Antociani: cosa sono, dove si trovano

Gli antociani o antocianine sono un sottogruppo di flavonoidi, e dunque di polifenoli, che conferisce alle piante i colori caratteristici.
Sono pigmenti solubili in acqua, si trovano disciolti nella linfa vacuolare dei tessuti epidermici di fiori e frutta, e sono responsabili dei colori della maggior parte dei petali, della frutta e verdura, e di alcune varietà di cereali come il riso nero.
A loro si devono i colori rosso, rosa e dal viola al blu dei frutti di bosco, delle mele rosse, dell’uva rossa, delle ciliegie, e di molti altri frutti, della lattuga rossa, del cavolo rosso, della cipolla o delle melanzane, ma anche del vino rosso.
Insieme ai carotenoidi, sono responsabili del colore delle foglie in autunno.
Infine le antocianine concorrono ad attrarre gli animali quando il fiore è pronto per l’impollinazione o il frutto è pronto per essere mangiato.
Sono composti bioattivi presenti nei cibi di origine vegetale che hanno un duplice interesse per l’uomo:

  • tecnologico, conseguente al loro impatto sulle caratteristiche sensoriali del prodotto;
  • salutare, essendo implicati nella protezione nei confronti del rischio cardiovascolare.

in vitro, le antocianine hanno un’attività antiossidante, grazie alla loro capacità di delocalizzare gli elettroni e formare strutture di risonanza, e un ruolo protettivo nei confronti dell’ossidazione delle LDL;

al pari di altri polifenoli, come le catechine, le proantocianidine e altri flavonoidi non colorati, possono regolare diverse vie di segnalazione coinvolte nella sopravvivenza, crescita e differenziazione della cellula.

Indice

Struttura chimica

La struttura chimica di base è il catione flavilio o 2-fenilbenzopirilio cui si legano gruppi idrossilici (-OH), metossilici (-OCH3), e uno o più zuccheri.
La molecola priva di zucchero è detta antocianidina.

Formula di struttura dello scheletro di base degli antociani
Catione Flavilio

In base al numero e alla posizione dei gruppi idrossilici e metossilici sono state descritte varie antocianidine, e di queste, sei si trovano comunemente nella frutta e verdura:

  • pelargonidina
  • cianidina
  • delfinidina
  • petunidina
  • peonidina
  • malvidina
Formule di struttura di differenti antociani
Antociani o Antocianine

Le antocianine, come la maggior parte degli altri flavonoidi, sono presenti nelle piante e nei cibi derivati in forma di glicosidi, ossia legati a una o più unità glucidiche.
I tipi più comuni di carboidrati presenti in questi pigmenti naturali sono:

Gli zuccheri sono legati principalmente in posizione C3 come 3-monoglicosidi, in C3 e C5 come diglicosidi, con le possibili forme 3-diglicoside, 3,5-diglicosidi e 3-diglicoside-5-monoglicoside.
Sono state osservate anche glicosilazioni in posizione C7, C3’ e C5’.
La struttura di queste molecole è ulteriormente complicata dal legame allo zucchero di diversi tipi di sostituenti acilici quali:

  • acidi alifatici, come l’acido acetico, malico, succinico e malonico;
  • acidi cinnamici, aromatici, come l’acido sinapico, ferulico e p-cumarico;
  • infine, si ritrovano pigmenti con sostituenti sia alifatici che aromatici.

Inoltre in alcuni antociani si osserva la presenza di diversi zuccheri acilati nella struttura; questi antociani sono talvolta definiti come poliglicosidi.
Sulla base del tipo di idrossilazione, metossilazione e glicosilazione, come dei diversi sostituenti legati allo zucchero, sono state individuate oltre 500 antocianine differenti che si basano su 31 monomeri di antocianidine. Tra questi 31 monomeri:

  • il 30% deriva dalla cianidina;
  • il 22% dalla delfinidina;
  • il 18% dalla pelargonidina.

I derivati metilati delle sopracitate antocianidine, ossia peonidina, malvidina e petunidina, insieme rappresentano il 20% degli antociani.
Quindi il 90% degli antociani che si incontrano più di frequente sono relati alla cianidina, delfinidina e pelargonidina più i loro derivati metilati.

Ruolo del pH

Il colore delle antocianine dipende dal pH del vacuolo cellulare dove sono immagazzinate, variando dal:

  • rosso, in condizioni molto acide;
  • viola-blu, in condizioni di pH intermedio;
  • giallo-verde, in ambiente alcalino.

Oltre che dal pH, il colore di questi flavonoidi può essere influenzato dal grado di idrossilazione o dal tipo di metilazione degli anelli aromatici, come dal tipo di glicosilazione.
Infine il colore di certi pigmenti vegetali deriva da complessi tra antocianine, flavoni e ioni metallici.
Da notare che le antocianine sono spesso utilizzati come indicatori di pH grazie alle differenze nella struttura chimica che si verificano in risposta a cambiamenti di pH.

Bibliografia

  1. de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010
  2. de Pascual-Teresa S., Moreno D.A. and García-Viguera C. Flavanols and anthocyanins in cardiovascular health: a review of current evidence. Int J Mol Sci 2010;11:1679-1703. doi:10.3390/ijms11041679
  3. Escribano-Bailòn M.T., Santos-Buelga C., Rivas-Gonzalo J.C. Anthocyanins in cereals. J Chromatogr A 2004:1054;129-141. doi:10.1016/j.chroma.2004.08.152
  4. Han X., Shen T. and Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci 2007;9:950-988. doi:10.3390/i8090950
  5. Manach C., Scalbert A., Morand C., Rémésy C., and Jime´nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-747. doi:10.1093/ajcn/79.5.727
  6. Ottaviani J.I., Kwik-Uribe C., Keen C.L., and Schroeter H. Intake of dietary procyanidins does not contribute to the pool of circulating flavanols in humans. Am J Clin Nutr 2012;95:851-858. doi:10.3945/​ajcn.111.028340
  7. Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010;2:1231-1246. doi:10.3390/nu2121231

Proantocianidine: cosa sono, proprietà, e assorbimento

Le proantocianidine o tannini condensati, chiamate anche picnogenoli o leucocianidine, sono una sottogruppo di polifenoli, e in particolare di flavonoidi, ampiamente distribuito nel regno vegetale, e seconde solo alla lignina come fenolo più abbondante in natura.
Sono presenti in elevata concentrazione in varie parti delle piante come i fiori, i frutti, le bacche, i semi, come i semi d’uva, e la corteccia, ad esempio quella del pino.
Insieme agli antociani e i loro prodotti di ossidazione, e alle catechine, sono i flavonoidi più abbondanti nella dieta dell’uomo ed è stato suggerito che costituiscano una frazione significativa dei polifenoli ingeriti nella dieta occidentale.
Dunque i tannini condensati vanno presi in considerazione quando si studia l’associazione epidemiologica tra l’assunzione di polifenoli, in particolare dei flavonoidi, e le malattie croniche.

Indice

Struttura chimica

Le proantocianidine hanno una struttura chimica complessa essendo oligomeri, da dimeri a pentameri, o polimeri, da sei o più unità fino a 60, delle catechine o flavanoli, legate tra di loro da ponti carbonio-carbonio.

Formula di struttura dello scheletro base delle procianidine, un tipo di proantocianidine
Struttura di Base delle Procianidine

Possono essere costituite da sole subunità di:

  • (epi)catechina, e sono definite procianidine;
  • (epi)afzelechina, e sono definite propelargonidine;
  • (epi)gallocatechina, e sono definite prodelfinidine.

Propelargonidine e prodelfinidine sono meno frequenti in natura e nei cibi rispetto alle procianidine.

In base ai legami che si stabiliscono tra i monomeri le proantocianidine posso avere una struttura definita:

  • di tipo B se la polimerizzazione avviene tramite legame carbonio-carbonio tra la posizione 8 dell’unità terminale e la 4 della successiva o tra le posizioni 4 e 6;
  • di tipo A, meno frequente, se i monomeri sono doppiamente legati tramite un legame etere C2-O-C7 o C2-O-C5 e un legame di tipo B.

Procianidine

I dimeri più comuni sono procianidine di tipo B, da B1 a B8, formati da catechina o epicatechina, unite da legami C4-C8, da B1 a B4, o C4-C6,da B5 a B8.

Formula di struttura della procianidine B1, B2, B3 e B4
Procianidine B1-B4

La procianidina C1 è un trimero di tipo B.
La procianidina A2 è un esempio di procianidina di tipo A.

Assorbimento intestinale

I tannini condensati sono scarsamente assorbiti a livello intestinale e, con gli antociani e i derivati esteri con l’acido gallico delle catechine del tè, sono i polifenoli meno ben assorbiti.
Sembra che gli oligomeri a basso peso molecolare, formati da 2-3 monomeri, possano essere assorbiti come tali mentre i polimeri non lo sono.
Nella circolazione sistemica i dimeri raggiungono concentrazioni di due ordini di grandezza inferiori rispetto a quelle delle catechine.
Le proantocianidine con un grado di polimerizzazione maggiore di tre sembra attraversino lo stomaco e l’intestino tenue senza significative modificazioni, per poi essere catabolizzate dal microbiota intestinale, che è parte del più ampio microbiota umano. I prodotti di degradazione includono gli acidi fenilacetico, fenilpropionico e fenilvalerico, acidi fenolici che sono stati suggeriti essere i principali metaboliti delle proantocianidine oligomeriche e polimeriche negli esseri umani sani.

Procianidine e catechine

In passato era stato proposto che il catabolismo intestinale delle procianidine portasse alla liberazione di catechine monomeriche, contribuendo così al loro pool sistemico negli esseri umani.
In realtà è stato dimostrato che ciò non accade in quanto le procianidine non contribuiscono in maniera significativa:

  • alla concentrazione dei metaboliti delle catechine nella circolazione sistemica;
  • al totale dei metaboliti delle catechine escreti con le urine;
  • infine, non influenzano in modo significativo il profilo dei metaboliti plasmatici derivanti dall’attività della catecol-O-metiltransferasi.

Pertanto quando si vanno ad analizzare i potenziali effetti benefici sulla salute associati all’assunzione di cibi contenenti questi fitochimici, catechine e procianidine debbono essere considerate classi distinte di composti correlati.

Bibliografia

  1. de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010
  2. Gu L., Kelm M.A., Hammerstone J.F., Beecher G., Holden J., Haytowitz D., Gebhardt S., and Prior R.L. Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J Nutr 2004;134(3):613-617. doi:10.1093/jn/134.3.613
  3. Han X., Shen T. and Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci 2007;9:950-988. doi:10.3390/i8090950
  4. Manach C., Scalbert A., Morand C., Rémésy C., and Jime´nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-747. doi:10.1093/ajcn/79.5.727
  5. Nandakumar V., Singh T., and Katiyar S.K. Multi-targeted prevention and therapy of cancer by proanthocyanidins. Cancer Lett 2008;269(2):378-387. doi:10.1016/j.canlet.2008.03.049
  6. Ottaviani J.I., Kwik-Uribe C., Keen C.L., and Schroeter H. Intake of dietary procyanidins does not contribute to the pool of circulating flavanols in humans. Am J Clin Nutr 2012;95:851-858. doi:10.3945/ajcn.111.028340
  7. Santos-Buelga C. and Scalbert A. Proanthocyanidins and tannin-like compounds: nature, occurrence, dietary intake and effects on nutrition and health. J Sci Food Agr 2000;80(7):1094-1117. doi:10.1002/(SICI)1097-0010(20000515)80:7<1094::AID-JSFA569>3.0.CO;2-1
  8. Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010;2:1231-1246. doi:10.3390/nu2121231
  9. Wang Y.,Chung S., Song W.O., and Chun O.K. Estimation of daily proanthocyanidin intake and major food sources in the U.S. diet. J Nutr 2011;141(3):447-452. doi:10.3945/jn.110.133900

Catechine: cosa sono, struttura, dove si trovano

Le catechine o flavanoli, con i flavonoli come la quercetina, e i flavoni come la luteolina, sono un sottogruppo di flavonoidi tra più diffusi in natura.
Flavanoli e proantocianidine, insieme con le antociani e i loro prodotti di ossidazione sono i flavonoidi più abbondanti nella dieta dell’uomo.

Indice

Struttura chimica

Chimicamente si distinguono da molti altri flavonoidi in quanto:

  • mancano del doppio legame tra la posizione 2 e 3 dell’anello C;
  • non presentano un gruppo chetonico in posizione 4;
  • in posizione 3 hanno un gruppo ossidrilico e per questo sono anche chiamati flavan-3-oli.
Formula di struttura dello scheletro di base delle catechine
Scheletro di Base delle Catechine

Altra caratteristica distintiva dei flavan-3-oli è quella di formare oligomeri, formati da 2 a 10 unità, e polimeri, formati da 10 fino a 60 unità, detti proantocianidine o tannini condensati.

Fonti alimentari

Nei prodotti di origine vegetale si trovano di solito catechina, epicatechina, gallocatechina, epigallocatechina e i loro derivati esteri con l’acido gallico: catechina gallato, gallocatechina gallato, epicatechina gallato ed epigallocatechina gallato o EGCG.

Formule di struttura di alcune catechine come la epigallocatechina
Catechine

I flavanoli presenti con frequenza maggiore sono la catechina e la epicatechina, che sono anche tra i flavonoidi più comuni conosciuti, e quasi altrettanto diffusi come il flavonolo correlato quercetina.
Le fonti di gran lunga più ricche di flavanoli sono il cacao e il tè verde, dove i principali flavonoidi sono, oltre che catechina ed epicatechina (il cacao è una buona fonte anche di epigallocatechina), anche i loro derivati esteri con l’acido gallico, le gallocatechine.

Formule di struttura di alcuni derivati gallati di catechina, come EGCG
Derivati Gallati delle Catechine

Sono comunque presenti anche in molti tipi di frutta, soprattutto nelle bucce di mele, mirtilli neri (Vaccinium myrtillus) e uva, nelle verdure, nel vino rosso, nella birra e nelle arachidi.
Poiché in molti casi i flavanoli sono presenti nelle bucce o nei semi di frutta e verdura, la loro assunzione può essere limitata dal fatto che queste parti sono eliminate prima di mangiare frutta e verdura o durante la loro lavorazione.
Inoltre rispetto alle altre classi di flavonoidi, le catechine presenti nei cibi non sono glicosilate.
Nei cibi di origine vegetale si trovano comunemente anche flavan-3-oli polimerici, le proantocianidine; è stata riportata la loro presenza nella buccia di arachidi e mandorle, come nei frutti di bosco.

Tè verde e nero

Il tè verde rappresenta un’ottima fonte di flavonoidi, e, come per i semi del cacao, anche nelle foglie del tè i principali flavonoidi presenti sono i flavanoli monomerici, catechina ed epicatechina, insieme con i loro derivati gallati, come la EGCG.
La epigallocatechina gallato è la catechina più abbondante nel tè verde e sembra avere un ruolo importante nel determinare gli effetti salutari della bevanda, come:

  • la riduzione dell’infiammazione vascolare;
  • l’abbassamento della pressione;
  • la riduzione della concentrazione delle LDL ossidate.

Il tè nero (tè fermentato) contiene meno flavanoli monomerici, in quanto vengono ossidati durante il processo di fermentazione delle foglie con produzione di polifenoli più complessi come le teaflavine teaflavina digallato, teaflavina-3-gallato, e teaflavina-3’-gallato (tutte dimeri) e le tearubigine (polimeri).
Teaflavine e tearubigine sono catechine presenti solamente nel tè, le cui concentrazioni misurate nell’infuso sono circa 50-100 volte più basse rispetto a quelle presenti nelle foglie.
Degno di nota è il fatto che le epicatechine del tè sono notevolmente stabili quando esposte al calore fin quando il pH è acido: solamente il 15% è degradato dopo 7 ore in acqua bollente a pH 5. Ne consegue che l’aggiunta di succo di limone all’infuso di tè non determina alcuna riduzione del loro contenuto.

Cacao e prodotti derivati

Il cacao ha il più alto contenuto in polifenoli e flavanoli per porzione, una concentrazione maggiore rispetto a quelle trovate nel tè verde e nel vino rosso. La maggior parte dei flavonoidi che si trovano nei semi di cacao e nei prodotti derivati come il cioccolato nero sono flavanoli monomerici, catechina ed epicatechina, ma anche epigallocatechina, ei loro derivati come le gallocatechine; tra i polimeri sono importanti anche le proantocianidine.

Frutta, verdura e legumi

La catechina e la epicatechina sono i principali flavanoli presenti nella frutta; si ritrovano in molti frutti in concentrazioni variabili rispettivamente tra 5-3 e 0,5-6 mg/100 g di peso fresco.
Al contrario gallocatechina, epicatechina gallato, epigallocatechina e epigallocatechina gallato sono presenti in diversi frutti come uva rossa, frutti di bosco, mele, pesche e prugne, ma in concentrazioni molto basse, inferiori a 1mg/100 g di peso fresco.
Con l’eccezione di lenticchie e fave, pochi legumi e verdure contengono catechine e in concentrazioni molto basse, inferiori a 1,5 mg/100 g di peso fresco.

Bibliografia

  1. de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010
  2. de Pascual-Teresa S., Moreno D.A. and García-Viguera C. Flavanols and anthocyanins in cardiovascular health: a review of current evidence. Int J Mol Sci 2010;11:1679-1703. doi:10.3390/ijms11041679
  3. Han X., Shen T. and Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci 2007;9:950-988. doi:10.3390/i8090950
  4. Manach C., Scalbert A., Morand C., Rémésy C., and Jime´nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-747. doi:10.1093/ajcn/79.5.727
  5. Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010;2:1231-1246. doi:10.3390/nu2121231