Tè: coltivazione, lavorazione e preparazione

Il è un infuso di foglie essiccate di Camellia sinensis, pianta appartenente alla famiglia delle Theaceae.
La bevanda ha origini molto antiche, risalenti a quasi 4000 anni fa, ed è una delle più consumate nel mondo, in particolare in Asia, con un apporto procapite stimato di circa 0,12 L/d. Dato il suo elevato consumo, anche piccoli effetti sulla salute delle persone possono avere grandi effetti sulla salute pubblica.

Coltivazione della pianta del tè: Camellia sinensis

Piantagione di Tè
Fig. 1 – Piantagione di Tè

Camellia sinensis è una pianta sempre verde originaria del Sud, Est, e Sud-Est asiatico, che attualmente viene coltivata in almeno 30 paesi, principalmente con clima sub-tropicale o tropicale anche se ci sono varietà coltivate in Cornovaglia in Europa o allo stato di Washington negli USA.
In natura, se indisturbata, può crescere fino a 15-20 metri, mentre nelle piantagioni è tenuta, per facilitare la coltivazione e la raccolta delle foglie, ad un’altezza inferiore al metro e mezzo, quindi come un piccolo albero o cespuglio.
La sua coltivazione si può spingere anche in montagna, fino a 1500-2000 metri di altitudine; molti delle varietà più pregiate sono ottenute proprio da coltivazioni montane in quanto la pianta crescendo più lentamente acquisisce più aromi.
Attualmente le due varianti maggiormente coltivate sono:

  • Camellia sinensis var. sinensis, originaria della Cina;
  • Camellia sinensis var. assamica, originaria dell’India.

Lavorazione delle foglie

Per la produzione di tutti i tipi di tè reperibili in commercio vengono utilizzate le foglie fresche di Camellia sinensis. Nella raccolta sono generalmente scelte quelle più giovani poiché le più vecchie sono considerate di qualità inferiore.
Ciò che differenzia i diversi tipi di tè, ad es. il tè verde, l’oolong e quello nero, è la lavorazione che subiscono foglie, lavorazione che darà luogo a differenti gradi di ossidazione delle sostanze presenti, in particolare delle catechine, un sottogruppo di flavonoidi e le principali responsabili degli effetti benefici del tè verde.
Le caratteristiche organolettiche della bevanda sono influenzate, oltre che dalla lavorazione delle foglie, anche dal cultivar, dalle caratteristiche del suolo dove è coltivata la pianta e dai metodi di coltivazione, dall’altitudine, dal clima e dal periodo dell’anno in cui avviene la raccolta delle foglie.

Come preparare un buon tè

  • Data la delicatezza del prodotto è bene conservare la confezione in un luogo fresco, asciutto e privo di profumi in grado di alterarne l’aroma.
  • Utilizzare acqua fresca e portarla ad una temperatura di 95-100°C per il tè nero, e di circa 90 °C per il tè verde.
  • Per non alterare il sapore della bevanda è bene utilizzare una teiera di ceramica o porcellana, evitando quelle di acciaio. Per il lavaggio della stessa evitare i detersivi preferendo acqua e bicarbonato.
  • Per prevenire brusche variazione di temperatura dell’acqua durante l’infusione, è consigliabile preriscaldare la teiera versandovi un po’ d’acqua molto calda. Di seguito svuotarla e aggiungere l’acqua per il filtri/foglie (circa 200-250 mL/filtro).
  • Quanti filtri/g di foglie utilizzare? In genere un filtro (da circa 1,5-2 g) per persona; con il tè sfuso, un cucchiaino per persona.
    Se lo si prepara per più persone aggiungere un filtro/cucchiaino in più rispetto al numero delle persone.
  • l tempo di infusione non dovrebbe superare i 10 minuti per evitare lo sviluppo di sapori amari; per il tè nero dovrebbe essere di 3-4 minuti, per quello verde 2-3 minuti.
    Se si usa tè in filtri, è bene toglierli al termine del tempo di infusione.
    Circa il 30% della materia presente nelle foglie viene estratta nell’acqua.
Bibliografia

Asil M.H., Rabiei B., Ansari R.H. Optimal fermentation time and temperature to improve biochemical composition and sensory characteristics of black tea. Aust J Crop Sci 2012;6(3):550-8.

Dwyer J.T. and Peterson J. Tea and flavonoids: where we are, where to go next. Am J Clin Nutr 2013;98:1611S-1618S. doi:10.3945/ajcn.113.059584

Huang W-Y., Lin Y-R., Ho R-F., Liu H-Y., and Lin Y-S. Effects of water solutions on extracting green tea leaves. ScientificWorldJournal 2013;Article ID 368350 doi:10.1155/2013/368350

Kuhnert N. Unraveling the structure of the black tea thearubigins. Arch Biochem Biophys 2010;501(1):37-51 doi:10.1016/j.abb.2010.04.013

Li S., Lo C-Y., Pan M-H., Lai C-S. and Ho C-T. Black tea: chemical analysis and stability. Food Funct 2013;4:10-18 doi:10.1039/C2FO30093A

Menet M-C., Sang S., Yang C.S., Ho C-T., and Rosen R.T. Analysis of theaflavins and thearubigins from black tea extract by MALDI-TOF mass spectrometry. J Agric Food Chem 2004;52:2455-61 doi:10.1021/jf035427e


Proantocianidine e procianidine nei cibi

L’interesse sulle proantocianidine, e sul loro contenuto nei cibi, è accresciuto a seguito della scoperta, conseguente a studi clinici e di laboratorio, delle loro proprietà antiinfiammatorie, anti-infettive, anti-carcinogeniche e cardioprotettive. Questi effetti protettivi sono stati attribuiti alla:

  • loro capacità di agire come scavenger nei confronti dei radicali liberi e di inibire la perossidazione lipidica;
  • sono inoltre in grado di agire su vari bersagli molecolari proteici all’interno della cellula, modulandone l’attività.

Le proantocianidine in alimenti differenti variano notevolmente in termini di:

  • contenuto totale;
  • distribuzione degli oligomeri e polimeri;
  • unità di flavanoli che le costituiscono;
  • collegamenti tra le unità costitutive.

In alcuni alimenti, come gli anacardi ed i fagioli neri, sono presenti solamente dimeri, mentre nella maggior parte degli altri si ritrovano in una vasta gamma di polimerizzazioni, da 2 a 10 unità ed oltre.

Gli alimenti più ricchi di proantocianidine sono la cannella ed il sorgo, che ne contengono rispettivamente circa 8000 e fino a 4000 mg/100 g di prodotto fresco.
Un’altra ricca fonte sono i semi d’uva (Vitis vinifera), con un contenuto di circa 3500 mg/100 g di peso secco.
Altre fonti importanti sono la frutta ed i frutti di bosco, alcuni legumi, il vino rosso e in misura minore la birra, nocciole, pistacchi,mandorle, noci e il cacao.
Il caffè non è una buona fonte.
Nella maggior parte delle verdure le proantocianidine non sono rilevabili; in piccole concentrazioni sono state trovate nella zucca indiana.
Anche nel mais, riso e grano non sono rilevabili, mentre sono presenti nell’orzo.

INDICE

Procianidine di tipo A nei cibi

Sebbene molti alimenti vegetali e prodotti derivati contengano elevate quantità di proantocianidine, solo pochi, come le prugne, l’avocado, le arachidi o la cannella, contengono procianidine di tipo A, ma nessuno in quantità pari ai mirtilli rossi americani (Cranberries, Vacciniun macrocarpon).

Procianidine
Fig. 2 – Procianidina A2

Nota: le procianidine di tipo A mostrano, in vitro, una capacità di inibizione dell’adesione di Escherichia coli P-fimbriata alle cellule uroepiteliali (adesione che rappresenta la fase iniziale delle infezioni urogenitali) maggiore rispetto alle procianidine di tipo B.

Procianidine di tipo B nei cibi

Le procianidine di tipo B, formate da catechina e/o epicatechina come unità costitutive, sono state rilevate come proantocianidine esclusive in 20 tipi di alimenti tra cui mirtilli neri (Vaccinium myrtillus), more, bacche dell’Aronia, semi d’uva, mele, pesche, pere, nettarine, kiwi, mango, datteri, banane, zucca indiana, sorgo, orzo, piselli occhio nero, fagioli neri, noci ed anacardi.

Procianidine
Fig. 1 – Procianidine B1-B4

Proantocianidine nella frutta

Nella dieta occidentale la frutta rappresenta la fonte più importante di proantocianidine.
Le principali fonti sono rappresentate dai:

  • frutti di bosco (ad es. mirtilli neri, mirtilli rossi americani e ribes nero) e susine (prugne), con un contenuto di circa 200 mg/100 g di prodotto fresco;
  • fonti intermedie sono mele ed uva (60-90 mg/100 g);
  • negli altri frutti il contenuto è inferiore a 40 mg/100 g.

Nella frutta, le più comuni proantocianidine sono tetrameri, esameri e polimeri.
Buone fonti di proantocianidine sono anche alcuni succhi di frutta.

Proantocianidine nei semi d’uva

Come detto, una fonte particolarmente ricca di proantocianidine è rappresentata dai semi dell’uva.
Le proantocianidine presenti nei semi dell’uva sono solo procianidine di tipo B, per la maggior parte presenti come dimeri, trimeri e oligomeri altamente polimerizzati.
Le proantocianidine da questa fonte si sono dimostrate potenti antiossidanti e scavenger di radicali liberi, essendo più efficaci della vitamina C (acido ascorbico) o della vitamina E.
Esperimenti condotti sia in vivo che in vitro supportano l’idea che le proantocianidine, ed in particolare quelle dei semi dell’uva, possano agire come agenti anti-carcinogenici; sembra che , nelle cellule cancerose, siano coinvolte nella:

  • riduzione della proliferazione cellulare;
  • nell’aumento dell’apoptosi;
  • nell’arresto del ciclo cellulare;
  • nella modulazione dell’espressione e dell’attività di NF-kB e dei geni bersaglio di NF-kB.

Bibliografia

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Gu L., Kelm M.A., Hammerstone J.F., Beecher G., Holden J., Haytowitz D., Gebhardt S., and Prior R.L. Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J Nutr 2004;134(3):613-617. doi:10.1093/jn/134.3.613

Han X., Shen T. and Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci 2007;9:950-988. doi:10.3390/i8090950

Manach C., Scalbert A., Morand C., Rémésy C., and Jime´nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-47 doi:10.1093/ajcn/79.5.727

Nandakumar V., Singh T., and Katiyar S.K. Multi-targeted prevention and therapy of cancer by proanthocyanidins. Cancer Lett 2008;269(2):378-387. doi:10.1016/j.canlet.2008.03.049

Ottaviani J.I., Kwik-Uribe C., Keen C.L., and Schroeter H. Intake of dietary procyanidins does not contribute to the pool of circulating flavanols in humans. Am J Clin Nutr 2012;95:851-8. doi:10.3945/ajcn.111.028340

Santos-Buelga C. and Scalbert A. Proanthocyanidins and tannin-like compounds: nature, occurrence, dietary intake and effects on nutrition and health. J Sci Food Agr 2000;80(7):1094-1117. doi:10.3390/nu2121231

Wang Y.,Chung S., Song W.O., and Chun O.K. Estimation of daily proanthocyanidin intake and major food sources in the U.S. diet. J Nutr 2011;141(3):447-452. doi:10.3945/jn.110.133900


Flavonoli: definizione, struttura e cibi

I flavonoli sono polifenoli appartenenti alla classe dei flavonoidi.
Sono molecole prive di colore che si accumulano principalmente nei tessuti esterni ed aerei, quindi pelle e foglie, di frutta e verdura, poiché la loro biosintesi è stimolata dalla luce solare. Sono praticamente assenti nella polpa.

Sono i flavonoidi più diffusi nella frutta e verdura, dove sono presenti generalmente in concentrazioni relativamente basse.
Data la loro diffusione in natura e nei cibi consumati dall’uomo, tali molecole devono essere tenute in considerazione quando si va ad analizzare l’effetto positivo sulla salute associato al consumo di frutta e verdura. Il loro effetto è probabilmente legato alla loro capacità di:

  • agire come antiossidanti;
  • agire come agenti ad azione antiinfiammatoria;
  • agire come fattori antitumorali;
  • modulare diverse vie di segnalazione cellulare; un esempio è l’azione della quercetina, il flavonolo più diffuso, sulla attività ossidante delle MAPK indotta dallo stress.

INDICE

Struttura chimica dei flavonoli

Chimicamente si distinguono da molti altri flavonoidi in quanto presentano un doppio legame tra le posizioni 2 e 3 e un ossigeno in posizione 4 dell’anello C, al pari dei flavoni da cui però differiscono per la presenza di un gruppo ossidrilico in posizione 3. Dunque si può dire lo scheletro dei flavonoli è un 3-idrossiflavone.

Struttura di Base dei Flavonoli
Fig. 1 – 3-Idrossiflavone

Il gruppo ossidrilico in posizione 3 può legare uno zucchero ossia può essere glicosilato.
Al pari di molti altri flavonoidi, la maggior parte di essi si trova nella frutta e verdura, e nei prodotti derivati, in forma glicosilata. Lo zucchero associato ai flavonoli è spesso rappresentato dal glucosio o dal ramnosio, ma possono essere coinvolti anche altri zuccheri, come:

  • galattosio;
  • arabinosio;
  • xilosio;
  • acido glucuronico.

I flavonoli sono rappresentati principalmente dai glicosidi di:

  • quercetina;
  • campferolo;
  • miricetina;
  • isoramnetina.
Flavonoli
Fig. 2 – Flavonoli

I più diffusi sono i derivati glicosilati di quercetina e campferolo; in natura queste due molecole hanno rispettivamente almeno 279 e 347 diverse combinazioni glicosidiche.
Va infine sottolineato che il residuo di zucchero influenza la biodisponibilità del flavonolo.

Cibi ricchi di flavonoli

Le fonti principali nell’alimentazione umana sono:

  • frutta;
  • verdura;
  • bevande quali il tè ed il vino rosso.

La fonte più ricca è rappresentata dai capperi, che ne contengono fino a 490 mg/100 g di peso fresco, ma si trovano abbondanti anche nelle cipolle, nel cavolo riccio, broccoli, porri, frutti di bosco (ad es. nei mirtilli), nell’uva e in alcune erbe e spezie, come ad es. l’aneto (Anethum graveolens). In queste fonti il loro contenuto varia da 10 a 100 mg/100 g di peso fresco.
Anche il cacao, il tè sia verde che nero, ed il vino rosso ne sono fonti. Nel vino, insieme ad altri polifenoli  come le catechine, le proantocianidine e polifenoli a basso peso molecolare, concorrono al carattere astringente della bevanda.

I principali flavonoli nei cibi

I principali flavonoli presenti negli alimenti, in ordine decrescente di abbondanza, sono la quercetina, il kempferolo, la miricetina e la isoramnetina

Quercetina

L’alimento più ricco di quercetina è rappresentato dai capperi, seguiti da cipolle, asparagi, lattuga e frutti di bosco; in molta altra frutta e verdura è presente in quantità minori, attorno a 0,1-5 mg/100 g di peso fresco.
Questo flavonolo è presente anche nel cacao e potrebbe essere uno dei suoi principali fattori di protezione nei confronti dell’ossidazione delle LDL.
Insieme agli isoflavoni, i glicosidi della quercetina sono i polifenoli meglio assorbiti, seguiti dai flavanoni e dalle catechine (al contrario dei derivati dell’acido gallico delle catechine che sono tra i polifenoli meno assorbiti, insieme con gli antociani e le proantocianidine).

Campferolo

Fonti caratteristiche di campferolo sono gli ortaggi, come indivia, cavolo e spinaci, con concentrazioni di circa 0,1-26,7 mg/100 g peso fresco, e alcune spezie, come erba cipollina, dragoncello, e finocchio, con concentrazioni di circa 6,5-19 mg/100 g di peso fresco.
I frutti sono una fonte povera della molecola, con un contenuto inferiore a 0,1 mg/100 g di peso fresco.

Miricetina

La miricetina è il terzo flavonolo più abbondante e si trova in alcune spezie, come prezzemolo, origano e finocchio con concentrazioni di circa 2-19,8 mg/100 g di peso fresco, ma anche nel tè, 0,5-1,6 mg/100 ml, e nel vino rosso, 0-9,7 mg/100 ml.
Nella frutta è presente in elevate concentrazioni solo nei frutti di bosco, mentre nella maggior parte dell’altra frutta e nella verdura è presente con un contenuto inferiore a 0,2 mg/100 g di peso fresco.

Isoramnetina

Un quarto flavonolo, meno abbondante rispetto ai precedenti, è la isoramnetina, presente solo in alcuni alimenti come ad es. alcune spezie quali: finocchio 9,3 mg/100 g di peso fresco, erba cipollina 5,0-8,5 mg/100 g di peso fresco, dragoncello 5 mg/100 g di peso fresco.
Nella frutta e verdura è presente solo nelle mandorle, dove varia tra 1,2 e 10,3 mg/100 g di peso fresco, nelle pere e cipolle.

Bibliografia

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Han X., Shen T. and Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci 2007;9:950-988. doi:10.3390/i8090950

Manach C., Scalbert A., Morand C., Rémésy C., and Jime´nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-47 doi:10.1093/ajcn/79.5.727

Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010;2:1231-46. doi:10.3390/nu2121231