Prolonged exercise and carbohydrate ingestion

Prolonged Exercise: Open Water Swimming
Fig. 1 – Open Water Swimming

During prolonged exercise (>90 min), like marathon, Ironman, cross-country skiing, road cycling or open water swimming, the effects of supplementary carbohydrates on performance are mainly metabolic rather than central and include:

  • the provision of an additional muscle fuel source when glycogen stores become depleted;
  • muscle glycogen sparing;
  • the prevention of low blood glucose concentrations.

How many carbohydrates should an athlete take?

The optimal amount of ingested carbohydrate is that which results in the maximal rate of exogenous carbohydrate oxidation without causing gastrointestinal discomfort”. (Jeukendrup A.E., 2008, see References).

Prolonged exercise: which carbohydrates should an athlete take?

Until 2004 it was believed that carbohydrates ingested during exercise (also prolonged exercise) could be oxidized at a rate no higher than 1 g/min, that is, 60 g/h, independent of the type of carbohydrate.
Exogenous carbohydrate oxidation is limited by their intestinal absorption and the ingestion of more than around 60 g/min of a single type of carbohydrate will not increase carbohydrate oxidation rate but it is likely to be associated with gastrointestinal discomfort (see later).
Why?
At intestinal level, the passage of glucose (and galactose) is mediated by a sodium dependent transporter called SGLT1. This transporter becomes saturated at a carbohydrate intake about 60 g/h and this (and/or glucose disposal by the liver that regulates its transport into the bloodstream) limits the oxidation rate to 1g/min or 60 g/h. For this reason, also when glucose is ingested at very high rate (>60 g/h), exogenous carbohydrate oxidation rates higher 1.0-1.1 g/min are not observed.

The rate of oxidation of ingested maltose, sucrose, maltodextrins and glucose polymer is fairly similar to that of ingested glucose.

Fructose uses a different sodium independent transporter called GLUT5. Compared with glucose, fructose has, like galactose, a lower oxidation rate, probably due to its lower rate of intestinal absorption and the need to be converted into glucose in the liver, again like galactose, before it can be oxidized.
However, if the athlete ingests different types of carbohydrates, which use different intestinal transporters, exogenous carbohydrate oxidation rate can increase significantly.
It seems that the best mixture is maltodextrins and fructose.

Prolonged Exercise: Maltodextrin and Fructose: Oxidation of Ingested Carbohydrates
Fig. 1 – Oxidation of Ingested Carbohydrates

Note: the high rates of carbohydrate ingestion may be associated with delayed gastric emptying and fluid absorption; this can be minimized by ingesting combinations of multiple transportable carbohydrates that enhance fluid delivery compared with a single carbohydrate. This also causes relatively little gastrointestinal distress.

Conclusion

The ingestion of different types of carbohydrates that use different intestinal transporters can:

References

Burke L.M., Hawley J.A., Wong S.H.S., & Jeukendrup A. Carbohydrates for training and competition. J Sport Sci 2011;29:Sup1,S17-S27. doi:10.1080/02640414.2011.585473

Jentjens R.L.P.G., Moseley L., Waring R.H., Harding L.K., and Jeukendrup A.E. Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol 2004:96;1277-1284. doi:10.1152/japplphysiol.00974.2003

Jentjens R.L.P.G., Venables M.C., and Jeukendrup A.E. Oxidation of exogenous glucose, sucrose, and maltose during prolonged cycling exercise. J Appl Physiol 2004:96;1285-1291. doi:10.1152/japplphysiol.01023.2003

Jeukendrup A.E. Carbohydrate feeding during exercise. Eur J Sport Sci 2008:2;77-86. doi:10.1080/17461390801918971

Jeukendrup A.E. Nutrition for endurance sports: marathon, triathlon, and road cycling. J Sport Sci 2011:29;sup1, S91-S99. doi:10.1080/02640414.2011.610348

Mahan L.K., Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Shils M.E., Olson J.A., Shike M., Ross A.C.: “Modern nutrition in health and disease” 9th ed. 1999

Carbohydrate ingestion during exercise of relatively short duration and high intensity

Intermittent high intensity exercise and carbohydrate ingestion

High Intensity: During-Exercise Nutrition
Fig. 1- During-Exercise Nutrition

Carbohydrate ingestion during intermittent high intensity or prolonged (>90 min) sub-maximal exercise can:

  • increase exercise capacity;
  • improve exercise performance;
  • postpone fatigue.

The intake of very small amounts of carbohydrates or carbohydrate mouth rinsing (for example with a 6% maltodextrin solution) may improve exercise performance by 2-3% when the exercise is of relatively short duration (<1 h) and high intensity (>75% VO2max), that is, an exercise not limited by the availability of muscle glycogen stores, given adequate diet.
The underlying mechanisms for the ergogenic effect of carbohydrates during this type of activity are not metabolic but may reside in the central nervous system: it seems that carbohydrates are detected in the oral cavity by unidentified receptors, promoting an enhanced sense of well-being and improving pacing.
These effects are independent of taste or sweet and non-sweet of carbohydrates but are specific to carbohydrates.

It should be noted that performance effects with drink ingestion are similar to the mouth rinse; therefore athletes, when they don’t complain of gastrointestinal distress when ingesting too much fluid, may have an advantage taking the drink (in endurance sports, dehydration and carbohydrate depletion are the most likely contributors to fatigue).

Conclusion

It seems that during exercise of relatively short duration (<1 h) and high intensity (>75% VO2max) it is not necessary to ingest large amounts of carbohydrates: a carbohydrate mouth rinsing or the intake of very small amounts of carbohydrates may be sufficient to obtain a performance benefit.

References

Burke L.M., Hawley J.A., Wong S.H.S., & Jeukendrup A. Carbohydrates for training and competition. J Sport Sci 2011;29:Sup1,S17-S27. doi:10.1080/02640414.2011.585473

Jentjens R.L.P.G., Moseley L., Waring R.H., Harding L.K., and Jeukendrup A.E. Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol 2004:96;1277-1284. doi:10.1152/japplphysiol.00974.2003

Jentjens R.L.P.G., Venables M.C., and Jeukendrup A.E. Oxidation of exogenous glucose, sucrose, and maltose during prolonged cycling exercise. J Appl Physiol 2004:96;1285-1291. doi:10.1152/japplphysiol.01023.2003

Jeukendrup A.E. Carbohydrate feeding during exercise. Eur J Sport Sci 2008:2;77-86. doi:10.1080/17461390801918971

Mahan L.K., Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Shils M.E., Olson J.A., Shike M., Ross A.C.: “Modern nutrition in health and disease” 9th ed. 1999

Carotenoids: definition, structure and classification

CONTENTS

What are carotenoids?

Carotenoids
Fig. 1 – Carrots

Carotenoids are soluble-fat pigments found throughout nature.
Carotenoids were discovered during the 19th century.
In 1831 Wachen proposed the term “carotene” for a pigment crystallized from carrot roots.
Berzelius called the more polar yellow pigments extracted from autumn leaves “xanthophylls” (originally phylloxanthins), from Greek words xanthos, meaning yellow, and phyllon, meaning leaf.
Tswett separated many pigments and called them “carotenoids.”

They occur in the chromoplasts of plants and some other photosynthetic organisms such as algae and in some types of fungi and bacteria; they are also produced by some invertebrates (Aphids).
There are more than 750 different carotenoids ranging in color from red (such as lycopene), to orange (such as alpha-carotene, beta-carotene, and gamma-carotene) or yellow (such as lutein, alfa-cryptoxanthin or violaxanthin); more than 100 have been found in fruits and vegetables.
In some green plants and in their parts, generally the darker the green color, the higher the carotenoid content: for example, carotenoid content in pale green cabbage is less than 1% of that in dark green one.
Fruit carotenoids are very different, and those present in ripe fruits may be different from those present in unripe fruits.
They also occur extensively in microorganisms and animals.
In plants, microorganism and animals carotenoids have diverse and important functions and actions.

Chemical structure of carotenoids

Carotenoids are a class of hydrocarbon compounds consisting of 40 carbon atoms (tetraterpenes), with a structure characterized by an extensive conjugated double-bond system that determines the color (it serves as a light-absorbing chromophore): as the number of conjugated double-bond increases, color changes from pale yellow, to orange, to red.
In nature, they exist primarily in the more stable all-trans isomeric configuration, even though small amounts of cis isomers do occur too (they can be produced from all-trans forms also during processing).
Traditionally, carotenoids have been given trivial names derived from the biological source from which they are extracted. However, a semisystematic scheme exists: it allows carotenoids to be named in a way that describes and defines their structure.

Classification

Depending on the presence or absence of oxygen in the molecule, they can be divided into:

  • xanthophylls, which contain oxygen, such as:

Antheraxanthin
Astaxanthin (red)
Auroxanthin
Bixin, E160b
Canthaxanthin (red), E161g
Capsanthin, E160c
Capsorubin, E160c
beta-Carotene-5,6-epoxide
alfa-Cryptoxanthin (yellow)
beta-Cryptoxanthin (orange)
Crocetin
Lutein (yellow), E161b
Lutein-5,6-epoxide or taraxanthin
Luteoxanthin
Lycophyll
Lycoxanthin
Neoxanthin
Rubixanthin
Tunaxanthin
Violaxanthin (yellow)
Zeaxanthin (yellow-orange)
Zeinoxanthin

  • carotenes, which lack oxygen, as such:

alfa-Carotene (orange)
beta-Carotene (orange), E160a
delta-Carotene
gamma-Carotene (orange)
Lycopene (red), E160d
Neurosporene
Phytoene (colorless)
Phytofluene
alfa-Zeacarotene
beta-Zeacarotene
zeta-Carotene

Depending on chemical structure they can be divided into:

  • acyclic carotenes: formed by a linear carbon chain such as:

zeta-Carotene
Phytoene (colorless)
Lycopene (red), E160d
Neurosporene
Phytofluene

  • cyclic carotenes: containing one or two cyclic structures such as:

alfa-Carotene (orange)
beta-Carotene (orange), E160a
gamma-Carotene (orange)
delta-Carotene
alfa-Zeacarotene
beta-Zeacarotene

  • hydroxycarotenoids (or carotenols): containing at least an hydroxyl group (xanthophylls) such as:

alfa-Cryptoxanthin (yellow)
beta-Cryptoxanthin (orange)
Lutein (yellow), E161b
Lycofill
Lycoxanthin
Rubixanthin
Zeaxanthin (yellow-orange)
Zeinoxanthin

  • epoxycarotenoids: containing at least an epoxic group (xanthophylls) such as:

Antheraxanthin
Auroxanthin
beta-Carotene-5,6-epoxide
Lutein-5,6-epoxide
Luteoxanthin
Neoxanthin
Violaxanthin (yellow)

  • uncommon or species-specific carotenoids such as:

Bixin, E160b
Capsanthin, E160c
Capsorubin, E160c
Crocetin

Note: Although green leaves contain unesterified hydroxycarotenoids, most carotenols in ripe fruits are esterified with fatty acids. However, those of some fruits, particularly those that remain green when ripe (example kiwi fruit) undergo no or limited esterification.

Apocarotenoids

Apocarotenoids are a class of carotenoids containing less than 40 carbon atoms, very widespread in nature and with extremely different structures.
They derive from 40 carbon atom carotenoids by oxidative cleavage that can occurs through non-specific mechanisms, such as photo-oxidation, or through the action of specific enzymes (these enzymatic activities, identified in plants, animals and microorganisms, are collectively referred to as carotenoid cleavage dioxygenases).
Some of the most well-known

  • vitamin A
  • abscisic acid
  • bixin, E160b
  • crocetin
  • trans-β-apo-8′-carotenal, E160e

References

Boileau A.C., Merchen N.R., Wasson K., Atkinson C.A. and Erdman Jr J.W. cis-Lycopene is more bioavailable than trans-lycopene in vitro and in vivo in lymph-cannulated ferrets. J Nutr 1999;129:1176-1181. doi:10.1093/jn/129.6.1176

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Engelmann N.J., Clinton S.K., and Erdman Jr J.W. Nutritional aspects of phytoene and phytofluene,carotenoid precursors to lycopene. Adv Nutr 2011:2;51-61. doi:10.3945/​an.110.000075

Olempska-Beer Z. Lycopene (synthetic): chemical and technical assessment (CTA). Office of Food Additive Safety, Center for Food Safety and Applied Nutrition. U.S. Food and Drug Administration. College Park, Maryland, USA.

Periago M.J., Bravo S., García-Alonso F.J., and Rincón F. Detection of key factors affecting lycopene in vitro accessibility. J Agr Food Chem 2013;61(16):3859-3867. doi:10.1021/jf3052994

Ross A.B., Thuy Vuong L., Ruckle J., Synal H.A., Schulze-König T., Wertz K., Rümbeli R., Liberman R.G., Skipper P.L., Tannenbaum S.R., Bourgeois A., Guy P.A., Enslen M., Nielsen I.L.F., Kochhar S., Richelle M., Fay L.B., and Williamson G. Lycopene bioavailability and metabolism in humans: an accelerator mass spectrometry study. Am J Clin Nutr 2011;93:1263-73. doi:10.3945/ajcn.110.008375

Wang X-D. Lycopene metabolism and its biological significance. Am J Clin Nutr 2012:96;1214S-1222S. doi:10.3945/​ajcn.111.032359