sucrose, and maltose during prolonged cycling exercise. J Appl Physiol 2004:96;1285-1291. doi:10.1152/japplphysiol.01023.2003

Jeukendrup A.E. Carbohydrate feeding during exercise. Eur J Sport Sci 2008:2;77-86. doi:10.1080/17461390801918971

Jeukendrup A.E. Nutrition for endurance sports: marathon, triathlon, and road cycling. J Sport Sci 2011:29;sup1, S91-S99. doi:10.1080/02640414.2011.610348

Carbohydrate ingestion during short duration high intensity exercise

High Intensity: During-Exercise Nutrition
Fig. 1- During-Exercise Nutrition

Carbohydrate ingestion during intermittent high intensity or prolonged (>90 min) sub-maximal exercise can:

  • increase exercise capacity;
  • improve exercise performance;
  • postpone fatigue.

The intake of very small amounts of carbohydrates or carbohydrate mouth rinsing (for example with a 6% maltodextrin solution) may improve exercise performance by 2-3% when the exercise is of relatively short duration (<1 h) and high intensity (>75% VO2max), that is, an exercise not limited by the availability of muscle glycogen stores, given adequate diet.
The underlying mechanisms for the ergogenic effect of carbohydrates during this type of activity are not metabolic but may reside in the central nervous system: it seems that carbohydrates are detected in the oral cavity by unidentified receptors, promoting an enhanced sense of well-being and improving pacing.
These effects are independent of taste or sweet and non-sweet of carbohydrates but are specific to carbohydrates.

It should be noted that performance effects with drink ingestion are similar to the mouth rinse; therefore athletes, when they don’t complain of gastrointestinal distress when ingesting too much fluid, may have an advantage taking the drink (in endurance sports, dehydration and carbohydrate depletion are the most likely contributors to fatigue).

It seems that during exercise of relatively short duration (<1 h) and high intensity (>75% VO2max) it is not necessary to ingest large amounts of carbohydrates: a carbohydrate mouth rinsing or the intake of very small amounts of carbohydrates may be sufficient to obtain a performance benefit.


Burke L.M., Hawley J.A., Wong S.H.S., & Jeukendrup A. Carbohydrates for training and competition. J Sport Sci 2011;29:Sup1,S17-S27. doi:10.1080/02640414.2011.585473

Jentjens R.L.P.G., Moseley L., Waring R.H., Harding L.K., and Jeukendrup A.E. Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol 2004:96;1277-1284. doi:10.1152/japplphysiol.00974.2003

Jentjens R.L.P.G., Venables M.C., and Jeukendrup A.E. Oxidation of exogenous glucose, sucrose, and maltose during prolonged cycling exercise. J Appl Physiol 2004:96;1285-1291. doi:10.1152/japplphysiol.01023.2003

Jeukendrup A.E. Carbohydrate feeding during exercise. Eur J Sport Sci 2008:2;77-86. doi:10.1080/17461390801918971