Archivi tag: sport di resistenza

Maltodestrine, fruttosio e sport di resistenza

L’assunzione di carboidrati può migliorare la capacità di resistenza e la prestazione.
L’ingestione di diversi tipi di carboidrati, che utilizzano trasportatori intestinali differenti, può:

  • aumentare l’assorbimento totale dei carboidrati;
  • aumentare l’ossidazione dei carboidrati assunti;
  • migliorare la prestazione.

Glucosio e fruttosio

Quando durante l’esercizio fisico prolungato viene assunta una miscela di glucosio e fruttosio (nella letteratura analizzata rispettivamente 1,2 e 0,6 g/min, rapporto 2:1, per una velocità di assunzione complessiva pari a 1,8 g/min) c’è una minor competizione per l’assorbimento intestinale rispetto all’ingestione di una quantità isoenergetica di solo glucosio o solo fruttosio, essendo coinvolti due trasportatori differenti. Inoltre, l’assorbimento del fruttosio è stimolato dalla presenza del glucosio.
Tutto ciò può:

  • contribuire ad ottenere una velocità di assorbimento intestinale dei carboidrati maggiore;
  • aumentare la disponibilità di carboidrati esogeni nel sangue;
  • produrre una velocità di ossidazione dei carboidrati esogeni maggiore rispetto al solo glucosio.

Dalla coingestione di glucosio e fruttosio si ottiene una velocità di ossidazione dei carboidrati esogeni di circa 1,26 g/min, quindi maggiore rispetto a quella osservata con l’assunzione del solo glucosio (1 g/min) anche in alte concentrazioni.
La differenza osservata (+0,26 g/min) può essere attribuita per intero all’ossidazione del fruttosio ingerito.

Saccarosio e glucosio

L’ingestione di saccarosio e glucosio, nelle stesse condizioni dell’ingestione di glucosio e fruttosio (quindi rispettivamente 1,2 e 0,6 g/min, in rapporto 2:1, per apporto complessivo di carboidrati pari a 1,8 g/min), dà risultati simili.

Glucosio, saccarosio e fruttosio

Con la combinazione di glucosio, saccarosio e fruttosio si ottengono velocità di ossidazione molto elevate (nella letteratura analizzata rispettivamente 1,2, 0,6 e 0,6 g/min, in rapporto 2:1:1, per apporto complessivo di carboidrati pari a 2,4 g/min; tuttavia, notare la maggiore quantità di carboidrati assunta).

Maltodestrine e fruttosio

Velocità di ossidazione elevate si osservano anche con combinazioni di maltodestrine e fruttosio, nelle stesse condizioni dell’ingestione di glucosio e fruttosio (quindi rispettivamente 1,2 e 0,6 g/min, in rapporto 2:1, per apporto complessivo di carboidrati pari a 1,8 g/min).

Queste elevate velocità di ossidazione possono essere raggiunte con carboidrati disciolti in una bevanda, presenti in un gel o in barrette a basso contenuto di grassi, proteine e fibra.

La migliore combinazione di carboidrati da assumere durante l’esercizio fisico prolungato è probabilmente la miscela di maltodestrine e fruttosio in rapporto 2:1, in una soluzione al 5%, per un apporto di circa 80-90 g/h.

Maltodestrine e fruttosio: Ossidazione dei Carboidrati Ingeriti
Fig. 1 – Ossidazione dei Carboidrati Ingeriti

Perche?

  • Questa miscela ha il miglior rapporto tra la quantità di carboidrati ingerita e la loro velocità di ossidazione e questo significa che quantità più piccole di carboidrati rimangono nello stomaco o nell’intestino riducendo il rischio di complicanze/disturbi gastrointestinali durante esercizio prolungato (vedere la parentesi grafa nella figura).
  • Una soluzione che contenga diversi tipi di carboidrati e che ne abbia un contenuto non superiore al 5% ottimizza lo svuotamento gastrico e migliora l’apporto di liquidi.

Esempi di soluzioni di carboidrati al 5% contenenti circa 80-90 g di maltodestrine e fruttosio in rapporto 2:1; tempo di ingestione di circa un’ora:

  • 1,5 L di soluzione: 80 g di carboidrati, rispettivamente circa 55 g di maltodestrine e circa 25 g di fruttosio.
  • 1,8 L di soluzione: 90 g di carboidrati, rispettivamente 60 g di maltodestrine e 30 g di fruttosio.

Conclusioni

Durante l’esercizio fisico prolungato, quando sono necessarie elevate velocità di ossidazione dei carboidrati esogeni, è preferibile l’ingestione di carboidrati differenti rispetto a quella di grandi quantità di un singolo carboidrato.
La migliore combinazione sembra essere quella tra maltodestrine e fruttosio, in rapporto di 2:1, in una soluzione al 5%, e con una velocità di ingestione di circa 80-90 g/h.

Bibliografia

Burke L.M., Hawley J.A., Wong S.H.S., & Jeukendrup A. Carbohydrates for training and competition. J Sport Sci 2011;29:Sup1,S17-S27. doi:10.1080/02640414.2011.585473

Jentjens R.L.P.G., Moseley L., Waring R.H., Harding L.K., and Jeukendrup A.E. Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol 2004:96;1277-1284. doi:10.1152/japplphysiol.00974.2003

Jentjens R.L.P.G., Venables M.C., and Jeukendrup A.E. Oxidation of exogenous glucose, sucrose, and maltose during prolonged cycling exercise. J Appl Physiol 2004:96;1285-1291. doi:10.1152/japplphysiol.01023.2003

Jeukendrup A.E. Carbohydrate feeding during exercise. Eur J Sport Sci 2008:2;77-86. doi:10.1080/17461390801918971

Jeukendrup A.E. Nutrition for endurance sports: marathon, triathlon, and road cycling. J Sport Sci 2011:29;sup1, S91-S99. doi:10.1080/02640414.2011.610348

Esercizio fisico prolungato e assunzione di carboidrati

Esercizio Fisico Prolungato: Nuoto in Acque Libere
Fig. 1 – Nuoto in Acque Libere

Durante l’esercizio fisico prolungato (>90 min), ad es. la maratona, l’Ironman, lo sci di fondo, il ciclismo su strada o il nuoto in acque libere, gli effetti della supplementazione con carboidrati sulla performance sono principalmente metabolici piuttosto che centrali e comprendono:

  • la fornitura di una apporto energetico addizionale per il muscolo quando le riserve di glicogeno sono prossime all’esaurimento;
  • il risparmio del glicogeno muscolare;
  • la prevenzione delle ipoglicemie.

Quanti carboidrati dovrebbe assumere l’atleta?

La quantità ottimale di carboidrati da assumere è quella che determina la massima velocità di ossidazione dei carboidrati esogeni senza causare disturbi gastrointestinali“. (Jeukendrup A.E., 2008, vedi Bibliografia)

Esercizio fisico prolungato: quali carboidrati assumere?

Fino al 2004 si riteneva che i carboidrati ingeriti durante l’esercizio, anche l’esercizio fisico prolungato, potessero essere ossidati ad una velocità non superiore a 1 g/min, ossia 60 g/h, indipendente dal tipo di carboidrato.
L’ossidazione dei carboidrati esogeni è limitata dal loro assorbimento intestinale e l’ingestione di più di circa 60 g/min di un singolo tipo di carboidrato non porta ad aumenti nella loro velocità di ossidazione mentre è probabile che si associ con disturbi gastrointestinali.
Perché?
A livello intestinale, l’assorbimento del glucosio (e del galattosio) è mediato da un trasportatore sodio dipendente chiamato SGLT1. Questo trasportatore si satura ad con apporti di glucosio di circa 60 g/h e ciò (e/o la distribuzione del glucosio da parte del fegato che ne regola il trasporto nel sangue) ne limita la velocità di ossidazione a 1g/min o 60 g/h. Per questo motivo, anche quando il glucosio è assunto a velocità molto elevate (>60 g/h) non si ottengono velocità di ossidazione dei carboidrati esogeni superiori 1,0-1,1 g/min.
Un esempio può aiutare a capire che succede a livello intestinale: se di fronte ad un ascensore (il nostro trasportatore SGLT1) che può portare 30 persone (il glucosio) ce ne sono 60, 30 rimarranno in attesa, magari iniziando a litigare tra di loro (disturbi gastrointestinali).

La velocità di ossidazione del maltosio, saccarosio, delle maltodestrine e di polimeri del glucosio ingeriti è molto simile a quella del glucosio ingerito.

Il fruttosio utilizza un differente trasportatore, sodio indipendente, chiamata GLUT5. Rispetto al glucosio, ma come il galattosio, ha una minore velocità di ossidazione, probabilmente a causa della più bassa velocità di assorbimento intestinale e della necessità di essere convertito in glucosio nel fegato, di nuovo come il galattosio, prima di poter essere ossidato.
Tuttavia, se l’atleta ingerisce diversi tipi di carboidrati, che utilizzano trasportatori intestinali differenti, la velocità di ossidazione dei carboidrati esogeni può aumentare significativamente.
La miscela migliore da assumere nel corso di un esercizio fisico prolungato sembra essere quella composta da maltodestrine e fruttosio.

Esercizio Fisico Prolungato: Ossidazione dei Carboidrati Ingeriti
Fig. 1 – Ossidazione dei Carboidrati Ingeriti

Nota: l’elevata velocità di assunzione dei carboidrati si può associare ad un ritardato dello svuotamento gastrico e dell’assorbimento dei liquidi. Questo può essere minimizzato dalla contemporanea assunzione di carboidrati che utilizzino trasportatori intestinali differenti: si osserva infatti un miglioramento nell’apporto di liquidi rispetto all’assunzione di un singolo tipo di carboidrato, cui consegue anche un disagio gastrointestinale modesto, se presente.

Conclusioni

L’ingestione di diversi tipi di carboidrati, che utilizzano trasportatori intestinali differenti, può:

  • aumentare l’assorbimento totale di carboidrati;
  • aumentare l’ossidazione dei carboidrati esogeni;
  • migliorare la prestazione fisica.
Bibliografia

Burke L.M., Hawley J.A., Wong S.H.S., & Jeukendrup A. Carbohydrates for training and competition. J Sport Sci 2011;29:Sup1,S17-S27. doi:10.1080/02640414.2011.585473

Jentjens R.L.P.G., Moseley L., Waring R.H., Harding L.K., and Jeukendrup A.E. Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol 2004:96;1277-1284. doi:10.1152/japplphysiol.00974.2003

Jentjens R.L.P.G., Venables M.C., and Jeukendrup A.E. Oxidation of exogenous glucose, sucrose, and maltose during prolonged cycling exercise. J Appl Physiol 2004:96;1285-1291. doi:10.1152/japplphysiol.01023.2003

Jeukendrup A.E. Carbohydrate feeding during exercise. Eur J Sport Sci 2008:2;77-86. doi:10.1080/17461390801918971

Jeukendrup A.E. Nutrition for endurance sports: marathon, triathlon, and road cycling. J Sport Sci 2011:29;sup1, S91-S99. doi:10.1080/02640414.2011.610348

Mahan L.K., Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Shils M.E., Olson J.A., Shike M., Ross A.C.: “Modern nutrition in health and disease” 9th ed. 1999

Idratazione prima degli sport di resistenza

Pre-idratazione
Fig. 1 – Pre-idratazione

Negli sport di resistenza, quali l’Ironman, il nuoto in acque libere, il ciclismo su strada, la maratona o lo sci di fondo, le cause più probabili che portano alla fatica sono la disidratazione e la deplezione dei carboidrati, in particolare del glicogeno muscolare ed epatico

La pre-idratazione

Poiché la disidratazione, conseguente alle perdite di sudore necessarie per dissipare il calore generato durante l’attività, può compromettere la prestazione, è importante iniziare esercizio in uno stato buona idratazione (e con normali livelli di elettroliti plasmatici), mantenendolo anche durante l’attività.
Se l’atleta ha assunto con i pasti un’adeguata quantità di bevande ed è trascorso un periodo di recupero prolungato (8-12 h) dall’ultimo esercizio, l’atleta dovrebbe trovarsi in uno stato di buona idratazione.
Tuttavia, se non ha avuto tempo a sufficienza o non è riuscita/o ad assumere quantità adeguate di liquidi/elettroliti per ristabilire il corretto stato di idratazione, può essere utile, prima di iniziare l’esercizio successivo, un programma di pre-idratazione per correggere eventuali deficit di liquidi/elettroliti precedentemente accumulati.

Programma di pre-idratazione

Se durante l’esercizio il target nutrizionale è quello di ridurre le perdite di sudore a meno del 2-3% del peso corporeo, nella fase di precedente l’esercizio l’atleta dovrebbe assumere bevande almeno 4 ore prima dell’inizio della attività, ad esempio circa 5-7 mL/kg di peso corporeo.
Se l’urina è ancora scura (molto concentrata) e/o è poca l’atleta dovrebbe assumere, lentamente, altri liquidi (ad esempio, altri 3-5 ml/kg di peso corporeo) circa 2 ore prima dell’inizio di attività, di modo che la diuresi, la produzione di urina, torni verso la normalità prima di iniziare il lavoro.

E consigliabile consumare piccole quantità di cibi contenenti sodio o snack salati e/o bevande con sodio che aiutano a stimolare la sete e a trattenere i liquidi assunti.
Inoltre, al fine di promuovere il consumo di liquidi prima, durante e dopo l’esercizio fisico è importante che le bevande ingerite siano gradevoli per l’atleta. La gradevolezza della bevanda è influenzata da diversi fattori, quali:

  • la temperatura, spesso tra i 15 e i 21 °C;
  • il contenuto di sodio;
  • il gusto.

E l’iper-idratazione?

L’iper-idratazione, in particolare quando è caldo, potrebbe migliorare la termoregolazione e la performance fisica, e quindi potrebbe essere utile per coloro che hanno una sudorazione molto intensa, come può accadere durante l’esercizio svolto in un ambiente caldo, o che hanno difficoltà a bere una quantità sufficiente di liquidi durante l’esercizio.
Tuttavia ci sono diversi rischi:

  • i liquidi che espandono gli spazi intra- ed extracellulari (ad esempio soluzioni di glicerolo più acqua) aumentano notevolmente il rischio di andare di intestino durante l’esercizio;
  • l’iper-idratazione può diluire ed abbassare il sodio plasmatico: questo aumenta il rischio di iponatremia da diluizione se durante l’esercizio i liquidi vengono assunti in quantità molto elevata e in breve tempo.

Infine, va sottolineato che gli espansori plasmatici o gli agenti iperidratanti sono banditi dall’Agenzia mondiale antidoping (WADA).

Conclusioni
“La pre-idratazione con bevande, quando necessaria, dovrebbe iniziare almeno diverse ore prima dell’inizio dell’attività fisica al fine di consentire l’assorbimento di liquidi e permettere alla diuresi di tornare verso valori normali. Il consumo di bevande contenti sodio e/o snack salati o di piccoli pasti liquidi possono contribuire a stimolare la sete e a trattenere i liquidi necessari.” (Sawka et al., 2007, vedi Bibliografia).

Bibliografia

Jeukendrup A.E. Nutrition for endurance sports: marathon, triathlon, and road cycling. J Sport Sci 2011:29;sup1, S91-S99. doi:10.1080/02640414.2011.610348

Mahan L.K., Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Sawka M.N., Burke L.M., Eichner E.R., Maughan, R.J., Montain S.J., Stachenfeld N.S. American College of Sports Medicine position stand: exercise and fluid replacement. Med Sci Sport Exercise 2007;39:377-390. doi:10.1249/mss.0b013e31802ca597

Shils M.E., Olson J.A., Shike M., Ross A.C.: “Modern nutrition in health and disease” 9th ed. 1999

Shirreffs S., Sawka M.N. Fluid and electrolyte needs for training, competition and recovery. J Sport Sci 2011;29:sup1, S39-S46. doi:10.1080/02640414.2011.614269

Ipoglicemia e carboidrati nell’ora precedente l’esercizio

Da numerosi studi condotti sembra che l’insorgenza dell’ipoglicemia (glicemia < 3,5 mmol/L o < 63 mg/L) sia estremamente soggettiva: alcuni atleti sono risultati molto predisposti al suo sviluppo, altri molto più resistenti.

Ipoglicemia: strategie per limitarla nei soggetti predisposti

Ipoglicemia: La fatica
Fig. 1 – La Fatica

Una strategia per minimizzare le risposte glicemiche ed insulinemiche durante l’esercizio è quella di ritardare l’assunzione dei carboidrati, ingerendoli nei 5-15 minuti prima dell’inizio dell’esercizio o durante il riscaldamento (anche se seguito da un breve intervallo).
Perché?

  • Il riscaldamento e poi l’esercizio aumentano la concentrazione delle catecolamine circolanti, le quali vanno a smorzare l’effetto dell’insulina.
  • Inoltre è stato dimostrato che l’assunzione di soluzioni contenenti carboidrati durante il riscaldamento (anche se seguito da un breve intervallo) non causa alcuna ipoglicemia di rimbalzo, a prescindere dalla quantità di carboidrati presenti, ma anzi determina un aumento della glicemia. Quando i carboidrati sono assunti entro 10 minuti dall’inizio dell’esercizio, l’esercizio stesso inizierà prima dell’aumento della concentrazione dell’insulina.

Pertanto, questa strategia di temporizzazione fornirebbe carboidrati minimizzando il rischio di una possibile ipoglicemia reattiva.
In aggiunta, è possibile scegliere carboidrati a basso indice glicemico che determinano risposte glicemiche ed insulinemiche più stabili nel corso del successivo esercizio.

Esempio: soluzione al 5-6% di carboidrati, spesso maltodestrine (50-60 g in un litro), o maltodestrine più fruttosio (ad es. rispettivamente 33 g più 17 g in un litro).

Un’osservazione interessante è la mancanza di una chiara relazione tra l’ipoglicemia ed i suoi sintomi (legati probabilmente ad un ridotto apporto di glucosio al cervello). Infatti i sintomi spesso sono riportati in assenza di una vera ipoglicemia e l’ipoglicemia non sempre è associata ai sintomi. Anche se la causa dei sintomi è ancora sconosciuta, chiaramente non è correlata ad una soglia glicemica.

Conclusioni
Alcuni atleti sviluppano sintomi simili a quelli dell’ipoglicemia sebbene questi non siano sempre legati ad un’ipoglicemia effettiva.
Al fine di minimizzare tali sintomi, per questi soggetti è consigliabile un approccio personalizzato che potrebbe includere:

  • l’assunzione di carboidrati poco prima dell’inizio del lavoro o durante il riscaldamento;
  • la scelta di carboidrati a basso-moderato indice glicemico che provocano risposte glicemiche ed insulinemiche più stabili;
  • oppure evitare i carboidrati nei 90 minuti precedenti l’esercizio.
Bibliografia

Jeukendrup A.E. Carbohydrate feeding during exercise. Eur J Sport Sci 2008:2;77-86. doi:10.1080/17461390801918971

Jeukendrup A.E., C. Killer S.C. The myths surrounding pre-exercise carbohydrate feeding. Ann Nutr Metab 2010;57(suppl 2):18-25. doi:10.1159/000322698

Mahan L.K., Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Moseley L., Lancaster G.I, Jeukendrup A.E. Effects of timing of pre-exercise ingestion of carbohydrate on subsequent metabolism and cycling performance. Eur J Appl Physiol 2003;88:453-8. doi:10.1007/s00421-002-0728-8

Shils M.E., Olson J.A., Shike M., Ross A.C.: “Modern nutrition in health and disease” 9th ed. 1999

Carico di carboidrati pre-gara

Il carico di carboidrati è un’ottima strategia per ottimizzare le riserve energetiche nei muscoli prima dell’inizio di una competizione di resistenza come la maratona, l’ironman, il nuoto in acque libere o una gara di ciclismo su strada.

Cosa “mangia” il muscolo durante gli sport di resistenza?

Carico di carboidrati: Alberto Sordi e lo Spaghetto“Mangia” carboidrati, presenti in forma di glicogeno nei muscoli e nel fegato ed assunti nel corso dell’esercizio o poco prima, e grassi.

Negli sport di resistenza le cause più probabili alla base dell’insorgenza della fatica sono la disidratazione e la deplezione dei carboidrati, in particolare del glicogeno muscolare ed epatico.
Per evitare la “crisi” dovuta alla deplezione dei carboidrati muscolari ed epatici è fondamentale avere alla partenza ottimi depositi di glicogeno.

Cosa influenza i depositi di glicogeno?

  • L’alimentazione nei giorni precedenti la gara;
  • il livello di allenamento (chi è più allenato sintetizza più glicogeno ed ha depositi potenzialmente maggiori perché ha enzimi più efficienti);
  • l’attività compiuta il giorno della gara ed i giorni precedenti (se il muscolo non lavora non perde glicogeno). Quindi nei giorni che precedono la gara è bene fare allenamenti leggeri, così da non intaccarne le riserve, e curare l’alimentazione.

L’origine “svedese” del carico di carboidrati

Negli eventi che durano più di 90 minuti, avere riserve muscolari di glicogeno molto elevate (si parla di supercompensazione del glicogeno) può migliorare la performance, ossia il tempo necessario per completare una data distanza, di un 2-3% in confronto con una situazione in cui le riserve di glicogeno sono normali o basse. Nelle competizioni con durata inferiore ai 90 minuti i benefici della supercompensazione sembrano essere piccoli o assenti.
Gli atleti ben allenati possono ottenere la supercompensazione delle riserve di glicogeno anche senza ricorrere alla fase di deplezione dei carboidrati precedente al carico degli stessi, vecchia tecnica messa a punto da due ricercatori svedesi, Saltin e Hermansen, negli anni ’60 del secolo scorso.
I due ricercatori scoprirono che la concentrazione muscolare del glicogeno poteva essere raddoppiata seguendo nei sei giorni precedenti la gara una dieta di questo tipo:

  • tre giorni di dieta ipoglucidica (poverissima di carboidrati);
  • tre giorni di dieta iperglucidica, il cosiddetto carico di carboidrati (dieta ricchissima di carboidrati).

Questa dieta crea un sacco di problemi: i primi tre giorni senza carboidrati (ossia senza pasta, riso, pane, patate, legumi, frutta ecc.) sono durissimi, ci possono essere anche sintomi simili alla depressione dovuti al carente apporto di glucosio al cervello, mentre i vantaggi che si ottengono sono pochi. Inoltre, con le tecniche di preparazione attuali, tipo e quantità di lavoro svolto, già si riescono ad ottenere livelli di glicogeno elevati, oltre i 2,5 g/kg.

Il carico di carboidrati “moderno”

Immaginando di avere la gara la domenica un possibile schema per ottenere la supercompensazione delle riserve di glicogeno può essere il seguente:

  • mercoledì, ossia 4 giorni prima della competizione, allenamento discreto e poi cena senza carboidrati;
  • da giovedì, quindi 3 giorni prima della competizione, dieta iperglucidica (vedi tabella) ossia il carico di carboidrati ed allenamenti leggeri.
Esempio di carico di carboidrati
Fig. 1 – Carico di Carboidrati: Dieta da 2500 kcal

La quantità di carboidrati necessaria per ripristinare le scorte di glicogeno o per promuoverne il carico varia in funzione della durata e dell’intensità del programma di allenamento, ed è compresa tra 5 e 12 g/kg/d a seconda dell’atleta e della sua attività. Con apporti di carboidrati maggiori si possono ottenere scorte più elevate di glicogeno ma non sempre questo determina prestazioni migliori. Inoltre c’è anche da considerare il fatto che l’accumulo di glicogeno si accompagna ad un aumento di peso dovuto alla ritenzione di acqua (circa 3 grammi di acqua per ogni grammo di glicogeno) e per alcuni sport questo potrebbe non essere vantaggioso.

Bibliografia

Burke L.M., Hawley J.A., Wong S.H.S., & Jeukendrup A. Carbohydrates for training and competition. J Sport Sci 2011;29:Sup1,S17-S27. doi:10.1080/02640414.2011.585473

Hargreaves M., Hawley J.A., & Jeukendrup A.E. Pre-exercise carbohydrate and fat ingestion: effects on metabolism and performance. J Sport Sci 2004;22:31-38. doi10.1080/0264041031000140536

Jeukendrup A.E., C. Killer S.C. The myths surrounding pre-exercise carbohydrate feeding. Ann Nutr Metab 2010;57(suppl 2):18-25. doi:10.1159/000322698

Mahan L.K., Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Moseley L., Lancaster G.I, Jeukendrup A.E. Effects of timing of pre-exercise ingestion of carbohydrate on subsequent metabolism and cycling performance. Eur J Appl Physiol 2003;88:453-8. doi:10.1007/s00421-002-0728-8

Shils M.E., Olson J.A., Shike M., Ross A.C.: “Modern nutrition in health and disease” 9th ed. 1999

Glicogeno muscolare e sport

Il glicogeno muscolare rappresenta una sorgente di glucosio, dunque energia, che può essere utilizzata dal muscolo durante l’attività fisica: è una riserva di energia dove serve!
Inoltre esiste una stretta relazione tra l’insorgenza della fatica e la deplezione delle sue riserve muscolari.

Glicogeno come sorgente di energia

I carboidrati e gli acidi grassi rappresentano le principali fonti di energia per il muscolo durante l’attività fisica, e il loro contributo relativo varia in funzione:

  • dell’intensità e durata dell’esercizio;
  • del livello di allenamento.
Glicogeno Muscolare
Intensità dello Sforzo Fisico e Carburante Metabolico Utilizzato

Se per gli acidi grassi non esistono problemi riguardo le scorte corporee, così non è per i carboidrati le cui riserve, presenti in forma di glicogeno, principalmente nel fegato e nel muscolo, sono modeste, meno del 5% dell’energia corporea totale: in un soggetto adulto maschio di 70 kg non a digiuno ci sono circa 250 g di glicogeno nel muscolo e 100 g nel fegato per un totale di energia pari a circa 1400 kcal. Negli atleti la quantità può essere maggiore, ad es. nei migliori maratoneti, di nuovo considerando un maschio adulto come in precedenza, si può arrivare fino 475 g totali, muscolo più fegato, che corrispondono a 1900 kcal.
Nonostante ciò, il contributo del glicogeno al totale dell’energia necessaria per sostenere il lavoro muscolare aumenta con l’aumentare dell’intensità dell’esercizio, mentre si riduce quello degli acidi grassi.
Inoltre, in assenza di rifornimenti con carboidrati esogeni, la prestazione è determinata dalle riserve endogene di glicogeno muscolare ed epatico il cui consumo relativo è differente: all’aumentare dell’intensità aumenta quello del primo mentre rimane più o meno costante quello del secondo.

Glicogeno muscolare ed esercizi intensi

Il glicogeno muscolare rappresenta infatti la più importante riserva di energia negli esercizi prolungati di intensità medio-alta, importanza che aumenta nel caso di esercizi intervallati di alta intensità (comuni negli allenamenti di nuotatori, corridori, vogatori o negli sport di squadra) o in lavori di resistenza contro pesi (in inglese resistance), quindi sia endurance che resistance. Se ad esempio si considera la maratona, circa l’80% dell’energia necessaria deriva dall’ossidazione dei carboidrati, per la maggior parte glicogeno muscolare. Infine la velocità di replezione delle riserve di glicogeno nel post-esercizio è uno dei fattori più importanti nello stabilire il tempo necessario per il recupero.

Glicogeno muscolare e fatica

La fatica e i bassi livelli di glicogeno sono strettamente correlati, ma non è ancora chiaro quali siano i meccanismi alla base di questa relazione. Una delle ipotesi è che esista una concentrazione minima di glicogeno che viene “protetta” ed è resistente all’utilizzo durante l’esercizio, forse per assicurare una riserva di energia in caso di estrema necessità. Data la stretta relazione tra deplezione del glicogeno muscolare e fatica, la sua velocità di ripristino nel post-esercizio è uno dei fattori più importanti nel determinare il tempo necessario al recupero.

Bibliografia

Arienti G. “Le basi molecolari della nutrizione”. Seconda edizione. Piccin, 2003

Beelen M., Burke L.M., Gibala M.J., van Loon J.C. Nutritional strategies to promote postexercise recovery. Int J Sport Nutr Exerc Metab 2010:20(6);515-32 doi:10.1123/ijsnem.20.6.515

Cozzani I. and Dainese E. “Biochimica degli alimenti e della nutrizione”. Piccin Editore, 2006

Giampietro M. “L’alimentazione per l’esercizio fisico e lo sport”. Il Pensiero Scientifico Editore, 2005

Mahan LK, Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Mariani Costantini A., Cannella C., Tomassi G. “Fondamenti di nutrizione umana”. 1th ed. Il Pensiero Scientifico Editore, 1999

Nelson D.L., M. M. Cox M.M. Lehninger. Principles of biochemistry. 4th Edition. W.H. Freeman and Company, 2004

Stipanuk M.H., Caudill M.A. Biochemical, physiological, and molecular aspects of human nutrition. 3rd Edition. Elsevier health sciences, 2013 [Google eBooks]