Tag Archives: pyruvate

Pyruvate dehydrogenase complex

The pyruvate dehydrogenase complex (PDC) is a mitochondrial multienzyme complex composed of three different enzymes:

  • pyruvate dehydrogenase or E1 (EC;
  • dihydrolipoyl transacetylase or dihydrolipoamide acetyltransferase or E2 (EC;
  • dihydrolipoyl dehydrogenase or dihydrolipoamide dehydrogenase or E3 (EC

Each of these enzymes is present in multiple copies whose number, and then the size of the complex itself, varies from species to species, with molecular masses ranging from 4×106 to 1×107 daltons.
The multienzyme complex contains additional subunits:

The pyruvate dehydrogenase complex catalyzes, through five sequential reactions, the oxidative decarboxylation of pyruvate, an α-keto acid, to form a carbon dioxide molecules (CO2) and the acetyl group of acetyl-coenzyme A or acetyl-CoA, with the release of two electrons, carried by NAD.

Pyruvate Dehydrogenase Complex
Fig. 1 – PDC Reaction

The overall reaction is essentially irreversible, with a ΔG°’ of -8.0 kcal/mol (-33.4 kJ/mol), and requires the intervention of the three enzymes, whose activities are sequentially coordinated. During the reactions, the intermediate products remain bound to the enzymes and, at the end of the reaction sequence, the multienzyme complex is ready for the next cycle;.

Pyruvate Dehydrogenase Complex
Fig. 2 – The Five Reactions Catalyzed by the PDC

Note: the pyruvate dehydrogenase complex catalyzes the same reactions through similar mechanisms in all organisms.


The coenzymes of the pyruvate dehydrogenase complex

Five coenzymes are used in the pyruvate dehydrogenase complex reactions: thiamine pyrophosphate or TPP, flavin adenine dinucleotide or FAD, coenzyme A or CoA, nicotinamide adenine dinucleotide or NAD, and lipoic acid.

  • Thiamine pyrophosphate is the active form of thiamine or vitamin B1.
    Thiamine Pyrophosphate
    Fig. 3 – TPP

    TPP is the coenzyme of pyruvate dehydrogenase, to which it is strictly bound through noncovalent interactions. It is involved in the transfer of hydroxyethyl or “activated aldehyde” groups.

  • Flavin adenine dinucleotide is one the active forms of riboflavin or vitamin B2; the other is flavin mononucleotide (FMN).
    Flavin Adenine Dinucleotide
    Fig. 4 – FAD

    FAD is the coenzyme of dihydrolipoyl dehydrogenase, to which it is strictly bound. Like NAD, it participates in electron transfer, or hydride ion (:H or H+ + 2e) transfer.

  • Coenzyme A consists of a β-mercaptoethylamine group connected to pantothenic acid or vitamin B5 through an amide linkage, which, in turn, is bonded to 3′-phosphoadenosine moiety, through a pyrophosphate bridge.
    CoA is involved in the reaction catalyzed by dihydrolipoyl transacetylase, and acts as a carrier of acyl groups.

    Coenzyme A
    Fig. 5 – Coenzyme A

    The β-mercaptoethylamine moiety terminates with a sulfhydryl group (–SH), a reactive thiol crucial for the role played by the coenzyme, because the acyl groups bonded to it through a thioester bond have a high standard free energy of hydrolysis. This provides acyl groups with a high transfer potential, equal to -31.5 kcal/mol (-7.5 kJ/mol), slightly more exergonic [1 kJ/mol (0.2 kcal/mol )] than that for the hydrolysis of ATP to ADP and Pi. Thioesters have therefore a high transfer potential of the acyl group and can donate it to a variety of molecules, that is, such acyl group can be considered as an activated group ready for a transfer. It is also possible to state that the formation of the thioester bond allows to conserve a portion of the free energy derived from the oxidation of the metabolic fuel. It should be noted that coenzyme A is also abbreviated as CoA-SH to emphasize the role played by the thiol group.
    Note: in the thioester bond a sulfur atom sits in the position where an oxygen atom is in the ester bond.

 Thioester and Ester Bonds
Fig. 6 – Ester and Thioester Bonds
  • Nicotinamide adenine dinucleotide can be synthesized from tryptophan, an essential amino acid, or from niacin or vitamin B3 or vitamin PP, from Pellagra-Preventing, the source of the nicotinamide moiety.
Nicotinamide Adenine Dinucleotide
Fig. 7 – NAD

NAD is involved in the reaction catalyzed dihydrolipoyl dehydrogenase, and, like FAD, participates in electron transfer, or hydride transfer.

  • Unlike the other coenzymes of the pyruvate dehydrogenase complex, lipoic acid does not derive, directly or indirectly, from vitamins and/or essential amino acids, that is, from building blocks that cannot be synthesized de novo by the organism and must be supplied by the diet.
    It is the coenzyme of dihydrolipoyl transacetylase, to which it is covalently bound, through an amide linkage, to the ɛ-amino group of a lysine residue to form a lipoyl-lysine or lipoamide, the so-called lipoyllysyl arm. It couples electron transfer to acyl group transfer.

    Pyruvate Dehydrogenase Complex
    Fig. 8 – Lipoyl-lysine

    Lipoic acid has two thiol groups that can undergo a reversible intramolecular oxidation to form a disulfide bridge (-S-S-), a reaction analogous to that between two cysteine (Cys) residues of a protein.
    Because the disulfide bridge (note: a cyclic disulfide) is capable of undergoing redox reactions, during the reactions catalyzed by the pyruvate dehydrogenase complex, it is first reduced to dihydrolipoamide, a dithiol or the reduced form of the prosthetic group, and then, reoxidized to the cyclic form.

Many enzymes require small non protein components, called cofactors, for their catalytic activity. Cofactors can be metal ions or small organic or metalloorganic molecules, and are classified as coenzymes and prosthetic groups.
A prosthetic group is cofactor that binds tightly to an enzyme by non-covalent or covalent bond, namely, it is permanently bound to the protein.
A coenzyme is cofactor that is not permanently bound to the enzyme.

Where is the pyruvate dehydrogenase complex located?

In eukaryotes, the pyruvate dehydrogenase complex, like the enzymes for citric acid cycle and oxidation of fatty acids, is located in the mitochondrion, where is associated with the surface of the inner membrane facing the matrix.
In prokaryotes, it is located in the cytosol.

Functions of the pyruvate dehydrogenase complex

The main functions of the pyruvate dehydrogenase complex are to produce acetyl-CoA and NADH.

Fig. 9 – Acetyl-CoA
  • The acetyl group linked to coenzyme A, an activated acetate, depending on the metabolic conditions within the cell and/or the cell type, can be:

oxidized to two carbon dioxide molecules via the citric acid cycle reactions to harvest a portion of the potential energy stored in the form of ATP or GTP;
utilized for the synthesis of fatty acids, cholesterol, steroids, isoprenoids, ketone bodies and acetylcholine.

It is therefore possible to state that, depending on the metabolic conditions and/or cell type, the pyruvate dehydrogenase complex commits carbon intermediates from amino acid and glucose catabolism to:

citric acid cycle, and then to the production of energy, e.g. in skeletal muscle in aerobic conditions, and, always, in cardiac muscle;
synthesis of lipids and acetylcholine.

  • In aerobic organisms, NADH can be oxidized to NAD+ via hydride ion transfer to the mitochondrial electron transport chain that, in turn, carries the two electrons to molecular oxygen (O2), allowing the production of 2.5 ATP molecules per pair of electrons.
    Pyruvate Dehydrogenase Complex
    Fig. 10 – Nicotinamide Ring: Reduced Form

    Note: in anaerobic organisms there are electron acceptors alternative to oxygen, such as sulfate or nitrate.

Conceptually, the pyruvate dehydrogenase complex is the bridge between glycolysis and the citric acid cycle. However, due to the irreversibility of the overall reaction catalyzed by the multienzyme complex, it acts as an one-way bridge: pyruvate can be decarboxylated, oxidized and the remaining acetyl unit linked to the CoA, but it is not possible to carry out the opposite reaction, namely, to convert acetyl-CoA into pyruvate.
The irreversibility of this reaction, and the absence of alternative pathways, explain why it is not possible to use acetyl-CoA, and therefore fatty acids, as a substrate for gluconeogenesis (see below).

Other sources of acetyl-CoA

Other than pyruvate, the acetyl group of acetyl-CoA can derive from the oxidation of fatty acids and the catabolism of many amino acids. However, regardless of its origin, acetyl-CoA represents an entry compound for new carbon units into the citric acid cycle. And, it is also possible to state that the acetyl group of acetyl-CoA represents the form in which most of the carbon enters the cycle.

Sources of pyruvate

Pyruvate can derive from different cytosolic sources.

  • Under physiological conditions, in most cells it derives mainly from glycolysis: the oxidation of a glucose molecule yields two pyruvate molecules.
  • Lactate can be oxidized to pyruvate in the reaction catalyzed by lactate dehydrogenase (EC In fact, isoenzymes in which the H subunit predominates, such as LDH1 or H4, a homopolymer of H subunits found in cardiac muscle, a tissue with completely aerobic metabolism, preferentially catalyze lactate oxidation.
    Lactate oxidation can occurs in hepatocytes, too, during gluconeogenesis, favored by the low NADH/NAD+ ratio in the cytosol.
    It should be noted that lactate is a metabolite deriving from the catabolism of glucose, and therefore from carbohydrate catabolism.
  • Another source is malate, by the reaction catalyzed by the cytosolic malic enzyme (EC, which is implicated in the exchange of intermediates of the citric acid cycle, such as oxaloacetate, malate and citrate, between the cytosol and the mitochondrial matrix.

Malate + NADP+ → Pyruvate + CO2 + NADPH + H+

  • Finally, the carbon skeleton of six amino acids, namely, alanine, cysteine, glycine, serine, threonine and tryptophan, can be partly or completely converted into pyruvate.

In turn, pyruvate is a metabolic intermediate which can be metabolized by different pathways, both anabolic and catabolic. Examples are gluconeogenesis, the synthesis of lipids, and the oxidative metabolism. In addition, it can have an anaplerotic function, playing a role in the maintenance of the metabolic flow through the acid cycle citric.

Mitochondrial pyruvate transport

In eukaryotes, glycolysis occurs in the cytosol whereas all the subsequent steps of the aerobic metabolism, that is, the reactions catalyzed by the pyruvate dehydrogenase complex, the citric acid cycle, the electron transport chain, and the oxidative phosphorylation occur in the mitochondria.
Similarly to most other metabolites and anions, the transport of pyruvate across the outer mitochondrial membrane is probably mediated by a relatively non-specific, voltage-dependent anion channel. Conversely, its transport across the inner mitochondrial membrane occurs through a specific transporter made up of two proteins named MPC1 and MPC2, acronym of mitochondrial pyruvate carrier, which form a hetero-oligomeric complex in the membrane.

Structure of the pyruvate dehydrogenase complex

Although the pyruvate dehydrogenase complex is composed of multiple copies of three different enzymes and catalyzes the same reactions by similar mechanisms in all the organisms in which it is present, it has a very different quaternary structure.
The structure of E. coli multienzyme complex, which has a weight of ∼4,600 kD and a diameter of ∼300 Å, was the first to be characterized, thanks to the work of Lester Reed. In this complex, 24 units of dihydrolipoyl transacetylase form a structure with cubic symmetry, namely, the enzymes, associated as trimers, are placed at the corners of a cube. Dimers of pyruvate dehydrogenase are associated with dihydrolipoyl transacetylase core, at the center of each edge of the cube, for a total of 24 units. Finally, dimers of dihydrolipoyl dehydrogenase are located at the center of each of the six faces of the cube, for a total of 12 units. Note that the entire complex is composed of 60 units. A similar structure with cubic symmetry is also found in most other Gram-negative bacteria.
In some Gram-positive bacteria and in eukaryotes, the pyruvate dehydrogenase complex has a dodecahedral form, namely, that of a regular polyhedron with 20 vertices, 12 pentagonal faces, and 30 edges, with icosahedral symmetry, also called I symmetry. Considering for example the multienzyme complex present in mitochondria, it is the largest known multienzyme complex, with a weight of ∼10,000 kD and a diameter of ∼500 Å, so more than 5 times the size of a ribosome. Noteworthy, it can be visualized with the electron microscope. The complex is composed of a dodecahedral core, with a diameter of about 25 nm, formed, as in Gram-negative bacteria, by dihydrolipoyl transacetylase, but consisting of 20 trimers of the enzyme,  for a total of 60 units, located at the vertices of the structure. The core is surrounded by 30 units of pyruvate dehydrogenase, one centered on each edge, and 12 units of dihydrolipoyl dehydrogenase, one centered on each face. The entire complex is therefore composed of 102 units.

The quaternary structure of the complex is further complicated, as mentioned previously, by the presence of three additional subunits: a pyruvate dehydrogenase kinase, a pyruvate dehydrogenase phosphatase, and the E3-binding protein.
Kinase and phosphatase are bound to the dihydrolipoyl transacetylase core.
E3BP is bound to each of the 12 pentagonal faces, and therefore is present in about 12 copies. It is required to bind dihydrolipoyl dehydrogenase to the core of dihydrolipoyl transacetylase, as demonstrated by the fact that its partial proteolysis decreases the binding ability of the dehydrogenase. In E3-binding protein it is possible to identify a C-terminal domain, that has no catalytic activity, and a lipoamide-containing domain, similar to that of dihydrolipoyl transacetylase, capable of accepting an acetyl group, too. However, the removal of this domain does not cause any reduction of the catalytic activity of the multienzyme complex.

Structure of pyruvate dehydrogenase or E1

Pyruvate dehydrogenase of eukaryotes and some Gram-positive bacteria is composed of two different polypeptide chains, called α and β, associated to form a 2-fold symmetric α2β2 heterotetramer. Conversely, in E. coli and other Gram-negative bacteria the two subunits are fused to form a single polypeptide chain, and the enzyme is a homodimer.
The enzyme has two active sites.
Considering the heterotetrameric structure of Bacillus stearothermophilus pyruvate dehydrogenase, a Gram-positive bacteria, each thiamine pyrophosphate binds between the N-terminal domains of an α and a β subunit, at the end of a ∼21 Å deep funnel-shaped channel leading to the active site, with its reactive group, the thiazole ring (see fig. 3), closest to the channel entrance. At the entrance this channel there are also two conserved loops, essential both for the catalytic activity of the enzyme and for its regulation. The X-ray analysis of B. stearothermophilus enzyme, when it binds both TPP and the peripheral subunit-binding domain (PSBD) of dihydrolipoyl transacetylase, which binds to the C-terminal domain of the β subunits, has revealed that, in addition to a heterotetramer with a very tight structure, the two active sites have a different structure, in particular regarding the arrangement of the two conserved loops. In fact, in one enzyme subunit, in the presence of the activated form of thiamine pyrophosphate, the inner loop is ordered in a way that it blocks the entrance to the active site, whereas the loop at the entrance of the other active site is disordered and does not block the entrance. This explains, from a structural point of view, the observed differences in the rate of substrate binding exhibited by the two active sites. A similar arrangement and asymmetry have been observed in all thiamine pyrophosphate-dependent enzymes of which the structure has been solved.
In addition to TPP and a magnesium ion (Mg2+), located in each of the two active sites, a third Mg2+ is located at the centre of the tetramer, within a ∼20 Å deep solvent-filled tunnel that connects the two active sites. The tunnel is largely lined by 10 conserved amino acid residues from all four subunits, in particular glutamate (Glu) and aspartate (Asp), six and four, respectively, plus other acidic residues around the TPP aminopyrimidine ring. And it should be underlined the absence of basic residues to neutralize them. Similar tunnels have been found in all thiamine pyrophosphate-dependent enzymes with known crystalline structure, with dimeric or tetrameric structure, for example in transketolase, an enzyme of the pentose phosphate pathway.

Note: B. stearothermophilus belongs to the phylum Firmicutes and is recently renamed Geobacillus stearothermophilus.

What is the function of the acidic tunnel?

Through mutagenesis experiments on B. stearothermophilus pyruvate dehydrogenase, the tunnel has been shown to play a role in the catalytic mechanism.
The change of some of the aforementioned acidic residues to neutral amino acids does not alter, compared with the wild-type pyruvate dehydrogenase:

However, rate of decarboxylation is reduced by over 70% compared to the wild-type enzyme, as well as, once the multienzyme complex is assembled with the mutant pyruvate dehydrogenase, the PDC activity, which is reduced by over 85% compared to the wild-type complex. But how does this occur?
Because the distance between the substituted amino acids and the active sites is ≥7 Å, that is, these amino acids are remote from the active sites of pyruvate dehydrogenase, they cannot directly influence its catalytic activity. Then, the catalytic mechanism described below was proposed.
Considering the apoenzyme, thiamine pyrophosphate binds fast and strongly to the first active site, is activated, and the active site is closed, thus protecting the zwitterionic thiazolium from the external environment.
Conversely, in the second active site TPP binds, but is not activated, and the active site remains in an open conformation.
In the first active site, pyruvate reacts with the thiazolium C-2, and thiamine pyrophosphate of the second active site, which is a general acid, donates a proton to the first site. The result is a decarboxylation in the first site and the activation of the coenzyme in the second site, which is then closed.
It should be noted that while the activation of the first thiamine pyrophosphate is the result of the binding to the active site, the activation of the second coenzyme, and therefore of the second active site, is coupled to the decarboxylation of pyruvate in the first active site. Or, from another point of view, while an active site requires a general acid, the other requires a general base.
Protons are needed for the catalytic activity, and their transport between the two active sites occurs via the acidic tunnel. They are reversibly shuttled along a chain of donor-acceptor groups provided by glutamate and aspartate residues and the entrained water, that act as a proton wire.
It seems, therefore, that unlike many other enzymes, in which the communication between the active sites occurs through conformational changes and subunit rearrangements, in pyruvate dehydrogenase and in the other TPP-dependent enzymes, the proton wire is the molecular basis of such communication.
At this point, the holoenzyme has been formed and the active sites are in a dynamic equilibrium, each exchanging between the dormant and the activated state. This seems to be the state in which the enzyme is found in vivo at the start of each catalytic cycle.
A consequence of such a mechanism is that, as the catalytic cycles occur, the two active sites are out of phase with each other, namely, when an active site requires a general acid, the other requires a general base, and vice versa.
Finally, it should be noted that this mechanism allows the switching of the loops that close the active sites so as to:

  • coordinate substrate uptake and product release;
  • explain the asymmetry existing between the two active sites.

Note: an apoenzyme is an enzyme that lacks the association of its cofactors. Conversely, an holoenzyme is an apoenzyme together with its cofactors. The apoenzyme is a catalytically inactive enzyme, whereas the holoenzyme is a catalytically active enzyme.

Structure of dihydrolipoyl transacetylase or E2

Three functionally distinct domains can be identify in the structure of dihydrolipoyl transacetylase: an N-terminal lipoyl domain, a peripheral subunit-binding domain, and a C-terminal catalytic domain or acyltransferase domain. These domains are connected by 20- to 40 amino acid residues rich in alanine and proline, hydrophobic amino acids that are interspersed with charged residues. These linkers are highly flexible and largely extended, that allows the three domains to kept away from each other.

Pyruvate Dehydrogenase Complex
Fig. 11 – E2 Domains

Note: flexible linkers are present in E3BP, too.

  • The N-terminal lipoyl domain is composed of ∼80 amino acid residues, and is so called because it binds lipoic acid. The number of these domains depend on the species, ranging from one to three. For example, there is one domain in B. stearothermophilus and in yeasts, two in Streptococcus faecalis and in mammals, and three in Azotobacter vinelandii and E. coli.
    The link between the ɛ-amino group of a lysine residue and lipoic acid leads to the formation of a flexible arm, the lipoyl-lysine, which has a maximum extended length of ∼14 Å. Adding the polypeptide segment which connects the N-terminal domain to the adjacent domain, whose length is greater than 140 Å, the resulting flexible tether is able to swings the lipoyl group between the active sites of pyruvate dehydrogenase and dihydrolipoyl dehydrogenase, as well as to interact with neighboring dihydrolipoyl transacetylases of the core.
    It should be noted that the number of these tethers is 3 x 24 = 72 in E. coli, whereas in mammals 2 x 60 = 120, based on the number of N-terminal domains and the units of dihydrolipoyl transacetylase.
    One pyruvate dehydrogenase can therefore acetylate numerous dihydrolipoyl transacetylases, and one dihydrolipoyl dehydrogenase can reoxidize many dihydrolipoamide groups.
    Moreover, it also occurs:

an interchange of the acetyl groups between the lipoyl groups of the dihydrolipoyl transacetylase core;
the exchange of both acetyl groups and disulfides between the tethered arms.

  • PSBD is composed of ∼35 amino acid residues arranged to form a globular structure that binds to both pyruvate dehydrogenase and dihydrolipoyl dehydrogenase, that is, it holds the multienzyme complex together.
  • The C-terminal catalytic domain, which, of course, contains the active site, is composed of ∼250 amino acid residues arranged to form a hollow cage-like structure containing channels large enough to allow substrates and products to diffuse in and out. For example, CoA ad lipoamide, the two substrate of dihydrolipoyl transacetylase, bind, in their extended conformation, at the opposite ends of a channel located at the interface between each pair of subunits in each trimers.

Structure of dihydrolipoyl dehydrogenase or E3

The structure of dihydrolipoyl dehydrogenase was deduced from studies of the enzyme in several microorganisms. It has a homodimeric structure, with each ∼470 amino acid residue chain folded into four domains, from the N-terminal to the C-terminal end: a FAD-binding domain, a NAD+-binding domain, a central domain, and an interface domain. All domains participate in the formation of the active site.
FAD is almost completely hidden inside the protein because, unlike thiol or NADH, it is easily oxidizable and must therefore be protected from the surrounding solution, namely, from O2. In fact, in the absence of the nicotinamide coenzyme, the phenol side chain of a tyrosine residue (Tyr), for example Tyr181 in the Gram-negative bacteria Pseudomonas putida, covers the NAD+-binding pocket so as to protect FADH2 from the contact with the surrounding solution.

Pyruvate Dehydrogenase Complex
Fig. 12 – FADH2

Conversely, when NAD+ is located in the active site, the phenol side chain of the aforementioned tyrosine residue is interposed between the nicotinamide ring and the flavin ring.
In the active site of the enzyme’s oxidized form is also present a redox-active disulphide bridge. It forms between two cysteine residues located in a highly conserved segment of the polypeptide chain, e.g., Cys43 and Cys48 in P. putida, and is located on opposite side of the flavin ring with respect to the nicotinamide ring. The disulphide bridge links consecutive turns in a segment of a distorted α-helix, and, noteworthy, in the absence of such distortion, Cα atoms of the two cysteine residues would be too distant to allow the disulfide bridge to form.
Dihydrolipoyl dehydrogenase has therefore two electron acceptors: FAD and the redox-active disulphide bridge.
Note: the heterocyclic rings of NAD and FAD are parallel and in contact through van der Waals interactions; S48 is also in contact through van der Waals interactions with the flavin ring, on the opposite side of it from the NAD ring.

Reaction of pyruvate dehydrogenase or E1

In the reaction sequence catalyzed by components of the pyruvate dehydrogenase complex, pyruvate dehydrogenase catalyzes the first two steps, namely:

  • the decarboxylation of pyruvate to form CO2 and the hydroxyethyl-TPP intermediate;
  • the reductive acetylation of the lipoyl group of dihydrolipoyl transacetylase.

The first reaction is essentially identical to pyruvate decarboxylase reaction (EC, which carries out a non-oxidative decarboxylation in glucose fermentation to ethanol. What differs is the fate of the hydroxyethyl group bound to thiamine pyrophosphate that, in the reaction catalyzed by pyruvate dehydrogenase is transferred to the next enzyme in the sequence, dihydrolipoyl transacetylase, whereas in the reaction catalyzed by pyruvate decarboxylase is converted into acetaldehyde.

Catalytic mechanism of pyruvate dehydrogenase or E1

In thiamine pyrophosphate-dependent enzymes, the thiazolium ring is the active center, but only as dipolar carbanion or ylid, namely, as a dipolar ion, or zwitterion (German for “hybrid ion”), with positive charge on the N-3 and negative charge on C-2. Conversely, the positively charged thiazolium ring, that is, positive charged nitrogen and no charge on C-2, can be defined as “dormant” or inactive form.
The reaction begins with the nucleophilic attack by C-2 carbanion to the carbonyl carbon of pyruvate, which has the oxidation state of an aldehyde, and leads to the formation of a covalent bond between coenzyme and pyruvate.
Then, the cleavage of C-1–C-2 bond of pyruvate occurs. This leads to the release of the carboxyl group, namely, of the C-1 as CO2, while the remaining carbon atoms, C-2 and C-3, stay bound to the thiamine pyrophosphate as hydroxyethyl group. The cleavage of the C-1–C-2 bond, and therefore the decarboxylation of pyruvate, is favored by the fact that the negative charge on the C-2 carbon, that is unstable, is stabilized by the presence in the thiazolium ring of the positively charged N-3, a imine nitrogen (C=N+), that is, due to the presence of an electrophilic or electron deficient structure that acts as an electron sink or electron trap, in which the carbanion electrons can be delocalized by resonance.
At this point, the intermediate stabilized by resonance can be protonated to form hydroxyethyl-TPP.
Note: this first reaction catalyzed by pyruvate dehydrogenase is that in which the private dehydrogenase complex exercises its substratum specificity; furthermore, it is the slowest of the five reactions, hence limiting the rate of the overall reaction.

Pyruvate Dehydrogenase Complex
Fig. 13 – E1: Catalytic Mechanism

The enzyme then catalyzes the oxidation of the hydroxyethyl group to an acetyl group, and its transfer on lipoyllysyl arm of dihydrolipoyl transacetylase. The reaction begins with the formation of a carbanion on the hydroxylic carbon of the hydroxyethyl-TPP, by the removal of the carbon-linked proton by an enzyme base.
The carbanion carries out a nucleophilic attack on the lipoamide disulfide, with the formation of a high-energy acetyl-thioester bond with one of the two -SH groups. In this reaction, the oxidation of the hydroxyethyl group to an acetyl group occurs with the concomitant reduction of the lipoamide disulfide bond: the two electrons removed from the hydroxyethyl group are used to reduce the disulfide. This reaction is therefore a reductive acetylation accompanied by the regeneration of the active form of pyruvate dehydrogenase, namely, the enzyme with the thiazolium C-2 in the deprotonated form, the ylid or dipolar carbanion form.

Note that the energy derived from the oxidation of the hydroxyethyl group to an acetyl group drives the formation of the thioester bond between the acetyl group and coenzyme A.

Note: as previously said, the lipoyllysyl arm, arranged in an extended conformation in the channel where TPP is also found, allows the transfer of hydroxyethyl from hydroxyethyl-TPP to CoA, that is, it can move from the active site of pyruvate dehydrogenase to the active sites of dihydrolipoyl transacetylase, and then of dihydrolipoyl dehydrogenase.

A deeper look on thiamine pyrophosphate

Thiamine pyrophosphate molecule consists of three chemical moieties, from which its chemistry and enzymology depend: a thiazolium ring, a 4-aminopyrimidine ring, and the diphosphate side chain (see fig. 3).
The diphosphate side chain binds the cofactor to the enzyme via the formation of electrostatic bonds between the negative charges carried by its phosphoryl groups and the positive charges carried by Ca2+ and Mg2+ ions, in turn, bound to highly conserved sequences, GlyAspGly (GDG) and GlyAspGly-X26-AsnAsn (GDG-X26-NN), respectively.
The thiazolium ring plays a central role in catalysis, due to its ability to form the C-2 carbanion, that is, a nucleophilic center on the C-2 atom.
Note: as mentioned previously in this article, once bound to the enzyme, thiamine pyrophosphate locates in the active site so that the thiazolium ring is positioned close to the channel entrance leading to the active site.
The aminopyrimidine ring has a dual function:

  • it anchors the coenzyme holding it in place;
  • it has a specific catalytic role, participating in acid/base catalysis, as evidenced by studies with thiamine pyrophosphate analogs in which each of the three nitrogen atoms of the ring were replaced in turn. These studies demonstrated that the N-1’ atom and the N-4’-amino group are required, whereas the other nitrogen atom of the ring, the N-3’ atom, is required to a lesser extent.

How is the dipolar carbanion of thiamine pyrophosphate formed?

Three tautomeric forms of the aminopyrimidine ring can be identified in the enzyme-bound coenzyme not involved in the reaction:

  • the canonical 4’-aminopyrimidine tautomer;
  • the N-1 protonated form, that is, 4-aminopyrimidinium ion;
  • the 1’,4’-iminopyrimidine tautomer.

It seems that the 1′,4′-imino tautomer is the tautomer that undergoes deprotonation, before the entry of the substrate into the active site. The C-2 of the thiazolium ring is “much more acidic than most =C-H groups found in other molecules” (see also in the article on the pentose phosphate pathway). The higher acidity, i.e., the fact that the C-2 proton is easily dissociable, is due to the presence of the quaternary nitrogen on the thiazolium ring, a positively charged nitrogen atom able to electrostatically stabilize the resulting carbanion. In the deprotonation reaction, the amino group of the aminopyrimidine ring seems to play an essential role: it acts as a base and is suitably positioned to accept the proton. However, in the 4’-aminopyrimidine tautomer one of its protons sterically collides with the C-2 proton; in addition, its pK is too low to carry out the deprotonation efficiently. A mechanism was therefore proposed, in which the side chain of a conserved glutamate residue, for example βGlu59 in B. stearothermophilus, or Glu51 in Saccharomyces uvarum (brewer’s yeast) pyruvate decarboxylase, donates a proton to the aminopyrimidine, converting it to its 1′,4′-iminopyrimidine tautomer that, accepting the C-2 proton, returns to the canonical 4′-aminopyrimidinic form and allows the formation of the carbanion.

Note: carbanion formation on C-2 is a consequence of an intramolecular proton transfer.

Deprotonation of thiamine pyrophosphate and closure of pyruvate dehydrogenase active site

The loss of the C-2 proton of the thiazolium ring leads, from a positively charged ring, to a dipolar ion, or zwitterion. This change in state of charge triggers a conformational change in one of the two conserved loops at the entrance of the active site channel, specifically, the inner of these loops, that, in turn, leads to the closure of the channel to the surrounding water environment. In this closed conformation the thiazolium carbanion is protected against electrophiles.
To sum up: the deprotonation of thiamine pyrophosphate leads to the closure of the active site and the protection of the newly formed dipolar carbanion, that is, TPP-dependent enzymes would be only active in closed conformation.
Conversely, in the other active site, thiamine pyrophosphate is not in the ylid form, the channel is open, and the site is inactive.

Reaction of dihydrolipoyl transacetylase or E2

In the reaction sequence catalyzed by components of the pyruvate dehydrogenase complex, dihydrolipoyl transacetylase catalyzes the third step, namely, the transfer of the acetyl group from acetyl-dihydrolipoamide to CoA to form acetyl-CoA and dihydrolipoamide, the fully reduced form of lipoamide, the dithiol.
It should be noted that the acetyl group, initially bound by ester linkage to one of the –SH group of lipoamide is next bound to the –SH group of coenzyme A, again by ester bond, hence the term transesterification.

Catalytic mechanism of dihydrolipoyl transacetylase or E2

During the reaction, the sulfhydryl group of coenzyme A carries out a nucleophilic attack on the carbonyl carbon of the acetyl group of acetyl dihydrolipoamide-dihydrolipoyl transacetylase to form a transient tetrahedral intermediate, that “decomposes” to dihydrolipoamide-dihydrolipoyl transacetylase and acetyl-CoA.

Pyruvate Dehydrogenase Complex
Fig. 14 – E2: Catalytic Mechanism

As previously said, the mobility of the lipoyllysyl arm plays a central role in the reaction mechanism.

Reaction of dihydrolipoyl dehydrogenase or E3

In the reaction sequence catalyzed by components of the pyruvate dehydrogenase complex, dihydrolipoyl dehydrogenase catalyzes the fourth and fifth steps.
The enzyme catalyzes electron transfers needed to regenerate the disulfide bridge of the lipoyl group of dihydrolipoyl transacetylase, that is, to regenerate the oxidized form of the prosthetic group, and thus completing the catalytic cycle of the transacetylase.
The reaction has a ping-pong catalytic mechanism: it occurs in two successive half-reaction, in which each of the two substrates, NAD+ and dihydrolipoamide, reacts in the absence of the other. Moreover during the first half-reaction, the release of the first product and the formation of an enzyme intermediate complex occur before the second substrate binds, while the enzyme underogoes a structural change, whereas in the second half-reaction the release of the second product and the return of the enzyme to its starting state, again, via a structural change, occur.
Considering the ping-pong kinetic mechanism of dihydrolipoyl dehydrogenase:

  • in the first half-reaction the oxidation of dihydrolipoamide to lipoamide occurs;
  • in the second half-reaction the reduction of NAD+ to NADH occurs.

Catalytic mechanism of dihydrolipoyl dehydrogenase or E3

Below, the reaction mechanism of P. putida dihydrolipoyl dehydrogenase is described.
In the first half-reaction, the oxidized dihydrolipoyl dehydrogenase (E), i.e., the enzyme with the disulfide bridge between Cys43 and Cys48, binds dihydrolipoamide (LH2) to form the enzyme-dihydrolipoamide complex (E●LH2). At this point, a sulfur atom of dihydrolipoamide carries out a nucleophilic attack on the sulfur of Cys43, to form the disulfide bridge lipoamide-Cys43 (E-S-S-L), while the sulfur of Cys48 is released as a thiolate ion (S48).
The proton on the second thiol group of lipoamide is then abstracted by histidine (Hys) 451, that acts as a general acid-base catalyst, leading to the formation of a second thiolate ion, this time on the lipoamide (E-S-S-L ●S), that, through a nucleophilic attack, displaces the sulfur of Cys43, S43, aided in this by general acid catalysis by Hys451 which donates a proton to S43. The catalytic action of Hys451 is essential, as demonstrated by mutagenesis studies in which its substitution with a glutamine residue causes the enzyme to retain ∼ 0.4% of the wild-type catalytic activity.
The thiolate anion S48 then contacts, through non-covalent interactions, the flavin ring near 4a position (see fig.????), i.e., an electron pair of S48, which acts as electron donor, is partially transferred to the oxidized flavin ring, which, in turn, is the electron acceptor. The resulting structure is called charge-transfer complex.
Meanwhile, the phenolic side chain of the Tyr181 continues to hinder access to the flavin ring, thus protecting it from oxidation by O2.

Pyruvate Dehydrogenase Complex
Fig. 15 – Dihydrolipoamide Oxidation via E3

To sum up, what occurs is an interchange reaction of disulfide bridges leading to the formation of the oxidized form of lipoamide, the first product, which is released, and the reduced form of the dihydrolipoyl dehydrogenase.

The second half-reaction involves the reduction of NAD+ to NADH + H+ by electron transfer from the reactive disulfide of the enzyme via FAD.

Pyruvate dehydrogenase complex
Fig. 16 – Oxidation of Reduced E3 by NAD+

It begins with the entry of NAD+ into the active site and its binding to form the EH2●NAD+ complex. It should be noted that the entry of the coenzyme causes the phenolic side chain of the Tyr181 to be pushed aside by the nicotinamide ring.
Following the collapse of the charge-transfer complex, a covalent bond is formed between the flavin atom C-4a and S48, to which the extraction of a proton from S43 by the flavin atom N-5 is accompanied, with the formation of the corresponding thiolate anion, S43.
S43carries out a nucleophilic attack on S48, leading to the formation of the redox-active disulphide bridge between Cys43 and Cys48, followed by the breakdown of the covalent bond between S48 and the flavin atom C-4a to form reduced FADH anion, FADH, with negative charge on atom N-1. It should be noted that dihydrolipoyl dehydrogenase is in the oxidized form (E).

Pyruvate Dehydrogenase Complex
Fig. 17 – FADH-

FADH has a transient existence because the proton bound to its N-5 is instantly transferred, as hydride ion, to the nicotinamide atom C-4, that is juxtaposed to flavin atom N-5. This leads to the formation of FAD and of the second product of the reaction, NADH, which is released.
To sum up, what occurs is that the electrons removed from the hydroxyethyl group, which derives from pyruvate, pass, via FAD, to NAD+. The catalytic cycle of dihydrolipoyl dehydrogenase is therefore completed, being the enzyme and its coenzymes in their oxidized form. At this point, the catalytic cycle of the entire pyruvate dehydrogenase complex is completed, too, and the complex is ready for a new reaction cycle.

Note: unlike the thiazolium ring of thiamine pyrophosphate, FAD does not acts as electron trap or electron sink, but rather as an electron conduit between the redox-active disulphide, in its reduced form, and NAD+.

Note: the catalytic mechanism of dihydrolipoyl dehydrogenase has been determined in analogy with that of glutathione reductase (EC, at 33% identical and whose structure is more extensively characterized. It should, however, be noted that although the two enzymes catalyze similar reactions, these usually occur in opposite direction:

  • dihydrolipoyl dehydrogenase uses NAD+ to oxidize two –SH groups to a disulfide (–S–S–);
  • glutathione reductase uses NADPH to reduce a –S–S– to two thiol groups.

Nevertheless, their active sites are closely superimposable.

Regulation of the pyruvate dehydrogenase complex

In mammals, the regulation of the activity of the pyruvate dehydrogenase complex is essential, both in the fed and fasted states. In fact, the multienzyme complex plays a central role in metabolism because, catalyzing the irreversible oxidative decarboxylation of pyruvate, represents the entry point of the carbon flux from all carbohydrate sources as well as from ∼50% of carbon skeletons of glucogenic amino acids, that, as a whole, correspond to ∼60% of the daily calorie intake, into:

  • the citric acid cycle, and therefore to the full oxidation to CO2;
  • the synthesis of lipids (fed state) and acetylcholine (see above).

The importance of the regulation of the conversion of pyruvate into acetyl-CoA is also underlined by the fact that mammals, although able to produce glucose from pyruvate, cannot synthesize it from acetyl-CoA, because of the irreversibility of pyruvate dehydrogenase reaction and the absence of alternative pathways. Then, the inhibition of the activity of the complex allows to spare glucose and the amino acids that can be converted into pyruvate, such as alanine, when other fuels, for example acetyl-CoA from fatty acid oxidation, are available.
This explains why the activity of the complex is carefully regulated by:

Regulation of the pyruvate dehydrogenase complex by feedback inhibition and energy status of the cell

The activity of the dephosphorylated form of the pyruvate dehydrogenase complex is regulated by feedback inhibition.
Acetyl-CoA and NADH allosterically inhibit the enzymes that catalyze their formation, dihydrolipoyl transacetylase and dihydrolipoyl dehydrogenase, respectively.
In addition, CoA and acetyl-CoA, as well as NAD+ and NADH, compete for binding sites on E2 and E3, respectively, that catalyze reversible reactions. This means that, in the presence of high ratios of [Acetyl-CoA]/[CoA] and [NADH]/ [NAD+], the reactions of transacetylation and dehydrogenation work in reverse; therefore, dihydrolipoyl transacetylase cannot accept the hydroxyethyl group from TPP because it is maintained in the acetylated form. This cause thiamine pyrophosphate to remain bound to pyruvate dehydrogenase in its hydroxyethyl form, which, in turn, decreases the rate of pyruvate decarboxylation. Hence, high ratios of [Acetyl-CoA]/[CoA] and [NADH]/[NAD+] indirectly influence pyruvate dehydrogenase activity.

Pyruvate Dehydrogenase Complex
Fig. 18 – PDC Activiy: Feedback Inhibition

Acetyl-CoA and NADH are also produced by fatty acid oxidation, which takes place, like the reactions of the pyruvate dehydrogenase complex, within the mitochondrion. This means that the cell, by regulating the activity of the multienzyme complex, preserves carbohydrate stores when fatty acids are available for energy. For example, during the fasted state, liver, skeletal muscle and many other organs and tissues rely primarily on fatty acid oxidation for energy. Conversely, the activity of the multienzyme complex is increased in the fed state, when many different types of cells and tissues mainly use glucose as a fuel.
More generally, when the production of NADH and/or acetil-CoA exceeds the capacity of the cell to use them for ATP production, the activity of the pyruvate dehydrogenase complex is inhibited. The same is true when there is no need for additional ATP to be produced. Infact, the activity of multienzyme complex is also sensitive to the energy charge of the cell. Through allosteric mechanisms, high ATP levels inhibit the activity of the pyruvate dehydrogenase component of the complex, whereas high ADP levels, that signs that the energy charge of the cell may become low, activate it, thus committing the carbon skeleton of carbohydrates and some amino acids to energy production.

Note: in the skeletal muscle, the activity of the pyruvate dehydrogenase complex increases with increased aerobic activity, resulting in a in greater dependence on glucose as a fuel source.

Regulation of the pyruvate dehydrogenase complex by phosphorylation/dephosphorylation

Unlike prokaryotes, in mammals the activity of the pyruvate dehydrogenase complex is also regulated by covalent modifications, i.e., phosphorylation and dephosphorylation of three specific serine residues of the α subunit of pyruvate dehydrogenase, the enzyme that catalyzes the first, irreversible step of the overall reaction sequence.
Note: as mammalian pyruvate dehydrogenase is an heterotetramer, there are six potential phosphorylation sites.

Pyruvate Dehydrogenase Complex
Fig. 19 – PDC Activiy: Covalent Modifications

Phosphorylation, which inactivates pyruvate dehydrogenase, and then blocks the overall reaction sequence, is catalyzed by pyruvate dehydrogenase kinase. Two of the aforementioned serine residues are located on the more C-terminal loop, at the entrance of the substrate channel leading to the respective active site, and the phosphorylation of only one of them inactivates the pyruvate dehydrogenase, hence demonstrating the out of phase coupling between its active sites.
Conversely, in the dephosphorylated state the complex is active. Dephosphorylation is catalyzed by a specific protein phosphatase, the pyruvate dehydrogenase phosphatase.
The activities of pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase are in turn subject to allosteric regulation by several modulators.

Regulation of pyruvate dehydrogenase kinase

The activity of pyruvate dehydrogenase kinase depends on the ratios of [NADH]/[NAD+], [acetyl-CoA]/[CoA], and [ATP]/[ADP] , as well as on the pyruvate concentration, in the mitochondrial matrix (see fig. 19).

  • High ratios of [NADH]/[NAD+] and [acetyl-CoA]/[CoA], as during the oxidation of fatty acids and ketone bodies, activate the kinase, pyruvate dehydrogenase is phosphorylated, and the pyruvate dehydrogenase complex is inhibited. This allows tissues, such as cardiac muscle, to preserve glucose when fatty acids and/or ketone bodies are utilized for energy, because acetyl-CoA synthesis from pyruvate, and hence from carbohydrates (and some amino acids) is turned off.
    Conversely, when the concentrations of NAD+ and coenzyme A are high the activity of the kinase is inhibited and the multienzyme complex is active.
    Therefore, acetyl-CoA and NADH, two of the three end products of the reactions catalyzed by the pyruvate dehydrogenase complex, allosterically control their synthesis by regulating directly and indirectly, by regulating the activity of pyruvate dehydrogenase kinase, the activity of the complex.
  • A high ratio of [ATP]/[ADP] activates the kinase, and then inhibits the pyruvate dehydrogenase complex.
    Note: unlike many other kinases, such as those involved in the control of glycogen metabolism, pyruvate dehydrogenase kinase is not regulated by cAMP levels, but by molecules that signal changes in energy status of the cell and in the availability of biosynthetic intermediates: ATP and NADH, and acetyl-CoA, respectively.
  • Pyruvate allosterically inhibits pyruvate dehydrogenase kinase.
    When its levels are high, it binds to kinase and inactivates it, pyruvate dehydrogenase is not phosphorylated, and the pyruvate dehydrogenase complex remains active.
  • Pyruvate dehydrogenase kinase is also activated by interaction with dihydrolipoyl transacetylase in its acetylated form, i.e. when acetyl-dihydrolipoamide is present.

Other activators of the kinase is potassium and magnesium ions.

Regulation of pyruvate dehydrogenase phosphatase

The activity of pyruvate dehydrogenase phosphatase depends on the ratios of [NADH]/[NAD+] and [acetyl-CoA]/[CoA], as well as on [Ca2+], in the mitochondrial matrix (see fig. 19).

  • Low ratios of [NADH]/[NAD+] and [acetyl-CoA]/[CoA] activate the phosphatase, pyruvate dehydrogenase is dephosphorylated, and the pyruvate dehydrogenase complex is activated.
    Conversely, when the aforesaid ratios are high, phosphatase activity is reduced, kinase activity is increased, and the multienzyme complex is inhibited.
  • Calcium ion activates pyruvate dehydrogenase phosphatase.
    Ca2+ is an important second messenger that signals the cell requires more energy. Therefore, when its levels are high, as in cardiac muscle cells after epinephrine stimulation or in skeletal muscle cells during the muscular contraction, the phosphatase is active, the complex is dephosphorylated, and then active.
  • Insulin, too, is involved in the control of the activity of the pyruvate dehydrogenase complex through the activation of pyruvate dehydrogenase phosphatase. The hormone, in response to increases in blood glucose, stimulates glycogen synthesis and the synthesis of acetyl-CoA, a precursor in the synthesis of lipids.

Fasting and subsequent refeeding, too, affect the activity of the multienzyme complex.
In tissues such as skeletal muscle, cardiac muscle or kidney, fasting significantly decreases the activity of the complex, whereas refeeding reverses the inhibition of fasting.
In the brain, however, these variations are not observed because the activity of pyruvate dehydrogenase complex is essential for ATP production.


Berg J.M., Tymoczko J.L., and Stryer L. Biochemistry. 5th Edition. W. H. Freeman and Company, 2002

Frank R.A.W., Titman C.M., Pratap J.V., Luisi B.F., and Perham R.N. A molecular switch and proton wire synchronize the active sites in thiamine enzymes. Science 2004;306(5697):872-6. doi:10.1126/science.1101030

Garrett R.H., Grisham C.M. Biochemistry. 4th Edition. Brooks/Cole, Cengage Learning, 2010

Gray L.R., Tompkins S.C., Taylor E.R. Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci 2014;71(14):2577-04. doi:10.1007/s00018-013-1539-2

McCommis K.S. and Finck B.N. Mitochondrial pyruvate transport: a historical perspective and future research directions. Biochem J 2015;466(3):443-54. doi:10.1042/BJ20141171

Nelson D.L., Cox M.M. Lehninger. Principles of biochemistry. 6th Edition. W.H. Freeman and Company, 2012

Nemeria N.S., Chakraborty S., Balakrishnan A., and Frank Jordan. Reaction mechanisms of thiamin diphosphate enzymes: defining states of ionization and tautomerization of the cofactor at individual steps. FEBS J 2009;276:2432-46. doi:10.1111/j.1742-4658.2009.06964.x

Patel M.S. and Korotchkina L.G. Regulation of the pyruvate dehydrogenase complex. Biochem Soc T 2006;34(2):217-22. doi:10.1042/bst0340217

Patel M.S., Nemeria N.S., Furey W., and Jordan F. The pyruvate dehydrogenase complexes: structure-based function and regulation. J Biol Chem 2014;289(24):16615-23. doi:10.1074/jbc.R114.563148

Rawn J.D. Biochimica. Mc Graw-Hill, Neil Patterson Publishers, 1990

Rosenthal M.D., Glew R.H. Medical Biochemistry – Human Metabolism in Health and Disease. John Wiley J. & Sons, Inc., 2009

Stipanuk M.H., Caudill M.A. Biochemical, physiological, and molecular aspects of human nutrition. 3rd Edition. Elsevier health sciences, 2013 [Google eBooks]

Voet D. and Voet J.D. Biochemistry. 4th Edition. John Wiley J. & Sons, Inc. 2011

Wang J., Nemeria N.S., Chandrasekhar K., Kumaran S., Arjunan P., Reynolds S., Calero G., Brukh R., Kakalis L., Furey W., and Jordan F. Structure and function of the catalytic domain of the dihydrolipoyl acetyltransferase component in Escherichia coli pyruvate dehydrogenase complex. J Biol Chem 2014;289(22):15215-30. doi: 10.1074/jbc.M113.544080

Zhou Z.H., McCarthy D.B., O’Connor C.M., Reed L.J., and J.K. Stoops. The remarkable structural and functional organization of the eukaryotic pyruvate dehydrogenase complexes. Proc Natl Acad Sci USA 2001;98(26):14802-07. doi:10.1073/pnas.011597698


Glycolysis, from Greek word glykys, meaning “sweet”, and lysis, meaning “dissolution or breakdown”, can be defined as the sequence of enzymatic reactions that, in the cytosol, also in the absence of oxygen, leads to the conversion of one molecule of glucose, a six carbon sugar, to two molecules of pyruvate, a three carbon compound, with the concomitant production of two molecules of ATP, the universal energy currency in biological systems.

Fig. 1 – The Glycolytic Pathway

Glycolysis, which evolved before a substantial amount of oxygen had accumulated in the atmosphere, is the metabolic pathway with the largest flux of carbon in most living cells, and is present in almost all organisms.
This pathway, not requiring oxygen, played a crucial role in metabolic processes during the first 2 billion years of evolution of life, and probably represents the most ancient biological mechanism for extracting energy from organic molecules when oxygen availability is low. Moreover, it is a source of precursors for aerobic catabolism and for various biosynthetic processes.
Note: Glycolysis is also known as the Embden-Meyerhof pathway, named after Gustav Embden and Otto Meyerhof, the two researchers who elucidated the entire pathway in the muscle.


Glycolysis: the first metabolic pathway to be elucidated

The development of biochemistry has gone hand in hand with the elucidation of glucose metabolism, especially glycolysis, the first metabolic pathway to have been elucidated.
Though the elucidation of this metabolic pathway was worked out in the ‘40 of the last century, the key discovery about glucose metabolism was made in 1897, quite by accident, following a problem arose a year earlier, when a German chemist, M. Hahn, in attempting to obtain and preserve cell-free protein extracts of yeast, encountered difficulties in its conservation. A colleague, Hans Buchner, remembering a method for preserving jams, suggested to add sucrose to the extract.

Eduard Buchner
Fig. 2 -Eduard Buchner

Eduard Buchner, Hans’s brother, put the idea of Hans into practice, and observed that the solution produced bubbles. This prompted Eduard to conclude that a fermentation was occurring, a quite surprising discovery. Indeed fermentation, according to Pasteur’s assertion in 1860, was inextricably tied to living cells, whereas it was now demonstrated that it could also occur outside them. Briefly, these two researchers refuted the vitalist dogma and had a pivotal role in starting modern biochemistry.
Eduard Buchner was awarded the Nobel Prize in Chemistry in 1907 for this research, and was the first of several researchers who won the award for their discoveries concerning the glycolytic pathway.
It was later demonstrated, working with muscle extracts, that many of the reactions of lactic fermentation  were the same of those of alcoholic fermentation , thus revealing the underlying unity in biochemistry.
As previously mentioned, glycolysis was then fully elucidated in the first half of the last century largely due to the work of researchers such as Gerty and Carl Cori, Carl Neuberg, Arthur Harden, William Young, Jacob Parnas, Otto Warburg, Hans von Euler-Chelpin, Gustav Embden and Otto Meyerhof. In particular, Warburg and von Euler-Chelpin elucidated the whole pathway in yeast, and Embden and Meyerhof in muscle in the 30’s.

Why is glycolys so important?

Glycolysis is essential to most living cells both from the energy point of view and as a source of precursors for many other metabolic pathways. And the rate of carbon flow through glycolysis, namely, the amount of glucose converted to pyruvate per unit time, is regulated to meet these two basic needs for the cell.
From the energetic point of view, although glycolysis is a relatively inefficient pathway, it can occur in the absence of oxygen, the condition in which life evolved on Earth and that many contemporary cells, both eukaryotic and prokaryotic, experience. Here are some examples.

  • In most animals, muscles exhibit an activity-dependent anaerobiosis, namely, they can work anaerobically for short periods. For example, when animals, but also athletes, perform high intense exercises, their need for ATP exceeds body’s ability to supply oxygen to the muscle. In such situation, muscles function, albeit for a short period of time, anaerobically.
  • Another example is the cornea of the eye, a poorly vascularized tissue.
  • Many microorganisms live in environments where oxygen is low or absent, such as deep water, soil, but also skin pores. And a variety of microorganisms called obligate anaerobes cannot survive in the presence of oxygen, a highly reactive molecule. Examples are Clostridium perfringens, Clostridium tetani, and Clostridium botulinum, that cause gangrene, tetanus and botulism, respectively.

It should also be underlined that glycolysis also plays a key role in those cells and tissues in which glucose is the sole source of energy, such as:

  • red blood cells, lacking mitochondria,
  • sperm cells;
  • the brain, which can also use ketone bodies for fuel in times of low glucose;
  • the adrenal medulla.

A similar situation is also found in the plant world where many aquatic plants and some plant tissues specialized in starch accumulation, such as potato tubers, use glucose as the main source of energy.

Note: There are organisms that are facultative anaerobes, namely organisms that can survive in the presence and in the absence of oxygen, acting aerobically or anaerobically, respectively. Examples are animals belonging to the genus Mytilus, which display an habitat-dependent anaerobiosis, a condition similar to the activity-dependent anaerobiosis seen in muscle.

Finally, it should not be forgotten that under aerobic conditions, in cells with mitochondria, glycolysis constitutes the upper part of the metabolic pathway leading to the complete oxidation of glucose to carbon dioxide (CO2) and water for energy purposes.

Fig. 3 – Glycolysis: Source of Building Blocks for Biosynthesis

Some glycolytic intermediates, for example glucose 6-phosphate (G-6-P), fructose 6-phosphate (F-6-P) or dihydroxyacetone phosphate (DHAP), may be used as building blocks in several metabolic pathways, such as those leading to the synthesis of glycogen, fatty acids, triglycerides, nucleotides, of some amino acids, or 2,3-bisphosphoglycerate (2,3-BPG).

The steps of glycolysis

The 10 steps that make up glycolysis can be divided into two phases.
The first, called the preparatory phase, consists of 5 steps and starts with the conversion of glucose to fructose 1,6-bisphosphate (F-1,6-BP) through three enzymatic reactions, namely, a phosphorylation at C-1, an isomerization, and a second phosphorylation, this time at C-6, with consumption of 2 ATP. Fructose 1,6-bisphosphate is then cleaved into two phosphorylated three-carbon compounds, glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. Finally, the isomerization of DHAP to a second molecule of glyceraldehyde-3- phosphate occurs. In the preparatory phase therefore a glucose is split into two molecules of glyceraldehyde 3-phosphate, and two ATP are consumed.
In the second phase, called the payoff phase, consisting of the remaining 5 steps of the pathway, the two molecules of glyceraldehyde 3-phosphate are converted into two molecules of pyruvate, with the concomitant production of 4 ATP. So, in this phase, part of the energy present in the chemical bonds of glucose is extracted and conserved in the form of ATP. Furthermore, reducing equivalents are extracted and conserved in the form of the reduced coenzyme NADH. The metabolic fate of NADH will depend on the cell type and aerobic or anaerobic conditions.

Note: Glucose metabolized in the glycolytic pathway derives both from glucose that enters the cell through specific membrane transporters, that in turn derives from the bloodstream, and glucose 6-phosphate produced by glycogen degradation.

Reaction 1: glucose phosphorylation to glucose 6-phosphate

In the first step of the glycolytic pathway glucose is phosphorylated to glucose 6-phosphate at the expense of one ATP.

Glucose + ATP → Glucose 6-phosphate + ADP + H+

In most cells this reaction is catalyzed by hexokinase (EC, enzyme present in the cells of all organisms, and in humans with four isozyme).
Hexokinase and pyruvate kinase, the other kinase of the glycolysis, like many other kinases, require the presence of magnesium ion, Mg2+, or of another bivalent metal ion such as manganese, Mn2+, for their activity. Mg2+ binds to the ATP to form the complex MgATP2-, and in fact the true substrate of the enzyme is not ATP but this complex. It should be emphasized that the nucleophilic attack by a hydroxyl group (-OH) of glucose at the terminal phosphorus atom of the ATP is facilitated by the action of Mg2+ that interacts with the negative charges of the phosphoryl groups of the nucleoside triphosphate.
The formation of the phosphoester bond between a phosphoryl group and the hydroxyl group at C-6 of glucose is thermodynamically unfavorable and requires energy to proceed, energy that is provided by the ATP. Indeed, while the phosphorylation of glucose at C-6 by inorganic phosphate has a ΔG°’ of 13.8 kJ/mol (3.3 kcal/mol), namely, it is an endergonic reaction, the hydrolysis of ATP to ADP and Pi has ΔG°’ of -30.5 kJ/mol (-7.3 kcal/mol), namely, it is an exergonic reaction. The net reaction has a ΔG°’ of (-30.5 + 13.8) = -16.7 kJ/mol (-7.3 + 3.3 = -4.0 kcal/mol). Under cellular conditions the reaction is even more favorable, with a ΔG equal to -33.5 kJ/mol (-8.0 kcal/mol).
Therefore, this is an essentially irreversible reaction.

Note: In biochemistry, phosphorylations are fundamental reactions catalyzed by enzymes called kinases, a subclass of transferases. Kinases catalyze the transfer of the terminal phosphoryl group, or γ-phosphoryl group, of a nucleoside triphosphate to an acceptor nucleophile to form a phosphoester bond. Specifically, hexokinase catalyzes the transfer of the γ-phosphoryl group of ATP to a variety of hexoses, that is, sugars with six carbons, such as fructose and mannose), in addition to glucose.

The importance of glucose phosphorylation

The phosphorylation of the glucose has some functions.

  • Glucose 6-phosphate, due to its negative charge and because there are no transporters for phosphorylated sugars in the plasma membrane, cannot diffuse out of the cell. Thus, after the initial phosphorylation, no further energy is needed to keep the phosphorylated molecule within the cell, despite the large difference between its intra- and extracellular concentrations.
    Similar considerations are valid for each of the eight phosphorylated intermediates between glucose 6-phosphate and pyruvate.
  • The rapid phosphorylation of glucose maintains a low intracellular concentration of the hexose, thus favoring its facilitated diffusion into the cell.
  • Phosphorylation causes an increase in the energy content of the molecule, that is, it starts to destabilize it, thus facilitating its further metabolism.

Other possible fates of glucose 6-phosphate

Glucose 6-phosphate is a key metabolite of glucose metabolism. In fact, in addition to be metabolized in the glycolytic pathway, in anabolic conditions it can have other fates (see Fig. 3). Here are some examples.

  • It can be used in the synthesis of:

glycogen, a polysaccharide stored mainly in the liver and muscle;
complex polysaccharides present in the extracellular matrix;
glucosamine and other sugars used for protein glycosylation.

NADPH, needed for reductive biosynthesis, such as fatty acid, cholesterol, steroid hormone, and deoxyribonucleotide biosynthesis, and for preventing oxidative damage in cells such as erythrocytes;
ribose 5-phosphate, used in nucleotide synthesis but also in NADH, FADH2 and coenzyme A synthesis.

Reaction 2: isomerization of glucose 6-phosphate to fructose 6-phosphate

In the second step of the glycolytic pathway, the isomerization of glucose 6-phosphate, an aldose, to fructose 6-phosphate, a ketose, occurs. This reaction is catalyzed by phosphoglucose isomerase, also known as phosphohexose isomerase or glucose phosphate isomerase (EC

Glucose 6-phosphate ⇄ Fructose 6-phosphate

Like hexokinase, phosphoglucose isomerase requires the presence of Mg2+.
The ΔG°’ of the reaction is 1.7 kJ/mol (0.4 kcal/mol), while the ΔG is -2.5 kJ/mol (-0.6 kcal/mol). These small values indicate that the reaction is close to equilibrium and is easily reversible.
The reaction essentially consists in the shift of the carbonyl group at C-1 of the open-chain form of glucose 6-phosphate to C-2 of the open-chain form of fructose 6-phosphate.

Fig. 4 – Phosphoglucose Isomerase Reaction

The enzymatic reaction can be divided at least into three steps. Since in aqueous solution both hexoses are primarily present in the cyclic form, the enzyme must first open the ring of G-6P, catalyze the isomerization, and, finally, the formation of the five-membered ring of F-6-P.
This isomerization is a critical step for glycolytic pathway, as it prepares the molecule for the subsequent two steps.

  • The phosphorylation that occurs in the third step requires the presence of an alcohol group at C-1, and not of a carbonyl group.
  • In the fourth step, the covalent bond between C-3 and C-4 is cleaved, and this reaction is facilitated by the presence of the carbonyl group at C-2.

Reaction 3: phosphorylation of fructose 6-phosphate to fructose 1,6-bisphosphate

In the third step of the glycolytic pathway, a second phosphorylation reaction occurs. Phosphofructokinase 1 or PFK-1 (EC catalyzes the phosphorylation of fructose 6-phosphate at C-1 to form fructose 1,6-bisphosphate, at the expense of one ATP.

Fructose 6-phosphate + ATP → Fructose 1,6-bisphosphate + ADP + H+

PFK-1 is so named to distinguish it from phosphofructokinase 2 or PFK-2 (EC, the enzyme that catalyzes the phosphorylation of fructose 6-phosphate to fructose 2,6-bisphosphate.
Like the reaction catalyzed by hexokinase/glucokinase, this phosphorylation, too, is an essentially irreversible step, irreversibility, once again, achieved by coupling, by phosphofructokinase 1, with the hydrolysis of ATP. In fact, phosphorylation of fructose 6-phosphate by inorganic phosphate is endergonic, with a ΔG°’ of 16.3 kJ/mol (3.9 kcal/mol), whereas, when the reaction is coupled to the hydrolysis of ATP, the overall equation becomes exergonic, with a ΔG°’ of -14.2 kJ/mol (-3.4 kcal/mol) and a ΔG of -22.2 kJ/mol (-5.3 kcal/mol).
While hexokinase allows to trap glucose inside the cell, phosphofructokinase 1 prevents glucose to be used for glycogen synthesis or the production of other sugars, but is instead metabolized in the glycolytic pathway. In fact, unlike glucose 6-phosphate, fructose 1,6-bisphosphate cannot be used directly in other metabolic pathways than glycolysis/gluconeogenesis, that is, phosphofructokinase 1 catalyzes the first “committed” step of the glycolytic pathway. Such reactions are usually catalyzed by enzymes regulated allosterically, that prevent the accumulation of both intermediates and final products. PFK-1 is no exception, being subject to allosteric regulation by positive and negative effectors that signal the energy level and the hormonal status of the organism.
Some protists and bacteria, and perhaps all plants, have a phosphofructokinase that uses pyrophosphate (PPi) as a donor of the phosphoryl group in the synthesis of F-1,6-BP. This reaction has a ΔG°’ of -2.9 kJ/mol (-12.1 kcal/mol).

Fructose 6-phosphate + PPi → Fructose 1,6-bisphosphate + Pi

Note: The prefix bis– in bisphosphate, as fructose 1,6-bisphosphate, indicates that there are two phosphoryl groups are bonded to different atoms.
The prefix di– in diphosphate, as in adenosine diphosphate, indicates that there are two phosphoryl groups connected by an anhydride bond to form a pyrophosphoryl group, namely, they are directly bonded to one another.
Similar rules also apply to the nomenclature of molecules that have three phosphoryl groups standing apart, such as inositol 1,4,5-trisphosphate, or connected by anhydride bonds, such as ATP or guanosine triphosphate or GTP.

Reaction 4: cleavage of fructose 1,6-bisphosphate into two three-carbon fragments

In the fourth step of the glycolytic pathway, fructose 1,6-bisphosphate aldolase, often called simply aldolase (EC, catalyzes the reversible cleavage of fructose 1,6-bisphosphate into glyceraldehyde 3-phosphate, an aldose, and dihydroxyacetone phosphate, a ketose. The enzyme cleaves the bond between C-3 and C-4.

Fructose 1,6-bisphosphate ⇄ Dihydroxyacetone phosphate + Glyceraldehyde 3-phosphate

All glycolytic intermediates downstream to this reaction are three-carbon molecules, instead of six-carbon molecules as the previous ones.
The ΔG°’ of the reaction in the direction of glyceraldehyde 3-phosphate and dihydroxyacetone phosphate production is of 23.8 kJ/mol (5.7 kcal/mol), and the Km is approximately 10-4 M, values that would indicate that the reaction does not proceed as written from left to right. However, under normal cellular conditions, due to the lower concentrations of the reactants, the ΔG is -1.3 kJ/mol (-0.3 kcal/mol), a very small value, thus the reaction is easily reversible, that is, essentially to equilibrium.

Note: The name “aldolase” derives from the nature of the reverse reaction, from right to left as written, that is, an aldol condensation.

Reaction 5: interconversion of dihydroxyacetone phosphate and glyceraldehyde 3-phosphate

Of the two products of the previous reaction, glyceraldehyde 3-phosphate goes directly into the second phase of the glycolytic pathway. Conversely, DHAP is not on the direct pathway of glycolysis and must be converted, isomerized, to glyceraldehyde 3-phosphate to continue through the pathway. This isomerization is catalyzed by triose phosphate isomerase (EC

Dihydroxyacetone phosphate ⇄ Glyceraldehyde 3-phosphate

Triose phosphate isomerase, in converting dihydroxyacetone phosphate into glyceraldehyde 3-phosphate, catalyzes the transfer of a hydrogen atom from C-1 to C-2, that is, catalyzes an intramolecular oxidation-reduction. And in essence, after the enzyme reaction, the carbons C-1, C-2 and C-3 of the starting glucose to become equivalent,  chemically indistinguishable, from the carbons C-6, C-5 and C-4, respectively.
Therefore, the net result of the the last two steps of glycolysis is the production of two molecules of glyceraldehyde 3-phosphate.
The ΔG°’ of the reaction is of 7.5 kJ/mol (1.8 kcal/mol), while the ΔG is 2.5 kJ/mol (0.6 kcal/mol). Although at equilibrium dihydroxyacetone phosphate represent about 96% of the trioso phosphates, the reaction proceeds readily towards the formation of glyceraldehyde 3-phosphate because of the subsequent step of the glycolytic pathway that removes the glyceraldehyde 3-phosphate produced.
One of the distinguishing features of triose phosphate isomerase is the great catalytic efficiency. The enzyme is in fact considered kinetically perfect. Why? The enzyme enhances the isomerization rate by a factor of 1010 compared with that obtained with a catalyst such as acetate ion. Indeed, the Kcat/KM ratio for the isomerization of glyceraldehyde 3-phosphate is equal to 2×108 M-1s-1, value close to the diffusion-controlled limit. Thus, the rate-limiting step in the reaction catalyzed by triose phosphate isomerase is diffusion-controlled encounter of enzyme and substrate.
From the energetic point of view, the last two steps of glycolysis are unfavorable, with ΔG°’ of 31.3 kJ/mol (7.5 kcal/mol), whereas the net ΔG°’ of the first five reactions is of 2.1 kJ/mol (0.5 kcal/mol), with a Keq of about 0.43. And it is the free energy derived from the hydrolysis two ATP that, under standard-state conditions, makes the value of the overall equilibrium constant close to one. If instead we consider ΔG, it is quite negative, -56.8 kJ/mol (-13.6 kcal/mol).

Notice that dihydroxyacetone phosphate may also be reduced to glycerol 3-phosphate (see Fig. 3) in the reaction catalyzed by cytosolic glycerol 3-phosphate dehydrogenase (EC

Dihydroxyacetone phosphate + NADH + H+ ⇄ Glycerol 3-phosphate + NAD+

The enzyme acts as a bridge between glucose and lipid metabolism because the glycerol 3-phosphate produced is used in the synthesis of lipids such as triacylglycerols.
This reaction is an important sources of glycerol 3-phosphate in adipose tissue and small intestine.

Reaction 6: oxidation of glyceraldehyde 3-phosphate to 1,3-bisphosphoglycerate

In the sixth step of the glycolytic pathway, the first step of the second phase, the payoff phase, glyceraldehyde 3-phosphate dehydrogenase (EC catalyses the oxidation of glyceraldehyde 3-phosphate to 1,3-bisphosphoglycerate (1,3-BPG), with the concomitant reduction of NAD+ to NADH.

Glyceraldehyde 3-phosphate + NAD+ + Pi ⇄ 1,3-Bisphosphoglycerate + NADH + H+

This is the first of the two glycolytic reactions in which the chemical energy needed for the subsequent synthesis of ATP is harvested and made available; the other reaction is catalyzed by enolase (EC Why?
This reaction is the sum of two processes.

  • In the first reaction, the oxidation of the aldehyde group to a carboxyl group occurs, step in which NAD+ is used as oxidizing agent. The reaction is quite exergonic, with a ∆G’° of -43 kJ/mol (-10.3 kcal/mol).
  • In the second reaction, the formation of the bond between the carboxylic group at C-1 of 1,3-bisphosphoglycerate and orthophosphate occurs, to form an anhydride called acyl phosphate. The reaction is quite endergonic, with a ∆G’° of 49.3 kJ/mol (11.8 kcal/mol).

These two chemical processes must not take place in succession but must be coupled in order to allow the formation of the acyl phosphate because the oxidation of the aldehyde group is used to drive the formation of the anhydride, with an overall ΔG°’ of 6.3 kJ/mol (1.5 kcal/mol), and a ΔG of 2.5 kJ/mol (0.6 kcal/mol), both slightly endergonic.
Therefore, the free energy that might be released as heat is instead conserved by the formation of the acyl phosphate.

Note: The reversible reduction of the nicotinamide ring of NAD+ or NADP+ is due to the loss of two hydrogen atoms by another molecule, in this case the aldehyde group of glyceraldehyde 3-phosphate, that undergoes oxidation, and to the subsequent transfer of a hydride ion, the equivalent of two electrons and a proton, to the nicotinamide ring. The other proton removed from the substrate is released to the aqueous solution. Below, the half reactions for both coenzymes.

NAD+ + 2 e + 2 H+ → NADH + H+

NADP+ + 2 e + 2 H+ → NADH + H+

Reaction 7: phosphoglycerate kinase and the first ATP forming reaction

In the seventh step of the glycolytic pathway, phosphoglycerate kinase (EC catalyzes the transfer of the high-energy phosphoryl group from the acyl phosphate of 1,3-BPG to ADP to form ATP and 3-phosphoglycerate (3-PG).

1,3-Bisphosphoglycerate + ADP + H+ ⇄ 3-Phosphoglycerate + ATP

The ΔG°’ of the reaction is of -18.5 kJ/mol (-4.4 kcal/mol), namely, it is an exergonic reaction. The ΔG is 1.3 kJ/mol (0.3 kcal/mol).
The high phosphoryl-transfer potential of the acyl phosphate is used to phosphorylate ADP. The production of ATP in this manner is called substrate-level phosphorylation. In other words, part of the energy released during the oxidation of the aldehyde group in the sixth step is now conserved by the synthesis of ATP from the ADP and Pi.
The reaction catalyzed by phosphoglycerate kinase is the first reaction of glycolysis in which part of the chemical energy present in glucose molecule is conserved as ATP. And, because the reactions catalyzed by aldolase and triose phosphate isomerase, step 4 and 5, respectively, lead to the formation of two molecules of glyceraldehyde 3-phosphate per molecule of glucose, in this step two ATP are produced and the ATP debt created by the preparatory phase, steps 1 and 3, respectively, is “paid off”.
It should be noted that the enzyme is named for the reverse reaction, from right to left as written, that is, the phosphorylation of 3-phosphoglycerate to form 1,3-bisphosphoglycerate at the expense of one ATP.
Indeed, this enzyme, like all other enzymes, is able to catalyze the reaction in both directions. And the direction leading to the synthesis of 1,3-bisphosphoglycerate occurs during the photosynthetic CO2 fixation and gluconeogenesis.

The sixth and seventh reactions of glycolysis, are, as a whole, an energy-coupling process in which the common intermediate is 1,3-bisphosphoglycerate. While the reaction leading to the synthesis of 1,3-BPG is endergonic, with a ΔG°’ of 6.3 kJ/mol (1.5 kcal/mol), the second reaction is strongly exergonic, with a ΔG°’ of -18.5 kJ/mol (-4,4 kcal/mol). The overall ΔG°’ is -12.2 kJ/mol (-2.9 kcal/mol), namely, the reaction catalyzed by phosphoglycerate kinase is sufficiently exergonic to pull even the previous one, too, making the overall reaction exergonic.

Glyceraldehyde 3-phosphate + ADP + Pi + NAD+ ⇄ 3-Phosphoglycerate + ATP + NADH + H+

In reality, phosphoglycerate kinase reaction is sufficiently exergonic to pull also the reactions catalyzed by aldolase and triose phosphate isomerase.

What is substrate-level phosphorylation?

Substrate-level phosphorylation is defined as the production of ATP by the transfer of a phosphoryl group from a substrate to ADP, a process involving chemical intermediates and soluble enzymes.
There is also a second type of phosphorylation for the synthesis of ATP called oxidative phosphorylation, a process involving not chemical intermediates and soluble enzymes but transmembrane proton gradients and membrane-bound enzymes.

Because the standard free energy of hydrolysis of the phosphoryl group of 3-phosphoglycerate is equal to 12.5 kJ/mol (-3 kcal/mol), it is not sufficient to produce ATP by phosphoryl group transfer. In the two subsequent reactions of glycolysis, 3-phosphoglycerate is converted to phosphoenolpyruvate (PEP), a molecule with a phosphoryl group transfer potential sufficiently elevated to allow the synthesis of ATP.

Reaction 8: from 3-phosphoglycerate to 2-phosphoglycerate

In the eighth step of the glycolytic pathway, 3-phosphoglycerate is converted into 2-phosphoglycerate (2-PG), in a reversible reaction catalyzed by phosphoglycerate mutase (EC The reaction requires Mg2+, and has a very small ΔG, equal to about 0.8 kJ/mol (0.2 kcal/mol) and a ΔG°’ of 4.4 kJ/mol (1.1 kcal/mol).
Phosphoglycerate mutase is a mutase, enzymes that catalyze intramolecular group transfers, in this case the transfer of a phosphoryl group from C-3 to C-2 of the 3-phosphoglycerate. Mutases, in turn, are a subclass of isomerases.
The mechanism by which this reaction takes place depends on the type of organism studied. For example, in yeast or in rabbit muscle the reaction occurs in two steps and involves the formation of phosphoenzyme intermediates. In the first step, a phosphoryl group bound to a histidine residue in the active site of the enzyme is transferred to the hydroxyl group at C-2 of 3-PG to form 2,3-bisphosphoglycerate. In the next step, the enzyme acts as a phosphatase converting 2,3-BPG into 2-phosphoglycerate; however, the phosphoryl group at C-3 is not released but linked to the histidine residue of the active site to regenerate the intermediate enzyme-His-phosphate. Schematically:

Enzyme-His-phosphate + 3-Phosphoglycerate ⇄ Enzyme-His + 2,3-Phosphoglycerate

Enzyme-His + 2,3-Bisphosphoglycerate ⇄ Enzyme-His-phosphate + 2-Phosphoglycerate

Notice that the phosphoryl group of 2-phosphoglycerate is not the same as that of the substrate 3-phosphoglycerate.
Approximately once in every 100 catalytic cycles, 2,3-BPG dissociates from the active site of the enzyme, leaving it unphosphorylated, that is, in the inactive form. The inactive enzyme may be reactivated by binding 2,3-bisphosphoglycerate, which must, therefore, be present in the cytosol to ensure the maximal activity of the enzyme. And 2,3-BPG is present in small, but sufficient amounts in most cells, except for red blood cells, where it acts as an allosteric inhibitor, too, reducing  the affinity of hemoglobin for oxygen, and has a concentration of 4-5 mM.

Note: 3-Phosphoglycerate can also be used for the biosynthesis of serine, from which glycine and cysteine derive (see Fig. 3). The biosynthesis of serine begins with the reaction catalyzed by phosphoglycerate dehydrogenase (EC The enzyme catalyzes the oxidation of 3-phosphoglycerate to 3-phosphohydroxypyruvate and the concomitant reduction of NAD+ to NADH. This reaction is also the rate-limiting step of this biosynthetic pathway, because serine inhibits the activity of the enzyme.

Synthesis of 2,3-bisphosphoglycerate and the Rapoport-Luebering pathway

1,3-Bisphosphoglycerate can be also converted into 2,3-bisphosphoglycerate (see Fig. 3).
In red blood cells this reaction is catalyzed by the bisphosphoglycerate mutase, one of the three isoforms of phosphoglycerate mutase found in mammals. The enzyme requires the presence of 3-phosphoglycerate as it catalyzes the intermolecular transfer of a phosphoryl group from C-1 of 1,3-bisphosphoglycerate to the C-2 of 3-phosphoglycerate. Therefore, 3-phosphoglycerate becomes 2,3-BPG, while 1,3-BPG is converted into 3-phosphoglycerate. The mutase enzyme activity has EC number

Fig. 5 – Synthesis of 2,3-Bisphosphoglycerate

2,3-Bisphosphoglycerate can then be hydrolyzed to 3-phosphoglycerate in the reaction catalyzed by the phosphatase activity of bisphosphoglycerate mutase, that removes the phosphoryl group at C-2. This activity has EC number The enzyme is also able to catalyze the interconversion of 2-phosphoglycerate and 3-phosphoglycerate, therefore, it is a trifunctional enzyme. 3-Phosphoglycerate can then re-enter the glycolytic pathway. This detour from glycolysis, also called Rapoport-Luebering pathway, that leads to the synthesis of 3-phosphoglycerate without any ATP production.
The other two isoforms of phosphoglycerate mutase, phosphoglycerate mutase 1 or type M, present in the muscle, and phosphoglycerate mutase 2 or type B, present in all other tissues, are able to catalyze, in addition to the interconversion of the 2-phosphoglycerate and 3-phosphoglycerate, the two steps of Rapoport-Luebering pathway, although with less efficacy than the glycolytic reaction. Therefore they are trifunctional enzymes.

Reaction 9: formation of phosphoenolpyruvate

In the ninth step of the glycolytic pathway, 2-phosphoglycerate is dehydrated to form phosphoenolpyruvate, an enol, in a reversible reaction catalyzed by enolase.

2-Phosphoglycerate ⇄ Phosphoenolpyruvate + H2O

The reaction requires Mg2+ that stabilizes the enolic intermediate that is formed during the process.
The ΔG°’ of the reaction is 7.5 kJ/mol (1.8 kcal/mol), while ΔG -3.3 kJ/mol (-0.8 kcal/mol).
Like 1,3-BPG, phosphoenolpyruvate has a phosphoryl group transfer potential high enough to allow ATP formation. Why does this phosphoryl group have a high free energy of hydrolysis?
Although phosphoenolpyruvate and 2-phosphoglycerate contain nearly the same amount of metabolic energy with respect to decomposition to CO2, H20 and Pi, 2-PG dehydration leads to a redistribution of energy such that the standard free energy of hydrolysis of the phosphoryl groups vary as described below:

  • -17.6 kJ/mol (-4.2 kcal/mol) for 2-phosphoglycerate, a phosphoric ester;
  • -61.9 kJ/mol (-14.8 kcal/mol) for phosphoenolpyruvate, an enol phosphate.

What happens is that the phosphoryl group traps PEP in its unstable enol form. When, in the last step of glycolysis, phosphoenolpyruvate donates the phosphoryl group to ADP, ATP and the enol form of pyruvate are formed. The enol form of pyruvate is unstable and tautomerizes rapidly and nonenzymatically to the more stable keto form, that predominates at pH 7. So, the high phosphoryl-transfer potential of PEP is due to the subsequent enol-keto tautomerization of pyruvate.

Reaction 10: the transfer of the phosphoryl group from the phosphoenolpyruvate to the ADP

In the final step of the glycolytic pathway, pyruvate kinase (EC catalyzes the transfer of the phosphoryl group from phosphoenolpyruvate to ADP to form pyruvate and ATP. This is the second substrate-level phosphorylation of glycolysis.

Phosphoenolpyruvate + ADP + H+ → Pyruvate + ATP

The enzyme is a tetramer and, like PFK-1, is a highly regulated. Indeed, it has binding sites for numerous allosteric effectors. Moreover, in vertebrates, there are at least three isozymes of pyruvate kinase, of which the M type predominates in muscle and brain, while the L type in liver. These isozymes have many properties in common, whereas differ in the response to hormones such as glucagon, epinephrine and insulin.
The enzyme activity is stimulated by potassium ion (K+) and some other monovalent cations.
The reaction is essentially irreversible, with a ΔG°’ of -31.4 kJ/mol (-7.5 kcal/mol), and a ΔG of -16.7 kJ/mol (-4.0 kcal/mol), largely due, as anticipated in the previous paragraph, to the tautomerization of the pyruvate from the enol form to the more stable keto form.

Tautomerization of Pyruvate
Fig. 6 – Spontaneous Tautomerization of Pyruvate

And, of the -61.9 kJ/mol (14.8 kcal/mol) released from the hydrolysis of the phosphoryl group of PEP, nearly half is conserved in the formation of the phosphoanhydride bond between ADP and Pi, whose ΔG°’ is of -30.5 kJ/mol (-7.3 kcal/mol). The remaining energy, -31.4 kJ/mol (-7.5 kcal/mol), is the driving force that makes the reaction proceed towards ATP production.
While the reaction catalyzed by phosphoglycerate kinase, in the seventh step of the glycolytic pathway, pays off the ATP debt of the preparatory phase, the reaction catalyzed by pyruvate kinase allows a net gain of two ATP.

The fate of NADH and pyruvate produced in glycolysis

Glycolysis produces 2 NADH, 2 ATP, and 2 pyruvate molecules per molecule of glucose.
NADH must be reoxidized to NAD+ to allow glycolysis to proceed. NAD+, a coenzyme that is produced from the vitamin B3, also known as niacin, is present in limited amounts in the cytosol, ≤ 10-5M, a value well below than that of glucose metabolized in a few minutes, and must be continuously regenerated. Therefore, the final step of the glycolytic pathway is the regeneration of NAD+ from NADH through aerobic or anaerobic pathways, each of which involves pyruvate. Such pathways allow, therefore, maintenance of the redox balance of the cell.

Fig. 7 – Possible Catabolic Fates of the Pyruvate Produced in Glycolysis

Pyruvate is a versatile metabolite that can enter several metabolic pathways, both anabolic and catabolic, depending on the type of cell, the energy state of the cell and the availability of oxygen. With the exception of some variations encountered in bacteria, exploited, for example, in food industry for the production of various foods such as many cheeses, there are essentially three pathways in which pyruvate may enter:

This allows glycolysis to proceed in both anaerobic and aerobic conditions.
It is therefore possible to state that the catabolic fate of the carbon skeleton of glucose is influenced by the cell type, the energetic state of the cell, and the availability of oxygen.

Lactic acid fermentation

In animals, with few exceptions, and in many microorganisms when oxygen availability is insufficient to meet the energy requirements of the cell, or if the cell is without mitochondria, the pyruvate produced by glycolysis is reduced to lactate in the cytosol, in a reaction catalyzed by lactate dehydrogenase (EC

Pyruvate + NADH + H+ ⇄ Lactate + NAD+

In the reaction, pyruvate, by accepting electrons from NADH, is reduced to lactate, while NAD+ is regenerated. And the overall equilibrium of the reaction strongly favors the formation of lactate, as shown by the value of ΔG°’ of -25.1 kJ/mol (-6 kcal/mol).
The conversion of glucose to lactate is called lactic acid fermentation. The overall equation of the process is:

Glucose + 2 Pi + 2 ADP + 2H+ → 2 Lactate + 2 ATP + 2 H2O

Notice that fermentation, discovered by Louis Pasteur who defined it “la vie sans l’air”, is a metabolic pathway that:

  • extracts energy from glucose and stores it as ATP;
  • does not consume oxygen;
  • does not change the concentration of NAD+ or NADH.

With regard to coenzymes, neither NAD+ nor NADH appears in the overall equation, although both are crucial in the process, that is, no net oxidation-reduction occurs. In other words, in the conversion of glucose, C6H12O6, to lactate, C3H6O3, the ratio of hydrogen to carbon atoms of the reactants and products does not change.
From an energy point of view, it should however be emphasized that fermentation extracts only a small amount of the chemical energy of glucose.

In humans, much of the lactate produced enters the Cori cycle for glucose production via gluconeogenesis. We can also state that lactate production shifts part of the metabolic load from the extrahepatic tissues, such as skeletal muscle during intense bouts of exercise, like a 200-meter, when the rate of glycolysis can almost instantly increase 2,000-fold, to the liver.
In contrast to skeletal muscle that releases lactate into the venous blood, the heart muscle is able to take up and use it for fuel, due to its completely aerobic metabolism and to the properties of the heart isozyme of lactate dehydrogenase, referred to as H4. Therefore, portion of the lactate released by skeletal muscle engaged in intense exercise is used by the heart muscle for fuel.

Note: Lactate produced by microorganisms during lactic acid fermentation is responsible for both the scent and taste of sauerkraut, namely, fermented cabbage, as well as for the taste of soured milk.

Alcoholic fermentation

In microorganisms such as brewer’s and baker’s yeast, in certain plant tissues, and in some invertebrates and protists, pyruvate, under hypoxic or anaerobic conditions, may be reduced in two steps to ethyl alcohol or ethanol, with release of CO2.
The first step involves the non-oxidative decarboxylation of pyruvate to form acetaldehyde, an essentially irreversible reaction. The reaction is catalyzed by pyruvate decarboxylase (EC, an enzyme that requires Mg2+ and thiamine pyrophosphate, a coenzyme derived from vitamin thiamine or vitamin B1. The enzyme is absent in vertebrates and in other organisms that perform lactic acid fermentation.
In the second step, acetaldehyde is reduced to ethanol in a reaction catalyzed by alcohol dehydrogenase (EC, an enzyme that contains a bound zinc atom in its active site. In the reaction, NADH supplies the reducing equivalents and is oxidized to NAD+. At neutral pH, the equilibrium of the reaction lies strongly toward ethyl alcohol formation.
The conversion of glucose to ethanol and CO2 is called alcoholic fermentation. The overall reaction is:

Glucose + 2 Pi + 2 ADP + 2 H+ → 2 Ethanol + 2 CO2 + 2 ATP + 2 H2O

And, as for lactic fermentation, even in alcoholic fermentation no net oxidation-reduction occurs.

Alcoholic fermentation is the basis of the production of beer and wine. Notice that the CO2 produced by brewer’s yeast is responsible for the characteristics “bubbles” in beer, champagne and sparkling wine, while that produced by baker’s yeast causes dough to rise.

Fate of pyruvate and NADH under aerobic conditions

In cells with mitochondria and under aerobic conditions, the most common situation in multicellular and many unicellular organisms, the oxidation of NADH and pyruvate catabolism follow distinct pathways.
In the mitochondrial matrix, pyruvate is first converted to acetyl-CoA in the reactions catalyzed by the pyruvate dehydrogenase complex, a mitochondrial multienzyme complex. In the reaction, a oxidative decarboxylation, pyruvate loses a carbon atom as CO2, and the remaining two carbon unit is bound to Coenzyme A to form acetyl-coenzyme A or acetyl-CoA.

Pyruvate + NAD+ + CoA → acetyl-CoA + CO2 + NADH + H+

The acetyl group of acetyl-CoA is then completely oxidized to CO2 in the citric acid cycle, with production of NADH and FADH2. The pyruvate dehydrogenase complex therefore represents a bridge between glycolysis, which occurs in the cytosol, and the citric acid cycle, which occurs in the mitochondrial matrix.
In turn, electrons derived from oxidations that occur during glycolysis are transported into mitochondria via the reduction of cytosolic intermediates. In this way, in the cytosol NADH is oxidized to NAD+, while the reduced intermediate, once in the mitochondrial matrix, is reoxidized through the transfer of its reducing equivalents to Complex I of the mitochondrial electron transport chain. Here the electrons flow to oxygen to form H2O, a transfer that supplies the energy needed for the synthesis of ATP through the process of oxidative phosphorylation. Of course, also the electrons carried by NADH formed by pyruvate dehydrogenase complex reactions and citric acid cycle and by FADH2 formed by citric acid cycle meet a similar fate.

Note: FADH2 transfers its reducing equivalents not to Complex I but to Complex II.

Anabolic fates of pyruvate

Under anabolic conditions, the carbon skeleton of pyruvate may have fates other than complete oxidation to CO2 or conversion to lactate. In fact, after its conversion to acetyl-CoA, it may be used, for example, for the synthesis of fatty acids, or of the amino acid alanine (see Fig. 3).

Glycolysis and ATP production

In the glycolytic pathway the glucose molecule is degraded to two molecules of pyruvate.
In the first phase, the preparatory phase, two ATP are consumed per molecule of glucose in the reactions catalyzed by hexokinase and PFK-1. In the second phase, the payoff phase, 4 ATP are produced through substrate-level phosphorylation in the reactions catalyzed by phosphoglycerate kinase and pyruvate kinase. So there is a net gain of two ATP per molecule of glucose used. In addition, in the reaction catalyzed by glyceraldehyde 3-phosphate dehydrogenase, two molecules of NADH are produced for each glucose molecule.

Fig. 8 – Free-Energy Changes of Glycolytic Reactions

The overall ΔG°’ of glycolysis is -85 kJ/mol (-20.3 kcal/mol), value resulting from the difference between the ΔG°’ of the conversion of glucose into two pyruvate molecules, -146 kJ/mol (-34,9 kcal/mol), and the ΔG°’ of the formation of ATP from ADP and Pi, 2 x 30.5 kJ/mol = 61 kJ / mol (2  x 7.3 kcal/mol = 14.6 kcal/mol). Here are the two reactions.

Glucose + 2 NAD+ → 2 Pyruvate + 2 NADH + 2 H+

2 ADP + 2 Pi → 2 ATP + 2 H2O

The sum of the two reactions gives the overall equation of glycolysis.

Glucose + 2 NAD+ + 2 ADP + 2 Pi → 2 Pyruvate + 2 NADH + 2 H+ + 2 ATP + 2 H20

Thus, under standard conditions, the amount of released energy stored within ATP is (61/146) x 100 = 41.8%.
Notice that the overall equation of glycolysis can also be derived by considering all the reagents, ATP, NAD+, ADP, and Pi and all the products.

Glucose + 2 ATP + 2 NAD+ + 4 ADP + 2 Pi → 2 Pyruvate + 2 ADP + 2 NADH + 2 H+ + 4 ATP + 2 H20

Cancelling the common terms on both sides of the equation, we obtain the overall equation shown above.

Glycolysis and ATP production under anaerobic conditions

Under anaerobic conditions, regardless of what is the metabolic fate of pyruvate, conversion to lactate, ethanol or other molecules, there is no additional production of ATP downstream of glycolysis.
Therefore under these conditions, glycolysis extracts only a small fraction of the chemical energy of the glucose molecule, energy equal to 2840 kJ/mol (679 kcal/mol) released as a result of its conversion to CO2 and H2O. Indeed, only 146 kJ/mol are released in the conversion of a glucose molecule to two pyruvate molecules, equal to 5%, [(146/2,840) x 100], of the available chemical energy. Therefore,  pyruvate still contains most of the chemical energy of the hexose.
Similarly, the 4 electrons carried by NADH produced in step 6 of glycolysis cannot be used for ATP production.
In lactic acid fermentation, the ΔG°’ associated with the conversion of a glucose molecule to two molecules of lactate is -183.6 kJ/mol (-43.9 kcal/mol), and 33.2% of such free energy, [(61/183.6) x 100] is stored within ATP, whereas it is 41.8% in the conversion of a glucose molecule to two molecules of pyruvate.
It should be noted that under actual conditions the amount of free energy required for the synthesis of ATP from ADP and Pi is much higher than that required under standard conditions, namely, approximately 50%  of the energy released is stored within ATP.

Glycolysis and ATP production under aerobic conditions

Under aerobic conditions, in cells with mitochondria, the amount of chemical energy that can be extracted from glucose and stored within ATP is much greater than under anaerobic conditions.
If we consider the two NADH produced during glycolysis, the flow of their 4 reducing equivalents along the mitochondrial electron transport chain allows the production of 2-3 ATP per electron pair through oxidative phosphorylation. Therefore, 6 to 8 ATP are produced when one molecule of glucose is converted into two molecules of pyruvate, 2 from glycolysis and 4-6 from oxidative phosphorylation.

Note: The amount of ATP produced from the reducing equivalents of NADH depends upon the mechanism by which they are shuttled into mitochondria.

On the other hand, if we analyze the coordinated and consecutive action of glycolysis, the pyruvate dehydrogenase complex, citric acid cycle,  mitochondrial electron transport chain and oxidative phosphorylation, much more energy can be extracted from glucose and stored within ATP. In this case, according to what reported by Lehninger, 30 to 32 ATP are produced for each glucose molecule, although recent estimates suggest a net production equal to 29.85 ATP/glucose, or 29.38 ATP/glucose if also ATP formed from GTP, in turn produced by the citric acid cycle, is exported. Considering both estimates, the production of ATP is about 15 times greater than under anaerobic condition.

Feeder pathways for glycolysis

Other carbohydrates besides glucose, both simple and complex, can be catabolized via glycolysis, after enzymatic conversion to one of the glycolytic intermediates. Among the most important are:

Fig. 9 – Feeder Pathways for Glycolysis

Dietary starch and disaccharides must be hydrolyzed in the intestine to the respective monosaccharides before being absorbed. Once in the venous circulation, monosaccharides reach the liver through the portal vein; this organ is the main site where they are metabolized.

Glycogen and starch

Regarding the phosphorolytic breakdown of starch and endogenous glycogen refer to the corresponding articles.


Under physiological conditions, the liver removes much of the ingested fructose from the bloodstream before it can reach extrahepatic tissues.
The hepatic pathway for the conversion of the monosaccharide to intermediates of glycolysis consists of several steps.
In the first step fructose is phosphorylated to fructose 1-phosphate at the expense of one ATP. This reaction is catalyzed by fructokinase (EC, and requires the presence of Mg2+.

Fructose + ATP → Fructose 1-phosphate + ADP + H+

As for glucose, fructose phosphorylation traps the molecule inside the cell.
In the second step fructose 1-phosphate aldolase catalyzes the hydrolysis, an aldol cleavage, of fructose 1-phosphate to dihydroxyacetone phosphate and glyceraldehyde.

Fructose 1-phosphate → Dihydroxyacetone Phosphate + Glyceraldehyde

Dihydroxyacetone phosphate is an intermediate of the glycolytic pathway and, after conversion to glyceraldehyde 3-phosphate, may flow through the pathway. Conversely, glyceraldehyde is not an intermediate of the glycolysis, and is phosphorylated to glyceraldehyde 3-phosphate at the expense of one ATP. The reaction is catalyzed by triose kinase (EC, and requires the presence of Mg2+.

Glyceraldehyde + ATP → Glyceraldehyde 3-phosphate + ADP + H+

In hepatocytes, therefore, a molecule of fructose is converted to two molecules of glyceraldehyde 3-phosphate, at the expense of two ATP, as for glucose.

Fructose + 2 ATP → 2 Glyceraldehyde 3-phosphate +2 ADP +2  H+

Fructose and hexokinase

In extrahepatic sites, such as skeletal muscle, kidney or adipose tissue, fructokinase is not present, and fructose enters the glycolytic pathway as fructose 6-phosphate. In fact, as previously seen, hexokinase can catalyzes the phosphorylation of fructose at C-6.

Fructose + ATP → Fructose 6-phosphate + ADP + H+

However, the affinity of the enzyme for fructose is about 20 times lower than for glucose, so in the hepatocyte, where glucose is much more abundant than fructose, or in the skeletal muscle under anaerobic conditions, that is, when glucose is the preferred fuel, little amounts of fructose 6-phosphate are formed.
Conversely, in adipose tissue, fructose is more abundant than glucose, so that its phosphorylation by hexokinase is not competitively inhibited to a significant extent by glucose. In this tissue, therefore, fructose 6-phosphate synthesis is the entry point into glycolysis for the monosaccharide.
With regard to the metabolic effects of fructose, it is important to underline that in the liver the monosaccharide, being phosphorylated at C-1, enters glycolysis at triose phosphate level, thus downstream to the reaction catalyzed by PFK-1, an enzyme that plays a key role in the regulation of the flow of carbon through this metabolic pathway. Conversely, when fructose is phosphorylated at C-6, it enters the glycolytic pathway upstream of PFK-1.


Fructose is the entry point into glycolysis for sorbitol, a sugar present in many fruits and vegetables, and used as a sweetener and stabilizer, too. In the liver, sorbitol dehydrogenase (EC catalyzes the oxidation of sorbitol to fructose.

Sorbitol + NAD+ → Fructose + NADH + H+

The reaction requires the presence of zinc ion, and occurs in the cytosol.


Galactose, for the most part derived from intestinal digestion of the lactose, once in the liver is converted, via the Leloir pathway, to glucose 1-phosphate.
For a more in-depth discussion of the Leloir pathway, see the article on galactose.
The metabolic fate of glucose 1-phosphate depends on the energy status of the cell.
Under conditions promoting glucose storage, glucose 1-phosphate can be channeled to glycogen synthesis. Conversely, under conditions that favor the use of glucose as fuel, glucose 1-phosphate is isomerized to glucose 6-phosphate in the reversible reaction catalyzed by phosphoglucomutase (EC

Glucose 1-phosphate ⇄ Glucose 6-phosphate

In turn, glucose 6-phosphate can be channeled to glycolysis and be used for energy production, or dephosphorylated to glucose in the reaction catalyzed by glucose 6-phosphatase, and then released into the bloodstream.


Mannose is present in various dietary polysaccharides, glycolipids and glycoproteins. In the intestine, it is released from these molecules, absorbed, and, once reached the liver, is phosphorylated at C-6 to form mannose 6-phosphate, in the reaction catalyzed by hexokinase.

Mannose + ATP → Mannose 6-phosphate + ADP + H+

Mannose 6-phosphate is then isomerized to fructose 6-phosphate in the reaction catalyzed by mannose 6-phosphate isomerase (EC

Mannose 6-phosphate ⇄ Fructose 6-phosphate

Regulation of glycolysis

The flow of carbon through the glycolytic pathway is regulated in response to metabolic conditions, both inside and outside the cell, essentially to meet two needs: the production of ATP and the supply of precursors for biosynthetic reactions.
And in the liver, to avoid wasting energy, glycolysis and gluconeogenesis are reciprocally regulated so that when one pathway is active, the other slows down. As explained in the article on gluconeogenesis, during evolution this was achieved by selecting different enzymes to catalyze the essentially irreversible reactions of the two pathways, whose activity are regulated separately. Indeed, if these reactions proceeded simultaneously at high speed, they would create a futile cycle or substrate cycle. A such fine regulation could not be achieved if a single enzyme operates in both directions.
The control of the glycolytic pathway involves essentially the reactions catalyzed by hexokinase, PFK-1, and pyruvate kinase, whose activity is regulated through:

  • allosteric modifications, that occur on a time scale of  milliseconds and are instantly reversible;
  • covalent modifications, that is, phosphorylations and dephosphorylation, that occur on a time scale of seconds;
  • changes in enzyme concentrations, resulting from changes in the rate of their synthesis and/or degradation, that occur on a time scale of hours.

Note: The main regulatory enzymes of gluconeogenesis are pyruvate carboxylase (EC and fructose 1,6-bisphosphatase (EC


In humans, hexokinase has four tissue specific isozymes, designated as hexokinase I, II, III, and IV, encoded by as many genes.
Hexokinase I is the predominant isozyme in the brain, whereas in skeletal muscle hexokinase I and II are present, accounting for 70-75% and 25-30% of the isozymes, respectively.
Hexokinase IV, also known as glucokinase (EC, is mainly present in hepatocytes and β cells of the pancreas, where it is the predominant isozyme. In the liver it catalyzes, with glucose 6-phosphatase, the substrate cycle between glucose and glucose 6-phosphate. Glucokinase differs from the other hexokinase isozymes in kinetic and regulatory properties.

Note: Isoenzymes or isozymes are different proteins that catalyze the same reaction, and that generally differ in kinetic and regulatory properties, subcellular distribution, or in the cofactors used. They may be present in the same species, in the same tissue or even in the same cell.

Comparison of the kinetic properties of hexokinase isozymes

The kinetic properties of hexokinase I, II, and III are similar.
Hexokinase I and II have a Km for glucose of 0.03 mM and 0.1 mM, respectively. Therefore these isoenzymes work very efficiently at normal blood glucose levels, 4-5 mM.
Conversely, glucokinase has a high Km for glucose, approximately 10 mM; this means that the enzyme works efficiently only when blood glucose concentration is high, for example after a meal rich in carbohydrates with a high glycemic index.

Regulation of the activity of hexokinases I-III

Hexokinases I-III are allosterically inhibited by glucose 6-phosphate, the product of their reaction. This ensures that glucose 6-phosphate does not accumulate in the cytosol when glucose is not needed for energy, for glycogen synthesis, for the pentose phosphate pathway, or as a source of precursors for biosynthetic pathways, leaving, at the same time, the monosaccharide in the blood, available for other organs and tissues. For example, when PFK-1 is inhibited, fructose 6-phosphate accumulates and then, due to phosphoglucose isomerase reaction, glucose 6-phosphate accumulates. Therefore, inhibition of PFK-1 leads to inhibition of hexokinases I-III.

In skeletal muscle, the activity of hexokinase I and II is coordinated with that of GLUT4, a low Km glucose transporter (5mM), whose translocation to the plasma membrane is induced by both insulin and physical activity. The combined action of GLUT4 on plasma membrane and hexokinase in the cytosol maintains a balance between glucose uptake and its phosphorylation. Because blood glucose concentration is between 4 and 5 mmol/L, its entry into the myocyte through GLUT4 may cause an increase in its concentration sufficient to saturate, or near saturate the enzyme, which therefore operates at or near its Vmax.

Regulation of the activity of hepatic glucokinase

Glucokinase differs in three respects from hexokinases I-III, and is particularly suitable for the role that the liver plays in glycemic control. Why?

  • As previously said, glucokinase has a Km for glucose of about 10 mM, much higher than the Km for glucose of hexokinases I-III, and higher than the value of fasting blood glucose levels (4-5 mM) as well. In the liver, where it is the predominant hexokinase isoenzyme, its role is to provide glucose 6-phosphate for the synthesis of glycogen and fatty acids. The activity of glucokinase is linked to that of GLUT2, the major glucose transporter in hepatocytes, with a high Km for glucose, approximately 10 mM. Hence, GLUT2 is very active when blood glucose concentration is high, rapidly equilibrating sugar concentrations in cytosol of hepatocytes and blood. Under such conditions glucokinase is active and converts glucose to glucose 6-phosphate, and, due to high Km for glucose, its activity continues to increase even when the intracellular concentration of the monosaccharide reaches or exceeds 10 mM.  Therefore, the rate at which glucose uptake and phosphorylation occurs are determined by the value of blood glucose level itself. On the other hand, when glucose availability is low, its concentration in the cytosol of hepatocytes is just as low, much lower than the Km for glucose of glucokinase, so that glucose produced through gluconeogenesis and/or glycogenolysis is not phosphorylated and can leave the cell.
    A similar situation also occurs in pancreatic β cells, where the GLUT2/glucokinase system causes the intracellular G-6-P concentration to equalize with glucose concentration in the blood, allowing the cells to detect and respond to hyperglycemia.
  • Unlike hexokinases I-III, glucokinase is not inhibited by glucose 6-phosphate, that is, is not product inhibited, and catalyzes its synthesis even when it accumulates.
  • Glucokinase is inhibited by the reversible binding of glucokinase regulatory protein or GKRP, a liver-specific regulatory protein. The mechanism of inhibition by GKRP occurs via the anchorage of glucokinase inside the nucleus, where it is separated from the other glycolytic enzymes.
    Fig. 10 – Regulation of Hepatic Glucokinase

    The binding between glucokinase and GKRP is much tighter in the presence of fructose 6-phosphate, whereas it is weakened by glucose and fructose 1-phosphate.
    In the absence of glucose, glucokinase is in its super-opened conformation that has low activity. The rise in cytosolic glucose concentration causes a concentration dependent transition of glucokinase to its close conformation, namely, its active conformation that is not accessible for glucokinase regulatory protein. Hence, glucokinase is active and no longer inhibited.
    Notice that fructose 1-phosphate is present in the hepatocyte only when fructose is metabolized. Hence, fructose relieves the inhibition of glucokinase by glucokinase regulatory protein.
    After a meal rich in carbohydrates, blood glucose levels rise, glucose enters the hepatocyte through GLUT2, and then moves inside the nucleus through the nuclear pores. In the nucleus glucose determines the transition of glucokinase to its close conformation, active and not accessible to GKRP, allowing glucokinase to diffuse in the cytosol where it phosphorylates glucose.
    Conversely, when glucose concentration declines, such as during fasting when blood glucose levels may drop below 4 mM, glucose concentration in hepatocytes is low, and fructose 6-phosphate binds to GKRP allowing it to bind tighter to glucokinase. This results in a strong inhibition of the enzyme. This mechanism ensures that the liver, at low blood glucose levels, does not compete with other organs, primarily the brain, for glucose.
    In the cell, fructose 6-phosphate is in equilibrium with glucose 6-phosphate, due to phosphoglucose isomerase reaction. Through its association with GKRP, fructose 6-phosphate allows the cell to decrease glucokinase activity, so preventing the accumulation of intermediates.

To sum up, when blood glucose levels are normal, glucose is phosphorylated mainly by hexokinases I-III, whereas when blood glucose levels are high glucose can be phosphorylated by glucokinase as well.

Regulation of phosphofructokinase 1 activity

Phosphofructokinase 1 is the key control point of carbon flow through the glycolytic pathway.
The enzyme, in addition to substrate binding sites, has several binding sites for allosteric effectors.
ATP, citrate, and hydrogen ions are allosteric inhibitors of the enzyme, whereas AMP, Pi and fructose 2,6-bisphosphate are allosteric activators.

Fig. 11 – Regulation of PFK 1 and Fructose 1,6-bisphosphatase

It should be noted that ATP, an end product of glycolysis, is also a substrate of phosphofructokinase 1. Indeed, the enzyme has two binding sites for the nucleotide: a low-affinity regulatory site, and a high affinity substrate site.
What do allosteric effectors signal?

  • ATP, AMP and Pi signal the energy status of the cell.
    The activity of PFK-1 increases when the energy charge of the cell is low, namely, when there is a need for ATP, whereas it decreases when the energy charge of the cell is high, namely when ATP concentration in the cell is high. How?
    When the nucleotide is produced faster than it is consumed, its cellular concentration is high. Under such condition ATP, binding to its allosteric site, inhibits PFK-1 by reducing the affinity of the enzyme for fructose 6-phosphate. From the kinetic point of view, the increase in ATP concentration modifies the relationship between enzyme activity and substrate concentration, chancing the hyperbolic fructose 6-phosphate velocity curve into a sigmoidal one, and then, increasing Km for the substrate. However, under most cellular conditions, ATP concentration does not vary much. For example, during a vigorous exercise ATP concentration in muscle may lower of about 10% compared to the resting state, whereas glycolysis rate varies much more than would be expected by such reduction.
    When ATP consumption exceeds its production, ADP and AMP concentrations rise, in particular that of AMP, due to the reaction catalyzed by adenylate kinase (EC, that form ATP from ADP.


The equilibrium constant, Keq, of the reaction is:

Keq = [ATP][AMP]/[ADP]2= 0.44

Under normal conditions, ADP and AMP concentrations are about 10% and often less than 1% of ATP concentration, respectively. Therefore, considering that the total adenylate pool is constant over the short term, even a small reduction in ATP concentration leads, due to adenylate kinase activity, to a much larger relative increase in AMP concentration. In turn, AMP acts by reversing the inhibition due to ATP.
Therefore, the activity of phosphofructokinase 1 depends on the cellular energy status:

when ATP is plentiful, enzyme activity decreases;

when AMP levels increase and ATP levels fall, enzyme activity increases.

Why is not ADP a positive effector of PFK-1? There are two reasons.
When the energy charge of the cell falls, ADP is used to regenerate ATP, in the reaction catalyzed by adenylate kinase Moreover, as previously said, a small reduction in ATP levels leads to larger-percentage changes in ADP levels and, above all, in AMP levels.

  • Hydrogen ions inhibit PFK-1. Such inhibition prevents, by controlling the rate of glycolysis, excessive lactate buildup and the consequent fall of blood pH.
  • Citrate is an allosteric inhibitor of PFK-1 that acts by enhancing the inhibitory effect of ATP.
    It is the product of the first step of the citric acid cycle, a metabolic pathway that provides building blocks for biosynthetic pathways and directs electrons into mitochondrial electron transport chain for ATP synthesis via oxidative phosphorylation. High citrate levels in the cytosol mean that, in the mitochondria, an overproduction of building blocks is occurring and the current energy are met, namely, the citric acid cycle has reached saturation. Under such conditions glycolysis, that feeds the cycle under aerobic condition, can slow down, sparing glucose.
    So, it should be noted that PFK-1 couples glycolysis and the citric acid cycle.
  • In the liver, the central control point of glycolysis and gluconeogenesis is the substrate cycle between F-6-P and F-1,6-BP, catalyzed by PFK-1 and fructose 1,6-bisphosphatase.
    The liver plays a pivotal role in maintaining blood glucose levels within the normal range.
    When blood glucose levels drop, glucagon stimulates hepatic glucose synthesis, via both glycogenolysis and gluconeogenesis, and at the same time signals the liver to stop consuming glucose to meet its needs.
    Conversely, when blood glucose levels are high, insulin causes the liver to use glucose for energy, and to synthesize glycogen, and triglycerides.
    In this context, the regulation of glycolysis and gluconeogenesis is mediated by fructose 2,6-bisphosphate, a molecule that allows the liver to play a major role in regulating blood glucose levels, and whose levels are controlled by insulin and glucagon.
    As a result of binding to its allosteric site on PFK-1, fructose 2,6-bisphosphate increases the affinity of the enzyme for fructose 6-phosphate, its substrate, while decreases its affinity for the allosteric inhibitors citrate and ATP. It is remarkable to note that under physiological concentrations of the substrates and positive and negative allosteric effectors, phosphofructokinase 1 would be virtually inactive in the absence of fructose 2,6-bisphosphate.
    On the other hand, the binding of fructose 2,6-bisphosphate to fructose 1,6-bisphosphatase inhibits the enzyme, even in the absence of AMP, another allosteric inhibitor of the enzyme.
    Due to these effects, fructose 2,6-bisphosphate increases the net flow of glucose through glycolysis.
    For an more in-depth analysis of fructose 2,6-bisphosphate metabolism, refer to the article on gluconeogenesis.
  • Another metabolite involved in the control of the flow of carbon through glycolysis and gluconeogenesis is xylulose 5-phosphate, a product of the pentose phosphate pathway, whose concentration in hepatocytes rises after ingestion of a carbohydrate-rich meal. The molecule, by activating protein phosphatase 2A, finally leads to an increase in the concentration of fructose 2,6-bisphosphate, and then to an increase in the flow of carbon through glycolysis and to a reduction in the flow of carbon through gluconeogenesis.

Regulation of pyruvate kinase activity

A further control point of carbon flow through glycolysis and gluconeogenesis is the substrate cycle between phosphoenolpyruvate and pyruvate, catalyzed by pyruvate kinase for glycolysis, and by the combined action of pyruvate carboxylase and phosphoenolpyruvate carboxykinase (EC for gluconeogenesis.
All isozymes of pyruvate kinase are allosterically inhibited by high concentrations of ATP, long-chain fatty acids, and acetyl-CoA, all signs that the cell is in an optimal energy status. Alanine, too, that can be synthesized from pyruvate through a transamination reaction, is an allosteric inhibitor of pyruvate kinase; its accumulation signals that building blocks for biosynthetic pathways are abundant.

Fig. 12 – Regulation of Hepatic Pyruvate Kinase

Conversely, pyruvate kinase is allosterically activated by fructose 1,6-bisphosphate, the product of the first committed step of glycolysis. Therefore, F-1,6-BP allows pyruvate kinase to keep pace with the flow of intermediates. It should be underlined that, at physiological concentration of PEP, ATP and alanine, the enzyme would be completely inhibited without the stimulating effect of F-1,6-BP.
The hepatic isoenzyme, but not the muscle isoenzyme, is also subject to regulation through phosphorylation by:

  • protein kinase A or PKA, activated by the binding of glucagon to the specific receptor or epinephrine to β-adrenergic receptors;
  • calcium/calmodulin dependent protein kinase or CAMK, activated by the binding of epinephrine to α1-adrenergic receptors.

Phosphorylation of the enzyme decreases its activity, by increasing the Km for phosphoenolpyruvate, and slows down glycolysis.
For example, when the blood glucose levels are low, glucagon-induced phosphorylation decreases pyruvate kinase activity. The phosphorylated enzyme is also less readily stimulated by fructose 1,6-bisphosphate but more readily inhibited by alanine and ATP. Conversely, the dephosphorylated form of pyruvate kinase is more sensitive to fructose 1,6-bisphosphate, and less sensitive to ATP and alanine. In this way, when blood glucose levels are low, the use of glucose for energy in the liver slows down, and the sugar is available for other tissues and organs, such as the brain. However, it should be noted that pyruvate kinase does not undergo glucagon-induced phosphorylation in the presence of fructose 1,6-bisphosphate.
An increase in the insulin/glucagon ratio, on the other hand, leads to dephosphorylation of the enzyme and then to its activation. The dephosphorylated enzyme is more readily stimulated by its allosteric activators F-1,6-BP, and less readily inhibited by allosteric inhibitors alanine and ATP.


Berg J.M., Tymoczko J.L., and Stryer L. Biochemistry. 5th Edition. W. H. Freeman and Company, 2002

de la Iglesia N., Mukhtar M., Seoane J., Guinovart J.J., & Agius L. The role of the regulatory protein of glucokinase in the glucose sensory mechanism of the hepatocyte. J Biol Chem 2000;275(14):10597-603. doi: 10.1074/jbc.275.14.10597

Garrett R.H., Grisham C.M. Biochemistry. 4th Edition. Brooks/Cole, Cengage Learning, 2010

Kabashima T., Kawaguchi T., Wadzinski B.E., Uyeda K. Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver. Proc Natl Acad Sci USA 2003;100:5107-12. doi:10.1073/pnas.0730817100

Kaminski M.T., Schultz J., Waterstradt R., Tiedge M., Lenzen S., Baltrusch S. Glucose-induced dissociation of glucokinase from its regulatory protein in the nucleus of hepatocytes prior to nuclear export. BBA – Molecular Cell Research 2014;1843(3):554-64. doi:10.1016/j.bbamcr.2013.12.002

Nelson D.L., M. M. Cox M.M. Lehninger. Principles of biochemistry. 6th Edition. W.H. Freeman and Company, 2012

Oslund R.C., Su X., Haugbro M., Kee J-M., Esposito M., David Y., Wang B., Ge E., Perlman D.H., Kang Y., Muir T.W., & Rabinowitz J.D. Bisphosphoglycerate mutase controls serine pathway flux via 3-phosphoglycerate. Nat Chem Biol 2017;13:1081-87. doi:10.1038/nchembio.2453

Rich P.R. The molecular machinery of Keilin’s respiratory chain. Biochem Soc Trans 2003;31(6):1095-105. doi:10.1042/bst0311095

Stipanuk M.H., Caudill M.A. Biochemical, physiological, and molecular aspects of human nutrition. 3rd Edition. Elsevier health sciences, 2013 [Google eBooks]

Van Schaftingen E., and Hers H-G. Inhibition of fructose-1,6-bisphosphatase by fructose-2,6-bisphosphate. Proc Natl Acad Sci USA 1981;78(5):2861-63 doi:10.1073/pnas.78.5.2861

Van Schaftingen E., Jett M-F., Hue L., and Hers, H-G. Control of liver 6-phosphofructokinase by fructose 2,6-bisphosphate and other effectors. Proc Natl Acad Sci USA 1981;78(6):3483-86 doi:10.1073/pnas.78.6.3483