Tag Archives: human health

Human gut microbiota: definition, composition, and diet

The human gastrointestinal tract is one of the most fierce and competitive ecological niches. It harbors viruses, eukaryotes, bacteria, and one member of Archaebacteria, Methanobrevibacter smithii.
Bacteria vary in proportion and amount all along the gastrointestinal tract; the greatest amount is found in the colon, which contains over 400 different species belonging to 9 phyla or divisions (of the 30 recognized phyla), and hereafter you refer to them as gut microbiota.
These are the phyla and some of their most represented genera.

  • Actinobacteria (Gram-positive bacteria); Bifidobacterium, Collinsella, Eggerthella, and Propionibacterium.
  • Bacteroidetes (Gram-negative bacteria); more than 20 genera including Bacteroides, Prevotella and Corynebacterium.
  • Cyanobacteria (Gram-negative bacteria).
  • Firmicutes (Gram-positive bacteria); at least 250 genera, including Mycoplasma, Bacillus, Clostridium, Dorea, Faecalibacterium, Ruminococcus, Eubacterium, Staphylococcus, Streptococcus, Lactobacillus, Lactococcus, Enterococcus, Sporobacter, and Roseburia.
  • Fusobacteria (Gram-negative bacteria);
  • Lentisphaerae (Gram-negative bacteria).
  • Proteobacteria (Gram-negative bacteria); Escherichia, Klebsiella, Shigella, Salmonella, Citrobacter, Helicobacter, and Serratia.
  • Spirochaeates (Gram-negative bacteria).
  • Verrucomicrobia (Gram-negative bacteria).

The presence of a small subset of the bacterial world in the colon is the result of a strong selective pressure which acted, during evolution, on both the microbial colonizers, selecting organisms very well adapted to this environment, and the intestinal niche. And nevertheless, each individual harbors an unique bacterial community in his gut.
Despite the high variability existing both with regard to taxa and between individuals, it has been proposed, but not accepted by all researchers, that in most adults the bacterial gut microbiota can be classified into variants or “enterotypes”, on the basis of the ratio of the abundance of the genera Bacteroides and Prevotella. This seems to indicate that there is a limited number of well balanced symbiotic states, which could respond differently to factors such as diet, age, genetics, and drug intake (see below).

Adult’s gut harbors a large and diverse community of DNA and RNA viruses made up of about 2,000 different genotypes, none of which is dominant. Indeed, the most abundant virus accounts for only about 6% of the community, whereas in infants the most abundant virus accounts over 40% of the community. The majority of DNA viruses are bacteriophages or phages, that is, viruses that infect bacteria (they are the most abundant biological entity on earth, with an estimated population of about 1031 units), whereas the majority of RNA viruses are plant viruses.

CONTENTS

Factors affecting gut microbiota composition and development

The intestinal bacterial community is regulated by several factors, most of which are listed below.

  • The diet of the host.
    It seems to be the most important factor.
    Traditionally considered sterile, mother’s milk harbors a rich microbiota consisting of more than 700 species, dominated by staphylococci, streptococci, bifidobacteria and lactic acid bacteria. Therefore, it is a major source for the colonization of the breastfed infant gut, and it was suggested that this mode of colonization is closely correlated with infant’s health status, because, among other functions, it could protect against infections and contribute to the maturation of the immune system. Breast milk affects intestinal microbiota also indirectly, through the presence of oligosaccharides with prebiotic activity that stimulate the growth of specific bacterial groups including staphylococci and bifidobacteria.
    A recent study has compared the intestinal microbiota of European and African children (respectively from Florence and a rural village in Burkina Faso) between the ages of 1 and 6 years old. It has highlighted the dominant role of diet over variables such as climate, geography, hygiene and health services (it was also observed the absence of significant differences in the expression of key genes regulating the immune function, which suggests a functional similarity between the two groups). Indeed infants, as long as they are breastfed, have a very similar gut microbiota, rich in Actinobacteria, mainly Bifidobacterium (see below). The subsequent introduction of solid foods in the two groups, a Western diet rich in animal fats and proteins in European children, and low in animal protein but rich in complex carbohydrates in African children, leads to a differentiation in the Firmicutes/Bacteroidetes ratio between the two groups. Gram-positive bacteria, mainly Firmicutes, were more abundant than Gram-negative bacteria in European children, whereas Gram-negative bacteria, mainly Bacteroidetes, prevailed over Gram-positive bacteria in African children.
    And the long-term diets are strongly associated to the enterotype partitioning. Indeed, it has been observed that:

a diet high in animal fats and proteins, i.e. a Western-type diet, leads to a gut microbiota dominated by the Bacteroides enterotype;
a diet high in complex carbohydrates, typical of agrarian societies, leads to the prevalence of the Prevotella enterotype.

Similar results emerged from the aforementioned study on children. In the Europeans, gut microbiota was dominated by taxa typical of Bacteroides enterotype, whereas in the Burkina Faso children, Prevotella enterotype dominates.
With short-term changes in the diet (10 days), such as the switch from a low-fat and high-fiber diet to a high-fat and low-fiber diet and vice versa, changes were observed in the composition of the microbiome (within 24 hours), but no stable change in the enterotype partitioning. And this underlines as a long-term diet is needed for a change in the enterotypes of the gut microbiota.
Dietary interventions can also result in changes in the gut virome, which moves to a new state, that is, changes occur in the proportions of the pre-existing viral populations, towards which subjects on the same diet converge.

  • pH, bile salts and digestive enzymes.
    The stomach, due to its low pH, is a hostile environment for bacteria, which are not present in high numbers, about 102-103 bacterial cells/gram of tissue. In addition to Helicobacter pylori, able to cause gastritis and gastric ulcers, microorganisms of the genus Lactobacillus are also present.
    Reached the duodenum, an increase in bacterial cell number occurs, 104-105 bacterial cells/gram of tissue; and similar bacterial concentrations are present in the jejunum and proximal ileum. The low number of microorganisms present in the small intestine is due to the inhospitable environment, consequent to the fact that there is the opening of the ampulla of Vater in the descending part of the duodenum, which pours pancreatic juice and bile into the duodenum, that is, pancreatic enzymes and bile salts, which damage microorganisms.
    In the terminal portion of the ileum, where the activities of pancreatic enzymes and bile salts are lower, there are about 107 bacterial cells/gram of tissue, and up to 1012-1014 bacterial cells/gram of tissue in the colon, so that bacteria represent a large proportion, about 40%, of the fecal mass.
    The distribution of bacteria along the intestine is strategic. In the duodenum and jejunum, the amount of available nutrients is much higher than that found in the terminal portion of the ileum, where just water, fiber, and electrolytes remain. Therefore, the presence of large number of bacteria in the terminal portion of the ileum, and even more in the colon, is not a problem. The problem would be to find a high bacterial concentration in the duodenum, jejunum, and proximal parts of the ileum; and there is a disease condition, called small intestinal bacterial overgrowth or SIBO, in which the number of bacteria in the small intestine increases by about 10-15 times. This puts them in a position to compete with the host for nutrients and give rise to gastrointestinal disturbances such as diarrhea.
  • The geographical position and the resulting differences in lifestyle, diet, religion etc.
    For example, a kind of geographical gradient occurs in the microbiota of European infants, with a higher number of Bifidobacterium species and some of Clostridium in Northern infants, whereas Southern infants have higher levels of Bacteroides, Lactobacillus and Eubacterium.
  • The mode of delivery (see below).
  • The genetics of the host.
  • The health status of the infant and mother.
    For example, in mothers with inflammatory bowel disease or IBD, Faecalibacterium prausnitzii, a bacterium that produces butyrate (an important source of energy for intestinal cells), and with anti-inflammatory activity is depleted, whereas there is an increase in the number of adherent Escherichia coli.
  • The treatment with antibiotics.
  • Bacterial infections and predators.
    Bacteriocins, i.e. proteins with antibacterial activity, and bacteriophages.
    Phages play an important role in controlling the abundance and composition of the gut microbiota. In particular, they could play a major role in the colonization of the newborn, infecting the dominant bacteria thus allowing to another bacterial strain to become abundant.
    This model of predator-prey dynamics, called “kill the winner”, suggests that the blooms of a specific bacterial species would lead to blooms of their corresponding bacteriophages, followed by a decline in their abundance. Therefore, the most abundant bacteriophage genotype will not be the same at different times. And although some the gene sequences present in the infant gut virome are stable over the first three months of life, dramatic changes occur in the overall composition of the viral community between the first and second week of life. During this time period also the bacterial community is extremely dynamic (see below).
  • The competition for space and nutrients.

Composition throughout life

The development of the intestinal microbial ecosystem is a complex and crucial event in human life, highly variable from individual to individual, and influenced by the factors outlined above.

Gut Microbiota
Development of Intestinal Microflora

In utero, the gut is considered sterile, but is rapidly colonized by microbes at birth, as the infant is born with an immunological tolerance instructed by the mother.
However, recent studies show the presence of bacteria in the placental tissue, umbilical cord blood, fetal membranes and amniotic fluid from healthy newborns without signs of infection or inflammation. And for example, the meconium of premature infants, born to healthy mothers, contains a specific microbiota, with Firmicutes as the main phylum, and predominance of staphylococci, whereas Proteobacteria, in particular species such as Escherichia coli, Klebsiella pneumoniae, Serratia marcescens, but also enterococci are more abundant in the faeces.
Note: The meconium is free of detectable viruses.
It seems that both vaginal and gut bacteria may gain access to the fetus, although via different route of entry: by ascending entry the vaginal ones, by dendritic cells of the immune system the gut ones. Therefore, there could exist a fetal microbiota.

Colonization occurs during delivery by a maternal inoculum, generally composed of aerobic and facultative bacteria (the newborn’s gut initially contains oxygen), then replaced by obligate anaerobes,  bacteria typically present in adulthood, to which they have created a hospitable environment.
Furthermore, there is a small number of different taxa, with a relative dominance of the phyla Actinobacteria and Proteobacteria, that remains unchanged during the first month of life, but not in the subsequent ones as there is a large increase in variability and new genetic variants. Many studies underline that the initial exposure is important in defining the “trajectories” which will lead to the adult ecosystems. Additionally, these initial communities may act as a source of protective or pathogenic microorganisms.

Mother’s vaginal and fecal microbiotas are the main sources of inoculum in vaginally delivered infants. Indeed, infants harbor microbial communities dominated by species of the genera Lactobacillus (the most abundant genus in the vaginal microbiota and early gut microbiota) Bifidobacterium, Prevotella, or Sneathia. And it seems likely that anaerobes, such as members of the phyla Firmicutes and Bacteroidetes, not growing outside of their host, rely on the close contact between mother and offspring for transmission. Finally, due to the presence of oxygen in infant gut, the transmission of strict anaerobes could occur not directly at birth but at a later stage by means of spores.
The first bacteria encountered by infants born by caesarean section are those of the skin and hospital environment, and gut microbiota is dominated by species of the genera Corynebacterium, Staphylococcus and Propionibacterium, with a lower bacterial count and diversity in first weeks of life than infants born vaginally.
Further evidence supporting the hypothesis of vertical transmission is the similarity between the microbiota of meconium and samples obtained from possible sites of contamination.
These “maternal bacteria” do not persist indefinitely, and are replaced by other populations within the first year of life.
Objects, animals, mouths and skin of relatives, and breast milk are secondary sources of inoculum; and breast milk (see below) seems to have a primary role in determining the microbial succession in the gut.
The variation and diversity among children reflect instead the individuality of these microbial exposures.
Note: The delivery mode seems also to influence the immune system during the first year of life, perhaps via the influence on the development of gut microbiota. Infants born by cesarean section have:

  • a lower bacterial count in stool samples at one month of age, mainly due to the higher number of bifidobacteria in infants born vaginally;
  • a higher number of antibody secreting cells, which could reflect an excessive antigen exposure (the intestinal barrier would be more vulnerable to the passage of antigens).

Within a days after birth, a thriving community is established. This community is less stable over time and more variable in composition than that of adults. Very soon, it will be more numerous than that of the child’s cells, evolving according to a temporal pattern highly variable from individual to individual.
Viruses, absent at birth, reach about 108 units/gram wet weight of faeces by the end of the first week of life, therefore representing a dynamic and abundant component of the developing gut microbiota. However, viral community has an extremely low diversity, like bacteria, and is dominated by phages, which probably influence the abundance and diversity of co-occurring bacteria, as seen above. The initial source of the viruses is unknown; of course, maternal and/or environmental inocula are among the possibilities. Notably, the earliest viruses could be the result of induction of prophages from the “newborn” gut bacterial flora, hypothesis supported by the observation that more than 25% of the phage sequences seem to be very similar to those of phages infecting bacteria such as Lactococcus, Lactobacillus, Enterococcus, and Streptococcus, which are abundant in breast milk.

By the end of the first month of life it is thought that the initial phase of rapid acquisition of microorganism is over.
In 1-month-old-infants, the most abundant bacteria belong to the genera Bacteroides and Escherichia, whereas Bifidobacterium, along with Ruminococcus, appear and grow to become dominant in the gastrointestinal tract of the breastfed infants between 1 and 11 months. Bifidobacteria such as Bifidobacterium longum subspecies infantis:

  • are known to be closely related to breastfeeding;
  • are among the best characterized commensal bacteria;
  • are considered probiotics, that is, microorganisms which can confer health benefits to the host.

Their abundance confers also benefits through competitive exclusion, that is, they are an obstacle to colonization by pathogens. And indeed, Escherichia and Bacteroides can become preponderant if Bifidobacterium is not adequately present in the gut.
In contrast, bacteria of the genera Escherichia (e.g. E. coli), Clostridium (e.g. C. difficile), Bacteroides (e.g. B. fragilis) and Lactobacillus are present in higher levels in formula-fed infants than in breastfed infants.
Although breast-fed infants receive only breast milk until weaning, their microbiota can show a large variability in the abundances of bacterial taxa, with differences between individuals also with regard to the temporal patterns of variation. These variations may be due to diseases, treatments with antibiotics, changes in host lifestyle, random colonization events, as well as differences in immune responses to the gut colonizing microbes. However, it is not yet clear how these factors contribute to shape infant gut microbiota.
It seems that also the virome changes rapidly after birth, as the majority of the viral sequences present in the first week of life are not found after the second week. Moreover, the repertoire expands rapidly in number and diversity during the first three months. This is in contrast with the stability observed in the adult virome, where 95% of the sequences are conserved over time.

In normal condition, towards the end of the first year of life, babies have consumed an adult-like diet for a significant time period and should have developed a microbial community with characteristics similar to those found in the adult gut, such as:

  • a more stable composition, phylogenetically more complex, and progressively more similar among different subjects;
  • a preponderance of Firmicutes and Bacteroidetes, followed by Verrucomicrobia and a very low abundance of Proteobacteria;
  • an increase in short-chain fatty acid (SCFA) levels and bacterial load in the feces;
  • an increase of genes associated with xenobiotic degradation, vitamin biosynthesis, and carbohydrate utilization.

Interestingly, the significant turnover of taxa occurring from birth to the end of the first year is accompanied by a remarkable constancy in the overall functional capabilities.
Towards the end of the first year of life also the early viral colonizers were replaced by a community specific to the child.

The gut microbiota reaches maturity at about 2.5 years of age, fully resembling the adult gut microbiota.
The selection of the most adapted bacteria is the result of various factors.

  • The transition to an adult diet.
  • An increased fitness to the intestinal environment of the taxa that typically dominate the adult gut microbiota than the early colonizers.
  • The significant changes in the intestinal environment, result of the developmental changes in the intestinal mucosa.
  • The effects of the microbiota itself.

Therefore, the first 2-3 years of life are the most critical period in which you can intervene to shape the microbiota as best as possible, and so optimize child growth and development.

From a chaotic beginning, all this leads to the establishment of the gut ecosystem typical of the young adult, which is relatively stable over time until old age (viral, archaeal and eukaryotic components included), and dominated, at least in the western population, by members of the phyla Firmicutes, about 60% of the bacterial communities, Bacteroidetes and Actinobacteria (mainly belonging to the Bifidobacterium genus), each comprising about 10% of the bacterial community, followed by Proteobacteria and Verrucomicrobia. The genera Bacteroides, Clostridium, Faecalibacterium, Ruminococcus and Eubacterium make up, together with Methanobrevibacter smithii, the large majority of the adult gut microbial community.
It should be noted that different data were obtained from analysis of populations of African rural areas, as seen above.
And the gut microbiota is sufficiently similar among subjects to allow the identification of a shared core microbiome.
Stability and resilience, however, are subject to numerous variables among which, as previously said, diet seems to be one of the most important. Therefore, in order to maintain the stability of the gut microbiota, the variables have to be kept constant, or in the case of diseases prevented (also through vaccinations). However, the stability and resilience could be harmful if the dominant community is pathogenic.

The gut microbiota undergoes substantial changes in the elderly. In a study conducted in Ireland on 161 healthy people aged 65 years and over, the gut microbiota is distinct from that of younger adults in the majority of subjects, with a composition that seems to be dominated by the phyla Bacteroidetes, the main ones, and Firmicutes, with almost inverted percentages than those found in younger adults (although large variations across subjects were observed). And there are Faecalibacterium, about 6% of the main genera, followed by species of the genera Ruminococcus, Roseburia and Bifidobacterium (the latter about 0.4%) among the most abundant genera.
Also the variability in the composition of the community is greater than in younger adults; this could be due to the increase in morbidities associated with aging and the subsequent increased intake of medications, as well as to changes in the diet.

References

Breitbart M., Haynes M., Kelley S., Angly F., Edwards R.A., Felts B., Mahaffy J.M., Mueller J., Nulton J., Rayhawk S., Rodriguez-Brito B., Salamon P., Rohwer F. Viral diversity and dynamics in an infant gut. Res Microbiol 2008;159:367-73. doi:10.1016/j.resmic.2008.04.006

Claesson M.J., Cusack S., O’Sullivan O., Greene-Diniz R., de Weerd H., Flannery E., Marchesi J.R., Falush D., Dinan T., Fitzgerald G., et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA 2011;108(Suppl 1);4586-91. doi:10.1073/pnas.1000097107

Clemente J.C., Ursell L.K., Wegener Parfrey L., and Knight R. The impact of the gut microbiota on human health: an integrative view. Cell 2012;148:1258-70. doi:10.1016/j.cell.2012.01.035

De Filippo c., Cavalieri D., Di Paola M., Ramazzotti M., Poullet J.B., Massart S., Collini S., Pieraccini G., and Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci 2010;107(33):14691-6. doi:10.1073/pnas.1005963107

Dominguez-Bello M.G., Costello E.K., Contreras M., Magris M., Hidalgo G., Fierer N., and Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci 2010;107:11971-5. doi:10.1073/pnas.1002601107

Fernández L., Langa S., Martín V., Maldonado A., Jiménez E., Martín R., Rodríguez J.M. The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res 2013;69(1):1-10. doi:10.1073/pnas.1002601107

Huurre A., Kalliomäki M., Rautava S., Rinne M., Salminen S., and Isolauri E. Mode of delivery-effects on gut microbiota and humoral immunity. Neonatology 2008;93:236-40. doi:10.1159/000111102

Koenig J.E., Spor A., Scalfone N., Fricker A.D., Stombaugh J., Knight R., Angenent L.T., and Ley R.E. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci 2011;108(1):4578-85. doi:10.1073/pnas.1000081107

Ley R.E., Peterson D.A., and Gordon J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006;124(4):837-48. doi:10.1016/j.cell.2006.02.017

Minot S., Sinha R., Chen J., Li H., Keilbaugh S.A., Wu G.D., Lewis J.D., and Bushman F.D. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res 2011;21:1616-1625. doi:10.1101/gr.122705.111

Moreno-Indias I.M., Cardona F., Tinahones F.J. and Queipo-Ortuño M.I. Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front Microbiol 2014;5(190):1-10 . doi:10.3389/fmicb.2014.00190

Newburg D.S. & Morelli L. Human milk and infant intestinal mucosal glycans guide succession of the neonatal intestinal microbiota. Pediatr Res 2015;77:115-120. doi:10.1038/pr.2014.178

Palmer C., Bik E.M., DiGiulio D.B., Relman D.A., and Brown P.O. Development of the human infant intestinal microbiota. PLoS Biol 2007;5(7):e177. doi:10.1371/journal.pbio.0050177

Rodrıguez J.M., Murphy K., Stanton C., Ross R.P., I. Kober O.I., Juge N., Avershina E., Rudi K., Narbad A., Jenmalm M.C., Marchesi J.R. and Collado M.C. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis 2015;26:26050. doi:10.3402/mehd.v26.26050

Wu G.D., Chen J., Hoffmann C., Bittinger K., Chen Y.Y., Keilbaugh S.A., Bewtra M., Knights D., Walters W.A., Knight R., et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011;334:105-8. doi:10.1126/science.1208344

Human microbiota: definition, composition, function, and effect of antibiotics

Human Microbiota
Fig. 1 – Lactobacillus casei

It has been known for almost a century that humans harbor a microbial ecosystem, known as human microbiota, remarkably dense and diverse, made up of a  number of viruses and cells much higher than those of the human body, and that accounts for one to three percent of body weight. All the genes encoded by the human body’s microbial ecosystem, which are about 1,000 times more numerous than those of our genome, make up the human microbiome. Microorganisms colonize all the surfaces of the body that are exposed to the environment. Indeed, distinct microbial communities are found on the skin, in the vagina, in the respiratory tract, and along the whole intestinal tract, from the mouth up to rectum, the last part of the intestine.

CONTENTS

Composition of the human microbiota

It is composed of organisms from all taxa.

  • Bacteria, at least 100 trillion (1014) cells, a number ten times greater than that of the human body. They are found in very high concentration in the intestinal tract, up to 1012-1014/gram of tissue, where they form one of the most densely populated microbial habitats on Earth. In the gut, bacteria mainly belong to the Firmicutes, Bacteroidetes and Actinobacteria phyla. Fusobacteria (oropharynx), Tenericutes, Proteobacteria, and Verrucomicrobia are other phyla present in our body.
    Note: Bacterial communities in a given body region resemble themselves much more across individuals than those from different body regions of the same individual; for example, bacterial communities of the upper respiratory tract are much more similar across individuals than those of the skin or intestine of the same individual.
  • Viruses, by far the most numerous organisms, about quadrillion units. The genomes of all the viruses harbored in the human body make up the human virome. In the past, viruses and eukaryotes (see below) have been studied focusing on pathogenic microorganisms, but in recent years the attention has also shifted on many non-pathogenic members of these groups. And many of the viral gene sequences found are new, which suggests that there is still much to learn about the human virome. Finally, just like for bacteria, there is considerable interpersonal variability.
  • Archaebacteria, primarily those belonging to the order Methanobacteriales, with Methanobrevibacter smithii predominant in the human gut (up to 10% of all anaerobes).
  • Eukaryotes, and the parasites of the genera Giardia and Entamoeba have probably been among the first to be identified. But there is also a great abundance and diversity of fungal species, belonging to genera such as Candida, Penicillium, Aspergillus, Hemispora, Fusarium, Geotrichum, Hormodendrum, Cryptococcus, Saccharomyces, and Blastocystis.
Human Microbiota
Fig. 2 – Candida albicans

Based on the relationships with the human host, microorganisms may be classified as commensals or pathogens.

  • Commensals cause no harm to the host, with which they establish a symbiotic relationship that generally brings benefits to both.
  • On the contrary, pathogens are able to cause diseases, but fortunately represent a small percentage of the human microbiota. These microorganisms establish a symbiosis with the human host and benefit from it at the expense of the host. They can cause disease:

if they move from their niche, such as the intestine, into another one where they do not usually reside, such as the vagina or bladder (as in the case of Candida albicans, normally present in the intestine, but in very small quantities);
in patients with impaired immunological defenses, such as after an immunosuppressive therapy.

Functions of the human microbiota

Human Microbiota
Fig. 3 – Bifidobacterium longum

Sometimes referred to as “the forgotten organ“, human microbiota, mainly with its intestinal bacterial members, plays many important functions that can lead to nutritional, immunological, and developmental benefits, but can also cause diseases. Here are some examples.

  • It is involved in the development of the gastrointestinal system of the newborn, as shown by experiments carried out on germ-free animals in which, for example, the thickness of the intestinal mucosa is thinner than that of colonized animals, therefore more easily subject to rupture.
  • It contributes to energy harvest from nutrients, due to its ability to ferment indigestible carbohydrates, promote the absorption of monosaccharides and the storage of the derived energy. This has probably been a very strong evolutionary force that has played a major role in favor of the fact that these bacteria became our symbionts.
  • It contributes to the maintenance of the acidic pH of the skin and in the colon.
  • It is involved in the metabolism of xenobiotics and several polyphenols.
  • It improves water and mineral absorption in the colon.
  • It increases the speed of intestinal transit, slower in germ-free animals.
  • It has an important role in resistance to colonization by pathogens, primarily in the vagina and gut.
  • It is involved in the biosynthesis of isoprenoids and vitamins through the methylerythritol phosphate pathway.
  • It stimulates angiogenesis.
  • In the intestinal tract, it interacts with the immune system, providing signals for promoting the maturation of immune cells and the normal development of immune functions. And this is perhaps the most important effect of the symbiosis between the human host and microorganisms. Experiments carried out on germ-free animals have shown, for example, that:

macrophages, the cells that engulf pathogens and then present their antigens to the immune system, are found in much smaller amounts than those present in the colonized intestine, and if placed in the presence of bacteria they fail to find and therefore engulf them, unlike macrophages extracted from a colonized intestine;
there is not the chronic non-specific inflammation, present in the normal intestine as a result of the presence of bacteria (and of what we eat).

  • Changes in its composition can contribute to the development of obesity and metabolic syndrome.
  • It protects against the development of type I diabetes.
  • Many diseases, both in children and adults, such as stomach cancer, lymphoma of mucosa-associated lymphoid tissue, necrotizing enterocolitis (an important cause of morbidity and mortality in premature babies) or chronic intestinal diseases, are, and others seem to be, related to the gut microbiota.

In conclusion, it seems very likely that the human body represents a superorganism, result of years of evolution and made up of human cells, and the resulting metabolic and physiological capacities, as well as an additional organ, the microbiota.

Human Microbiome Project

Human Microbiota
Fig. 4 – Human Microbiome Project

The bacterial component of the human microbiota is the subject of most studies including a large-scale project started in 2008 called “Human Microbiome Project“, whose aim is to characterize the microbiome associated with multiple body sites, such as the skin, mouth, nose, vagina and intestine, in 242 healthy adults. These studies have shown a great variability in the composition of the human microbiota; for example, twins share less than 50% of their bacterial taxa at the species level, and an even smaller percentage of viruses. The factors that shape the composition of bacterial communities begin to be understood: for example, the genetic characteristics of the host play an important, although this is not true for the viral community. And metagenomic studies have shown that, despite the great interpersonal variability in microbial community composition, there is a core of shared genes encoding signaling and metabolic pathways. It appears namely that the assembly and the structure of the microbial community does not occur according to the species but the more functional set of genes. Therefore, disease states of these communities might be better identified by atypical distribution of functional classes of genes.

Effect of antibiotics

Clostridium
Fig. 5 – Clostridium difficile

The microbiota in healthy adult humans is generally stable over time. However, its composition can be altered by factors such as dietary changes, urbanization, travel, and especially the use of broad-spectrum antibiotics. Here are some examples of the effect of antibiotic treatments.

  • There is a long-term reduction in microbial diversity.
  • The taxa affected vary from individual to individual (even up to a third of the taxa).
  • Several taxa do not recover even after 6 months from treatment.
  • Once the bacterial communities have reshaped, a reduced resistance to colonization occurs. This allows foreign and/or pathogen bacteria, able to grow more than the commensals, to cause permanent changes in human microbiota structure, as well as acute diseases, such as the dangerous pseudomembranous colitis, and chronic diseases, as it is suspected for asthma following the use and abuse of antibiotics in childhood. Moreover, their repeated use has been suggested to increase the pool of antibiotic-resistance genes in our microbiome. In support of this hypothesis, a decrease in the number of antibiotic-resistant pathogens has been observed in some European countries following the reduction in the number of antibiotics prescribed.

Finally, you must not underestimate the fact that the intestinal microflora is involved in many chemical transformations, and its alteration could be implicated in the development of cancer and obesity. However, regarding use of antibiotics, you should be underlined that if western population has a life expectancy higher than in the past is also because you do not die of infectious diseases!

References

Burke C., Steinberg P., Rusch D., Kjelleberg S., and Thomas T. Bacterial community assembly based on functional genes rather than species. Proc Natl Acad Sci USA 2011;108:14288-93. doi:10.1073/pnas.1101591108

Clemente J.C., Ursell L.K., Wegener Parfrey L., and Knight R. The impact of the gut microbiota on human health: an integrative view. Cell 2012;148:1258-70. doi:10.1016/j.cell.2012.01.035

Gill S.R., Pop M., Deboy R.T., Eckburg P.B., Turnbaugh P.J., Samuel B.S., Gordon J.I., Relman D.A., Fraser-Liggett C.M., and Nelson K.E. Metagenomic analysis of the human distal gut microbiome. Science 2006;312:1355-59. doi:10.1126/science.1124234

Palmer C., Bik E.M., DiGiulio D.B., Relman D.A., and Brown P.O. Development of the human infant intestinal microbiota. PLoS Biol 2007;5(7):e177. doi:10.1371/journal.pbio.0050177

The Human Microbiome  Project

Turnbaugh P.J., Gordon J.I. The core gut microbiome, energy balance and obesity. J Physiol 2009;587:4153-58. doi:10.1113/jphysiol.2009.174136

Zhang, T., Breitbart, M., Lee, W., Run, J.-Q., Wei, C., Soh, S., Hibberd, M., Liu, E., Rohwer, F., Ruan, Y. Prevalence of plant viruses in the RNA viral community of human feces. PLoS Biol 2006;4(1):e3. doi:10.1371/journal.pbio.0040003

Lignans: structure, metabolism, benefits, and foods

Lignans are a subgroup of non-flavonoid polyphenols.
They are widely distributed in the plant kingdom, being present in more than 55 plant families, where they act as antioxidants and defense molecules against pathogenic fungi and bacteria.
In humans, epidemiological and physiological studies have shown that they can exert positive effects in the prevention of lifestyle-related diseases, such as type II diabetes and cancer. For example, an increased dietary intake of these polyphenols correlates with a reduction in the occurrence of certain types of estrogen-related tumors, such as breast cancer in postmenopausal women.
In addition, some lignans have also aroused pharmacological interest. Examples are:

  • podophyllotoxin, obtained from plants of the genus Podophyllum (Berberidaceae family); it is a mitotic toxin whose derivatives have been used as chemotherapeutic agents;
  • arctigenin and tracheologin, obtained from tropical climbing plants; they have antiviral properties and have been tested in the search for a drug to treat AIDS .

CONTENTS

Chemical structure of lignans

Their basic chemical structure consists of two phenylpropane units linked by a C-C bond between the central atoms of the respective side chains (position 8 or β), also called β-β’ bond. 3-3′, 8-O-4′, or 8-3′ bonds are observed less frequently; in these cases the dimers are called neolignans. Hence, their chemical structure is referred to as (C6-C3)2, and they are included in the phenylpropanoid group, as well as their precursors: the hydroxycinnamic acids (see below).

Structural formula of phenylpropanoid unit of lignans
Fig. 1 – Phenylpropanoid unit

Based on their carbon skeleton, cyclization pattern, and the way in which oxygen is incorporated in the molecule skeleton, they can be divided into 8 subgroups: furans, furofurans, dibenzylbutanes, dibenzylbutyrolactones, dibenzocyclooctadienes, dibenzylbutyrolactols, aryltetralins and arylnaphthalenes. Furthermore, there is considerable variability regarding the oxidation level of both the propyl side chains and the aromatic rings.
They are not present in the free form in nature, but linked to other molecules, mainly as glycosylated derivatives.
Among the most common lignans, secoisolariciresinol (the most abundant one), lariciresinol, pinoresinol, matairesinol and 7-hydroxymatairesinol are found.

Note: They occur not only as dimers but also as more complex oligomers, such as dilignans and sesquilignans.

Synthesis of lignans

In this section, we will examine the synthesis of some of the most common lignans.
The pathway starts from 3 of the 4 most common dietary hydroxycinnamic acids: p-coumaric acid, sinapic acid, and ferulic acid (caffeic acid is not a precursor of this subgroup of polyphenols). Therefore, they arise from the shikimic acid pathway, via phenylalanine.

Synthesis pathways for lignans
Fig. 2 – Lignan Biosynthesis

The first three reactions reduce the carboxylic group of the hydroxycinnamates to alcohol group, with formation of the corresponding alcohols, called monolignols, that is, p-coumaric alcohol, sinapyl alcohol and coniferyl alcohol. These molecules also enter the pathway of lignin biosynthesis.

  • The first step, which leads to the activation of the hydroxycinnamic acids, is catalysed by hydroxycinnamate:CoA ligases, commonly called p-coumarate:CoA ligases (EC 6.2.1.12), with formation of the corresponding hydroxycinnamate-CoAs, namely, feruloil-CoA, p- coumaroyl-CoA and sinapil-CoA.
  • In the second step, a NADPH-dependent cinnamoyl-CoA: oxidoreductase, also called cinnamoyl-CoA reductase (EC1.2.1.44) catalyzes the formation of the corresponding aldehydes, and the release of coenzyme A.
  • In the last step, a NADPH-dependent cinnamyl alcohol dehydrogenase, also called monolignol dehydrogenase (EC 1.1.1.195), catalyzes the reduction of the aldehyde group to an alcohol group, with the formation of the aforementioned monolignols.

The next step, the dimerization of monolignols, involves the intervention of stereoselective mechanisms, or, more precisely, enantioselective mechanisms. In fact, most of the plant lignans exists as (+)- or (-)-enantiomers, whose relative amounts can vary from species to species, but also in different organs on the same plant, depending on the type of reactions involved.
The dimerization can occur through enzymatic reactions involving laccases (EC 1.10.3.2). These enzymes catalyze the formation of radicals that, dimerizing, form a racemic mixture. However, this does not explain how the racemic mixtures found in plants are formed. The most accepted mechanism to explain the stereospecific synthesis involves the action of the laccase and of a protein able to direct the synthesis toward one or the other of the two enantiomeric forms: the dirigent protein. The reaction scheme might be: the enzyme catalyzes the synthesis of phenylpropanoid radicals that are orientated in such a way to obtain the desired stereospecific coupling by the dirigent protein.

Structural formula of the lignan (-)-matairesinol
Fig. 3 – (-)-Matairesinol

For example, pinoresinol synthase, consisting of laccase and dirigent protein, catalyzes the stereospecific synthesis of (+)-pinoresinol from two units of coniferyl alcohol. (+)-Pinoresinol, in two consecutive stereospecific reactions catalyzed by NADPH-dependent pinoresinol/lariciresinol reductase (EC 1.23.1.2), is first reduced to (+)-lariciresinol, and then to (-)-secoisolariciresinol. (-)-Secoisolariciresinol, in the reaction catalyzed by NAD(P)-dependent secoisolariciresinol dehydrogenase (EC 1.1.1.331) is oxidized to (-)-matairesinol.

Metabolism by human gut microbiota

Their importance to human health is due largely to their metabolism by gut microbiota, which carries out deglycosylations, para-dehydroxylations, and meta-demethylations without enantiomeric inversion. Indeed, this metabolization leads to the formation molecules with a modest estrogen-like activity (phytoestrogens), a situation similar to that observed with some isoflavones, such as those of soybean, some coumarins, and some stilbenes. These active metabolites are the so-called “mammalian lignans or enterolignans”, such as the aglycones of enterodiol and enterolactone, formed from secoisolariciresinol and matairesinol, respectively.
Studies conducted on animals fed diets rich in lignans have shown their presence as intact molecules, in low concentrations, in serum, suggesting that they may be absorbed as such from the intestine. These molecules exhibit estrogen-independent actions, both in vivo and in vitro, such as inhibition of angiogenesis, reduction of diabetes, and suppression of tumor growth.
Note: The term “phytoestrogen” refers to molecules with estrogenic or antiandrogenic activity, at least in vitro.

Once absorbed, they enter the enterohepatic circulation, and, in the liver, may undergo phase II reactions and be sulfated or glucuronidated, and finally excreted in the urine.

Food sources

The richest dietary source is flaxseed (linseed), that contains mainly secoisolariciresinol, but also lariciresinol, pinoresinol and matairesinol in good quantity (for a total amount of more than 3.7 mg/100 g dry weight). They are also found in sesame seeds.

Structural formula of the lignan (-)-secoisolariciresinol
Fig. 4 – (-)-Secoisolariciresinol

Another important source is whole grains.
They are also present in other foods, but in concentrations from one hundred to one thousand times lower than those of flaxseed. Examples are:

  • beverages, generally more abundant in red wine, followed in descending order by black tea, soy milk and coffee;
  • fruits, such as apricots, pears, peaches, strawberries;
  • among vegetables, Brassicaceae, garlic, asparagus and carrots;
  • lentils and beans.

Their presence in grains and, to a lesser extent in red wine and fruit, makes them, at least in individuals who follow a Mediterranean-style eating pattern, the main source of phytoestrogens.

References

Andersen Ø.M., Markham K.R. Flavonoids: chemistry, biochemistry, and applications. CRC Press Taylor & Francis Group, 2006

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Heldt H-W. Plant biochemistry – 3th Edition. Elsevier Academic Press, 2005

Manach C., Scalbert A., Morand C., Rémésy C., and Jime´nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-47 doi:10.1093/ajcn/79.5.727

Satake H, Koyama T., Bahabadi S.E., Matsumoto E., Ono E. and Murata J. Essences in metabolic engineering of lignan biosynthesis. Metabolites 2015;5:270-90. doi:10.3390/metabo5020270

Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010;2:1231-46. doi:10.3390/nu2121231

van Duynhoven J., Vaughan E.E., Jacobs D.M., Kemperman R.A., van Velzen E.J.J, Gross G., Roger L.C., Possemiers S., Smilde A.K., Doré J., Westerhuis J.A.,and Van de Wiele T. Metabolic fate of polyphenols in the human superorganism. PNAS 2011;108(suppl. 1):4531-8. doi:10.1073/pnas.1000098107

Wink M. Biochemistry of plant secondary metabolism – 2nd Edition. Annual plant reviews (v. 40), Wiley J. & Sons, Inc., Publication, 2010

Hydroxycinnamic acids: properties, synthesis, health benefits, natural sources

Hydroxycinnamic acids or hydroxycinnamates are phenolic compounds belonging to non-flavonoid polyphenols.
They are present in all parts of fruits and vegetables although the highest concentrations are found in the outer part of ripe fruits, concentrations that decrease during ripening, while the total amount increases as the size of the fruits increases.

Their dietary intake has been associated with the prevention of the development of chronic diseases such as:

  • cardiovascular disease;
  • cancer;
  • type-2 diabetes.

These effects do seem to be due not only to their high antioxidant activity (that depends upon the hydroxylation pattern of the aromatic ring, see below), but also to other mechanisms of action such as, e.g., the reduction of intestinal absorption of glucose or the modulation of secretion of some gut hormones.

CONTENTS

Chemical structure of hydroxycinnamic acids

Their basic structure is a benzene ring to which a three carbon chain is attached, structure that is referred to as C6-C3. Therefore they can be included in the phenylpropanoid group.

Basic skeleton structure of hydroxycinnamic acids
Fig. 1 – Basic Skeleton of Hydroxycinnamates

The main dietary hydroxycinnamates are:

  • caffeic acid or 3,4-dihydroxycinnamic acid;
  • ferulic acid or 4-hydroxy-3-methoxycinnamic acid;
  • sinapic acid or 4-hydroxy-3,5-dimethoxycinnamic acid;
  • p-coumaric acid or 4-coumaric acid or 4-hydroxycinnamic acid.

In nature, they are associated with other molecules to form, e.g., glycosylated derivatives or esters of tartaric acid, quinic acid, or shikimic acid. In addition, several hundreds of anthocyanins acylated with the aforementioned hydroxycinnamates have been identified (in descending order with p-coumaric acid, more than 150, caffeic acid, about 100, ferulic acid, about 60, and sinapic acid, about 25). They are rarely present in the free form, except in processed foods that have undergone fermentation, sterilization or freezing. For example, an overlong storage of blood orange fruits causes a massive hydrolysis of hydroxycinnamic derivatives to free acids, and this in turn could lead to the formation of malodorous compounds such as vinyl phenols, indicators of too advanced senescence of the fruit.

Synthesis of hydroxycinnamic acids

Hydroxycinnamate biosynthesis consists of a series of enzymatic reactions subsequent to that catalyzed by phenylalanine ammonia lyase (PAL). This enzyme catalyzes the deamination of phenylalanine to yield trans-cinnamic acid, so linking the aromatic amino acid to the hydroxycinnamic acids and their activated forms.

Synthesis of hydroxycinnamic acids
Fig. 2 – Biosynthesis of Hydroxycinnamates

In the first step, a hydroxyl group is attached at the 4-position of the aromatic ring of trans-cinnamic acid to form p-coumaric acid (reaction catalysed by cinnamic acid 4-hydroxylase). The addition of a second hydroxyl group at the 3-position of the ring of p-coumaric acid leads to the formation of caffeic acid (reaction catalysed by p-coumarate 3-hydroxylase or phenolase), while the O-methylation of the hydroxyl group at the 3-position yields ferulic acid (reaction catalyzed by catechol-O-methyltransferase). In turn, ferulic acid is converted into sinapic acid through two reactions: a hydroxylation at the 5-position to form 5-hydroxy ferulic acid (reaction catalysed by ferulate 5-hydroxylase), and the subsequent O-methylation of the same hydroxyl group (reaction catalyzed by catechol-O-methyltransferase).
Hydroxycinnamic acids are not present in high quantities since they are rapidly converted to glucose esters or coenzyme A (CoA) esters, in reactions catalyzed by O-glucosyltransferases and hydroxycinnamate:CoA ligases, respectively. These activated intermediates are branch points, being able to participate in a wide range of reactions such as condensation with malonyl-CoA to form flavonoids, or the NADPH-dependent reduction to form lignans (precursors of lignin).

The main hydroxycinnamic acids in foods

Kiwis, blueberries, plums, cherries, apples, pears, chicory, artichokes, carrots, lettuce, eggplant, wheat and coffee are among the richest sources.

Caffeic acid

It is generally, both in the free form and bound to other molecules, the most abundant hydroxycinnamic acid in vegetables and most of the fruits, where it represents between 75 and 100% of the hydroxycinnamates.

Structural formula of caffeic acid, a member of hydroxycinnamic acids
Fig. 3 – Caffeic Acid

The richest sources are coffee (drink), carrots, lettuce, potatoes, even sweet ones, and berries such as blueberries, cranberries and blackberries.
Smaller quantities are present in grapes and grape-derived products, orange juice, apples, plums, peaches, and tomatoes.
Caffeic acid and quinic acid bind to form chlorogenic acid, present in many fruit and in high concentration in coffee.

Ferulic acid

It is the most abundant hydroxycinnamic acid in cereals, which are also its main dietary source.

Structural formula of ferulic acid, a hydroxycinnamate
Fig. 4 – Ferulic Acid

In wheat grain, its content is between 0.8 and 2 g/kg dry weight, which represents up to 90% of the total polyphenols. It is found chiefly, up to 98% of the total content, in the aleurone layer and pericarp (that is, the outer parts of the grain), and therefore its content in wheat flours depends upon the degree of refining, while the main source is obviously the bran. The molecule is present mainly in the trans form, and esterified with arabinoxylans and hemicelluloses. And in fact, in wheat bran the soluble free form represents only about 10% of its total amount. Dimers were also found, which form bridge structures between chains of hemicellulose.
In fruits and vegetables, ferulic acid is much less common than caffeic acid. The main sources are asparagus, eggplant and broccoli; lower quantities are found in blackberries, blueberries, cranberries, apples, carrots, potatoes, beets, coffee and orange juice.

Sinapic acid

The highest amounts are found in citrus peel and seeds (in orange juice, the amount is much lower); appreciable quantities in Chinese cabbage and in some varieties of cranberries.

Structural formula of sinapic acid, a member of hydroxycinnamic acids
Fig. 5 – Sinapic Acid

p-Coumaric acid

High amounts are present in eggplant, the richest source, broccoli and asparagus; other sources are sweet cherries, plums, blueberries, cranberries, citrus peel and seeds, and orange juice.

Structural formula of p-coumaric acid, a hydroxycinnamate
Fig. 6 – p-Coumaric Acid

References

Andersen Ø.M., Markham K.R. Flavonoids: chemistry, biochemistry, and applications. CRC Press Taylor & Francis Group, 2006

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Manach C., Scalbert A., Morand C., Rémésy C., and Jime´nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-47 doi:10.1093/ajcn/79.5.727

Preedy V.R. Coffee in health and disease prevention. Academic Press, 2014  [Google eBook]

Zhao Z.,  Moghadasian M.H. Bioavailability of hydroxycinnamates: a brief review of in vivo and in vitro studies. Phytochem Rev 2010;9(1):133-145. doi:10.1007/s11101-009-9145-5

Polyphenols from grapes and wines: content, biological activities, and benefits

The consumption of grapes and grape-derived products, particularly red wine but only at meals, has been associated with numerous health benefits, which include, in addition to the antioxidant/antiradical effect, also anti-inflammatory, cardioprotective, anticancer, antimicrobial, and neuroprotective activities.
Grapes contain many nutrients such as sugars, vitamins, minerals, fiber and phytochemicals. Among the latter, polyphenols from grapes are the most important compounds in determining the health effects of the fruit and derived products.
Indeed, grapes are among the fruits with highest content in polyphenols, whose composition is strongly influenced by several factors such as:

  • cultivar;
  • climate;
  • exposure to disease;
  • processing

Nowadays, the main species of grapes cultivated worldwide are: European grapes, Vitis vinifera, North American grapes, Vitis rotundifolia and Vitis labrusca, and French hybrids.
Note: Grapes are not a fruit but an infructescence, that is, an ensemble of fruits (berries): the bunch of grapes. In turn, it consists of a peduncle, a rachis, cap stems or pedicels, and berries.

CONTENTS

What are polyphenols from grapes and wines?

Polyphenols from red grapes and wine are significantly higher, both in quantity and variety, than in white ones. This, according to many researchers, would be the basis of the more health benefits related to the consumption of red grapes and wine than white grapes and derived products.
Polyphenols from grapes and wine are a complex mixture of flavonoid compounds, the most abundant group, and non-flavonoid compounds.
Among flavonoids, they are found:

Among non-flavonoid polyphenols:

Most of the flavonoids present in wine derive from the epidermal layer of the berry skin, while 60-70% of the total polyphenols are present in the grape seeds. It should be noted that more than 70% of grape polyphenols are not extracted and remain in the pomace.
The complex chemical interactions that occur between these compounds, and between them and the other compounds of different nature present in grapes and wine, are probably essential in determining both the quality of the grapes and wine and the broad spectrum of therapeutic effects of these foods.
In wine, the mixture of polyphenols play important functions being able to influence:

  • bitterness;
  • astringency;
  • red color, of which they are among the main responsible;
  • sensitivity to oxidation, being molecules easily oxidizable by atmospheric oxygen.

Finally, they act as preservatives and are the basis of long aging.

Anthocyanins

They are flavonoids widely distributed in fruits and vegetables.
They are primarily located in the berry skin (in the outer layers of the hypodermal tissue), to which they confer color, having a hue that varies from red to blue. In some varieties, called “teinturier”, they also accumulate in the flesh of the berry.
There is a close relationship between berry development and the biosynthesis of anthocyanins. The synthesis starts at veraison (when the berry stops growing and changes its color), causes a color change of the berry that turns purple, and reaches the maximum levels at complete ripening.
Among wine flavonoids, they are one of the most potent antioxidants.
Each grape species and cultivars has a unique composition of anthocyanins. Moreover, in grapes of Vitis vinifera, due to a mutation in the gene coding for 5-O-glucosyltransferase, mutation that determines the synthesis of an inactive enzyme, only 3-monoglucoside derivatives are synthesized, while in other species  the glycosylation at position 5 also occurs. Interestingly, 3-monoglucoside derivatives are more intensely colored than 3,5-diglucoside derivatives.

Structural formula of malvidin-3-glucoside, an anthocyanin
Fig. 1 – Malvidin-3-glucoside

In red grapes and wine, the most abundant anthocyanins are the 3-monoglucosides of malvidin (the most abundant one both in grapes and wine), petunidin, delphinidin, peonidin, and cyanidin. In turn, the hydroxyl group at position 6 of the glucose can be acylated with an acetyl, caffeic or coumaric group, acylation that further enhances the stability.
Anthocyanidins, namely the non-conjugated molecules, are not present in grapes and in wine, except as traces.
Anthocyanins are scarcely present in white grapes and wine.
The composition of anthocyanins in wine is highly influenced both by the type of cultivar and by processing techniques, since they are present in wine as a result of extraction by maceration/fermentation processes. For this reason, wines deriving from similar varieties of grapes can have very different anthocyanin compositions.
Together with proanthocyanidins, they are the most important polyphenols in contributing to some organoleptic properties of red wine, as they are primarily responsible for astringency, bitterness, chemical stability against oxidation, as well as of the color of the young wine. In this regard, it should be underscored that with time their concentration decreases, while the color is due more and more to the formation of polymeric pigments produced by condensation of anthocyanins both among themselves and with other molecules.
During wine aging, proanthocyanidins and anthocyanins react to produce more complex molecules that can  partially precipitate.

Flavanols or catechins

They are, together with condensed tannins, the most abundant flavonoids, representing up to 50% of the total polyphenols in white grapes and between 13% and 30% in red ones.
Their levels in wine depend on the type of cultivar.

Polyphenols from grapes: structural formula of catechin, a flavanol
Fig. 2 – Catechin

Typically, the most abundant flavanol in wine is catechin, but epicatechin and epicatechin-3-gallate are also present.

Proanthocyanidins or condensed tannins

Composed of catechin monomers, they are present in the berry skin, seeds and rachis of the bunch of grapes as:

  • dimers: the most common are procyanidins B1-B4, but also procyanidins B5-B8 can be present;
  • trimers: procyanidin C1 is the most abundant;
  • tetramers;
  • polymers, containing up to 8 monomers.
Structural formula of procyanidin C1, a proanthocyanidin
Fig. 3 – Procyanidin C1

Their levels in wine depend on the type of grape varieties and wine-making technology, and, like anthocyanins, are much more abundant in red wines, in particular in aged wines, compared to white ones.
In addition, as previously said, together with anthocyanins, condensed tannins are important in determining some organoleptic properties of the wine.

Flavonols

They are present in a large variety of fruit and vegetables, even if in low concentrations.
They are the third most abundant group of flavonoids from grapes, after proanthocyanidins and catechins.
They are mainly present in the outer epidermis of the berry skin, where they play a role both in providing protection against UV-A and UV-B radiations and in copigmentation together with anthocyanins.
Flavanol synthesis begins in the sprout; the highest concentration is reached a few weeks after veraison, then it decreases as the berry increases in size.
Their total amount is very variable, with the red varieties often richer than the white ones.
In grapes, they are present as 3-glucosides and their composition depends on the type of grapes and cultivar:

  • the derivatives of quercetin, kaempferol and isorhamnetin are found in white grapes;
  • the derivatives of myricetin, laricitrin and syringetin are found, together with the previous ones, only in red grapes, due to the lack of expression in white grapes of the gene coding for flavonoid-3′,5′-hydroxylase.
Polyphenols from grapes: structural formula of quercetin-3-glucoside, a flavonol
Fig. 4 – Quercetin-3-glucoside

In general, the 3-glucosides and 3-glucuronides of quercetin are the major flavonols in most of the grape varieties. Conversely, quercetin-3-rhamnoside and quercetin aglycone are the major flavonols in muscadine grapes.
In wine and grape juice, unlike grapes, they are also found as aglycones, as a result of the acid hydrolysis that occurs during processing and storage. They are present in wine in a variable amount, and the major molecules are the glycosides of quercetin and myricetin, which alone represent 20-50% of the total flavonols in red wine.

Hydroxycinnamates

Hydroxycinnamic acids are the main class of non-flavonoid polyphenols from grapes and the major polyphenols in white wine.
The most important are p-coumaric, caffeic, sinapic, and ferulic acids, present in wine as esters with tartaric acid.
They have antioxidant activity and in some white varieties of Vitis vinifera, together with flavonols, are the polyphenols mainly responsible for absorbing UV radiation in the berry.

Stilbenes

They are phytoalexins which are produced in low concentrations only by a few edible species, including grapevine (on the contrary, flavonoids are present in all higher plants).
Together with the other polyphenols from grapes and wine, also stilbenes, particularly resveratrol, have been associated with health benefits resulting from the consumption of wine.

Polyphenols from grapes: stryuctural formula of trans-resveratrol, a stilbene
Fig. 5 – trans-Resveratrol

Their content increases from the veraison to the ripening of the berry, and is influenced by the type of cultivar, climate, wine-making technology, and fungal pressure.
The main stilbenes present in grapes and wine are:

  • cis- and trans-resveratrol (3,5,4′-trihydroxystilbene);
  • piceid or resveratrol-3-glucopyranoside and astringin or 3′-hydroxy-trans-piceid;
  • piceatannol;
  • dimers and oligomers of resveratrol, called viniferins, of which the most important are:

α-viniferin, a trimer;
β-viniferin, a cyclic tetramer;
γ-viniferin, a highly polymerized oligomer;
ε-viniferin, a cyclic dimer.

In grapes, other glycosylated and isomeric forms of resveratrol and piceatannol, such as resveratroloside, hopeaphenol, or resveratrol di- and tri-glucoside derivatives, have been found in trace amounts.
Glycosylation of stilbenes is important for the modulation of antifungal activity, protection from oxidative degradation, and storage of the wine.
The synthesis of dimers and oligomers of resveratrol, both in grapes and wine, represents a defense mechanism against exogenous attacks or, on the contrary, the result of the action of extracellular enzymes released from pathogens in an attempt to eliminate undesirable compounds.

Hydroxybenzoates

The hydroxybenzoic acid derivatives are a minor component in grapes and wine.
In grapes, gentisic, gallic, p-hydroxybenzoic and protocatechuic acids are the main ones.

Structural formula of gallic acid, an hydroxybenzoic acid
Fig. 6 – Gallic Acid

Unlike hydroxycinnamates, which are present in wine as esters with tartaric acid, they are found in their free form.
Together with flavonols, proanthocyanidins, catechins, and hydroxycinnamates they are among the responsible of astringency of wine.

References

Andersen Ø.M., Markham K.R. Flavonoids: chemistry, biochemistry, and applications. CRC Press Taylor & Francis Group, 2006

Basli A, Soulet S., Chaher N., Mérillon J.M., Chibane M., Monti J.P.,1 and Richard T. Wine polyphenols: potential agents in neuroprotection. Oxid Med Cell Longev 2012. doi:10.1155/2012/805762

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Flamini R., Mattivi F.,  De Rosso M., Arapitsas P. and Bavaresco L. Advanced knowledge of three important classes of grape phenolics: anthocyanins, stilbenes and flavonols. Int J Mol Sci 2013;14:19651-19669. doi:10.3390/ijms141019651

Georgiev V., Ananga A. and Tsolova V. Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients 2014;6: 391-415. doi:10.3390/nu6010391

Guilford J.M. and Pezzuto J.M. Wine and health: a review. Am J Enol Vitic 2011;62(4):471-486. doi:10.5344/ajev.2011.11013

He S., Sun C. and Pan Y. Red wine polyphenols for cancer prevention. Int J Mol Sci 2008;9:842-853. doi:10.3390/ijms9050842

Xia E-Q., Deng G-F., Guo Y-J. and Li H-B. Biological activities of polyphenols from grapes. Int J Mol Sci 2010;11-622-646. doi:10.3390/ijms11020622

Waterhouse A.L. Wine phenolics. Ann N Y Acad Sci 2002;957:21-36. doi:10.1111/j.1749-6632.2002.tb02903.x

Gluten: definition, gliadins, glutenins, and containing grains

Gluten is not a single protein but a mixture of cereal proteins, about 80% of its dry weight (for example gliadins and glutenins in wheat grains), lipids, 5-7%, starch, 5-10%, water, 5-8%, and mineral substances, <2%.
It forms when components naturally present in the grain of cereals, the caryopsis, and in their flours, are joined together by means of mechanical stress in aqueous environment, i.e. during the formation of the dough.
The term is also related to the family of proteins that cause problems for celiac patients (see below).
Isolated for the first time in 1745 from wheat flour by the Italian chemist Jacopo Bartolomeo Beccari, it can be extracted from the dough by washing it gently under running water: starch, albumins and globulins, that are water-soluble, are washed out, and a sticky and elastic mass remains, precisely the gluten (it means glue in Latin).

CONTENTS

Cereals containing gluten

It is present in:

  • wheat, such as:

durum wheat (Triticum durum); groats and semolina for dry pasta making are obtained from it;
common wheat or bread wheat (Triticum aestivum), so called because it is used in bread and fresh pasta making, and in bakery products;

  • rye (Secale cereale);
  • barley (Hordeum vulgare);
  • spelt, in the three species:

einkorn (Triticun monococcum);
emmer (Triticum dicoccum Schrank);
spelta (Triticum spelta);

  • khorasan wheat (Triticum turanicum); a variety of it is Kamut®;
  • triticale (× Triticosecale Wittmack), which is a hybrid of rye and common wheat;
  • bulgur, which is whole durum wheat, sprouted and then processed;
  • seitan, which is not a cereal, but a wheat derivative, also defined by some as “gluten steak”.

Given that most of the dietary intake of gluten comes from wheat flour, of which about 700 million tons per year are harvested, representing about 30% of the global cereal production, the following discussion will focus on wheat gluten, and mainly on its proteins.

Note: The term gluten is also used to indicate the protein fraction that remains after removal of starch and soluble proteins from the dough obtained with corn flour: however, this “corn gluten” is “functionally” different from that obtained from wheat flour.

Cereal grain proteins

The study of cereal grain proteins, as seen, began with the work of Beccari. 150 years later, in 1924, the English chemist Osborne T.B., which can rightly be considered the father of plant protein chemistry, developed a classification based on their solubility in various solvents.
The classification, still in use today, divides plant proteins into 4 families.

  • Albumins, soluble in water.
  • Globulins, soluble in saline solutions; for example avenalin of oat.
  • Prolamins, soluble in 70% alcohol solution, but not in water or absolute alcohol.
    They include:

gliadins of wheat;
zein of corn;
avenin of oats;
hordein of barley;
secalin of rye.

They are the toxic fraction of gluten for celiac patients.

  • Glutelins, insoluble in water and neutral salt solutions, but soluble in acidic and basic solutions.
    They include glutenins of wheat.
Gluten
Fig. 1 – Cereal Grain Proteins

Albumins and globulins are cytoplasmic proteins, often enzymes, rich in essential amino acids, such as lysine, tryptophan and methionine. They are found in the aleurone layer and embryo of the caryopsis.
Prolamins and glutelins are the storage proteins of cereal grains. They are rich in glutamine and proline, but very low in lysine, tryptophan and methionine. They are found in the endosperm, and are the vast majority of the proteins in the grains of wheat, corn, barley, oat, and rye.
Although Osborne classification is still widely used, it would be more appropriate to divide cereal grain proteins into three groups: structural and metabolic proteins, storage proteins, and defense proteins.

Wheat gluten proteins

Proteins represent 10-14% of the weight of the wheat caryopsis (about 80% of its weight consists of carbohydrates).
According to the Osborne classification, albumins and globulins represent 15-20% of the proteins, while prolamins and glutelins are the remaining 80-85%, composed respectively of gliadins, 30-40%, and glutenins, 40-50%. Therefore, and unlike prolamins and glutelins in the grains of other cereals, gliadins and glutenins are present in similar amounts, about 40% (see Fig. 2).

Gluten
Fig. 2 – Wheat Grain Proteins

Technologically, gliadins and glutenins are very important. Why?
These proteins are insoluble in water, and in the dough, that contains water, they bind to each other through a combination of intermolecular bonds, such as:

  • covalent bonds, i.e. disulfide bridges;
  • noncovalent bonds, such as hydrophobic interactions, van der Waals forces, hydrogen bonds, and ionic bonds.

Thanks to the formation of these intermolecular bonds, a three-dimensional lattice is formed. This structure entraps starch granules and carbon dioxide bubbles produced during leavening, and gives strength and elasticity to the dough, two properties of gluten widely exploited industrially.
In the usual diet of the European adult population, and in particular in Italian diet that is very rich in derivatives of wheat flour, gliadin and glutenin are the most abundant proteins, about 15 g per day. What does this mean? It means that gluten-free diet engages celiac patients both from a psychological and social point of view.

Note: The lipids of the gluten are strongly associated with the hydrophobic regions of gliadins and glutenins and, unlike what you can do with the flour, they are extracted with more difficulty (the lipid content of the gluten depends on the lipid content of the flour from which it was obtained).

Gliadins: extensibility and viscosity

Gliadins are hydrophobic monomeric prolamins, of globular nature and with low molecular weight. On the basis of electrophoretic mobility in low pH conditions, they are separated into the following types:

  • alpha/beta, and gamma, rich in sulfur, containing cysteines, that are involved in the formation of intramolecular disulfide bonds, and methionines;
  • omega, low in sulfur, given the almost total absence of cysteine and methionine.

They have a low nutritional value and are toxic to celiac patients because of the presence of particular amino acid sequences in the primary structure, such as proline-serine-glutamine-glutamine and glutamine-glutamine-glutamine-proline.
Gliadins are associated with each other and with glutenins through noncovalent interactions; thanks to that, they act as “plasticizers” in dough making. Indeed, they are responsible for viscosity and extensibility of gluten, whose three-dimensional lattice can deform, allowing the increase in volume of the dough as a result of gas production during leavening. This property is important in bread-making.
Their excess leads to the formation of a very extensible dough.

Glutenins: elasticity and toughness

Glutenins are polymeric proteins, that is, formed of multiple subunits, of fibrous nature, linked together by intermolecular disulfide bonds. The reduction of these bonds allows to divide them, by SDS-PAGE, into two groups.

  • High molecular weight (HMW) subunits, low in sulfur, that account for about 12% of total gluten proteins. The noncovalent bonds between them are responsible for the elasticity and tenacity of the gluten protein network, that is, of the viscoelastic properties of gluten, and so of the dough.
  • Low molecular weight (LMW) subunits, rich in sulfur (cysteine residues).
    These proteins form intermolecular disulfide bridges to each other and with HMW subunits, leading to the formation of a glutenin macropolymer.

Glutenins allow dough to hold its shape during mechanical (kneading) and not mechanical stresses (increase in volume due to both the leavening and the heat of cooking that increases the volume occupied by gases present) which is submitted. This property is important in pasta making.
If in excess, glutenins lead to the formation of a strong and rigid dough.

Properties of wheat gluten

From the nutritional point of view, gluten proteins do not have a high biological value, being low in lysine, an essential amino acid. Therefore, a gluten-free diet does not cause any important nutritional deficiencies.
On the other hand, it is of great importance in food industry: the combination, in aqueous solution, of gliadins and glutenins to form a three-dimensional lattice, provides viscoelastic properties, that is, extensibility-viscosity and elasticity-tenacity, to the dough, and then, a good structure to bread, pasta, and in general, to all foods made with wheat flour.
It has a high degree of palatability.
It has a high fermenting power in the small intestine.
It is an exorphin: some peptides produced from intestinal digestion of gluten proteins may have an effect in central nervous system.

Gluten-free cereals

The following is a list of gluten-free cereals, minor cereals, and pseudocereals used as foods.

  • Cereals

corn or maize (Zea mays)
rice (Oryza sativa)

  • Minor cereals
    They are defined “minor” not because they have a low nutritional value, but because they are grown in small areas and in lower quantities than wheat, rice and maize.

Fonio (Digitaria exilis)
Millet (Panicum miliaceum)
Panic (Panicum italicum)
Sorghum (Sorghum vulgare)
Teff (Eragrostis tef)
Teosinte; it is a group of four species of the genus Zea. They are plants that grow in Mexico (Sierra Madre), Guatemala and Venezuela.

  • Pseudocereals.
    They are so called because they combine in their botany and nutritional properties characteristics of cereals and legumes, therefore of another plant family.

Amaranth; the most common species are:

Amaranthus caudatus;
Amaranthus cruentus;
Amarantus hypochondriacus.

Buckwheat (Fagopyrum esculentum)
Quinoa (Chenopodium quinoa), a pseudocereal with excellent nutritional properties, containing fibers, iron, zinc and magnesium. It belongs to Chenopodiaceae family, such as beets.

  • Cassava, also known as tapioca, manioc, or yuca (Manihot useful). It is grown mainly in the south of the Sahara and South America. It is an edible root tuber from which tapioca starch is extracted.

It should be noted that naturally gluten-free foods may not be truly gluten-free after processing. Indeed, the use of derivatives of gliadins in processed foods, or contamination in the production chain may occur, and this is obviously important because even traces of gluten are harmful for celiac patients.

Oats and gluten

Oats (Avena sativa) is among the cereals that celiac patients can eat. Recent studies have shown that it is tolerated by celiac patients, adult and child, even in subjects with dermatitis herpetiformis. Obviously, oats must be certified as gluten-free (from contamination).

References

Beccari J.B. De Frumento. De bononiensi scientiarum et artium instituto atque Academia Commentarii, II. 1745:Part I.,122-127

Bender D.A. “Benders’ dictionary of nutrition and food technology”. 8th Edition. Woodhead Publishing. Oxford, 2006

Berdanier C.D., Dwyer J., Feldman E.B. Handbook of nutrition and food. 2th Edition. CRC Press. Taylor & Francis Group, 2007

Phillips G.O., Williams P.A. Handbook of food proteins. 1th Edition. Woodhead Publishing, 2011

Shewry P.R. and Halford N.G. Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 2002:53(370);947-958. doi:10.1093/jexbot/53.370.947

Yildiz F. Advances in food biochemistry. CRC Press, 2009

Trans fatty acids (TFA): structure, sources, health effects, examples

Trans fatty acids (TFA) or trans-unsaturated fatty acids or trans fats are unsaturated fatty acids with at least one a double bond in the trans or E configuration.
Carbon-carbon double bonds show planar conformation, and so they can be considered as plains from whose opposite sides carbon chain attaches and continues. “The entry” and “the exit” of the carbon chain from the plain may occur on the same side of the plain, and in this case double bond is defined in cis or Z configuration, or on opposite side, and in that case it is defined in trans configuration.

Examples of C18:1 cis/trans isomers, and of a saturated fatty acid
Fig. 1 – C18:1 cis/trans Isomers

Unsaturated fatty acids most commonly have their double bonds in cis configuration; the other, less common configuration is trans.
Cis bond causes a bend in the fatty acid chain, whereas the geometry of trans bond straightens the fatty acid chain, imparting a structure more similar to that of saturated fatty acids.

CONTENTS

Properties of fats rich in trans fatty acids

Below, some distinctive characteristics of the fats rich in trans fats, that make them particularly suited for the production of margarines and vegetable shortening used in home and commercial cooking, and manufacturing processes.

  • Bent molecules can’t pack together easily, but linear ones can do it.
    This means that trans fatty acids contribute, together with the geometrically similar saturated fatty acids, to the hardness of the fats in which they are, giving them a higher melting point.
    Heightening the melting point of fats means that it is possible to convert them from liquid form to semi-solids and solids at room temperature.
    Note: trans fats tend to be less solid than saturated fatty acids.
  • They have:

a melting point, consistency and “mouth feel” similar to those of butter;
a long shelf life at room temperature;
a flavor stability.

  • They are stable during frying.

Sources of trans fatty acids

Dietary TFA come from different sources briefly reviewed below.

  • In industrialized countries, greater part of the consumed trans fatty acids, in USA about 80 percent of the total, are produced industrially, in varying amounts, during partial hydrogenation of edible oils containing unsaturated fatty acids (see below).
  • They are produced at home during frying with vegetable oils containing unsaturated fatty acids.
  • They come from bacterial transformation of unsaturated fatty acids ingested by ruminants in their rumen (see below).
  • Another natural source is represented by some plant species, such as leeks, peas, lettuce and spinach, that contain trans-3-hexadecenoic acid, and rapeseed oil, that contains brassidic acid (22:1∆13t) and gondoic acid (20:1∆11t). In these sources trans fatty acids are present in small amounts.
  • Very small amounts, less than 2 percent, are formed during deodorization of vegetable oils, a process necessary in the refining of edible oils. During this process trans fatty acids with more than one double bond are formed in small amounts. These isomers are also present in fried foods and in considerable amounts in some partially hydrogenated vegetable oils (see below).

Industrial trans fatty acids

Hydrogenation is a chemical reaction in which hydrogen atoms react, in the presence of a catalyst, with a molecule.
The hydrogenation of unsaturated fatty acids involves the addition of hydrogen atoms to double bonds on the carbon chains of fatty acids. The reaction occurs in presence of metal catalyst and hydrogen, and is favored by heating vegetable oils containing unsaturated fatty acids.

Partial hydrogenation of vegetable oils

The process of hydrogenation was first discovered in 1897 by French Nobel prize in Chemistry, jointly with fellow Frenchman Victor Grignard, Paul Sabatier using a nickel catalyst.
Partially hydrogenated vegetable oils were developed in 1903 by a German chemist, Wilhelm Normann, who files British patent on “Process for converting unsaturated fatty acids or their glycerides into saturated compounds”. The term trans fatty acids or trans fats appeared for the first time in the Remark column of the 5th edition of the “Standard Tables of Food Composition” in Japan.
During partial hydrogenation, an incomplete saturation of the unsaturated sites on the carbon chains of unsaturated fatty acids occurs. For example, with regard to fish oil, trans fatty acid content in non-hydrogenated oils and in highly hydrogenated oils is 0.5 and 3.6%, respectively, whereas in partially hydrogenated oils is 30%.

The cis to trans isomerization of oleic acid to vaccenic acid
Fig. 2 – From Oleic Acid to Vaccenic Acid

But, most importantly, some of the remaining cis double bonds may be moved in their positions on the carbon chain, producing geometrical and positional isomers, that is, double bonds can be modified in both conformation and position.
Below, other changes that occur during partial hydrogenation are listed.

Partially hydrogenated vegetable oils were developed for the production of vegetable fats, a cheaper alternative to animal fats. In fact, through hydrogenation, oils such as soybean, safflower and cottonseed oils, which are rich in unsaturated fatty acids, are converted into semi-solid fats (see above).
The first hydrogenated oil was cottonseed oil in USA in 1911 to produce vegetable shortening.
In the 1930’s, partial hydrogenation became popular with the development of margarine.
Currently, per year in USA, 6-8 billion tons of hydrogenated vegetable oil are produced.

Ruminant trans fatty acids

Ruminant trans fats are produced by bacteria in the rumen of the animals, for example cows, sheep and goats, using as a substrate a proportion of the relatively small amounts of unsaturated fatty acids present in their feedstuffs, that is, feed, plants and herbs. And, considering an animal that lives at least a year, and has the opportunity to graze and/or eat hay, there is a season variability in unsaturated fatty acids intake, and trans fats produced. In fact, in summer and spring, pasture plants and herbs may contain more unsaturated fatty acids than the winter feed supply.
Then, TFA are present at low levels in meat and full fat dairy products, typically <5% of total fatty acids, and are located in the sn-1 and sn-3 positions of the triacylglycerols, whereas in margarines and other industrially hydrogenated products they appear to be concentrated in the sn-2 position of the triacylglycerols.
Ruminant trans fatty acids are mainly monounsaturated fatty acids, with 16 to 18 carbon atoms, and constitute a small percentage of the trans fatty acids in the diet (see below).

Isomers of dietary trans fatty acids

The most important cluster of trans fatty acids is trans-C18:1 isomers, that is, fatty acids containing 18 carbon atoms plus one double bond, whose position varies between Δ6 and Δ16 carbon atoms. In both sources, the most common isomers are those with double bonds between positions Δ9 and Δ11.
However, even if these molecules are present both in industrial and ruminant TFA, there is a considerable quantitative difference. For example, vaccenic acid (C18:1 Δ11t) represents over 60 percent of the trans-C18:1 isomers in ruminant trans fatty acids, whereas in industrial ones elaidic acid (C18:1Δ9t) comprises 15-20 percent and C18:1 Δ10t and vaccenic acid over 20 percent each others.

trans-C18:1 fatty acid isomers, the most important cluster of trans fatty acids
Fig. 3 – trans-C18:1 Isomers

Trans fatty acids: effects on human health

Ruminant trans fatty acids, in amounts actually consumed in diets, are not harmful for human health (see below).
Conversely, consumption of industrial trans fats has neither apparent benefit nor intrinsic value, above their caloric contribution, and, from human health standpoint they are only harmful, having adverse effects on:

  • serum lipid levels;
  • endothelial cells;
  • systemic inflammation;
  • other risk factors for cardiovascular disease.

Moreover, they are positively associated with the risk of coronary heart disease (CHD), and sudden death from cardiac causes and diabetes.

Note: further in the text, we will refer to industrial trans fatty acids as trans fats or trans fatty acids.

Trans fatty acids: effects at plasmatic level

Low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) plasma levels are well-documented risk markers for the development of coronary heart disease (CHD).

  • High LDL-C levels are associated with an increased incidence of ischemic heart disease.
  • High HDL-C levels are associated with a reduced incidence of the risk.

For this reason, the ratio between total cholesterol level and HDL-C is often used as a combined risk marker for these two components in relation to the development of heart disease: the higher the ratio, the higher the risk.

TFA, as previously said, have adverse effects on serum lipids.
These effects have been evaluated in numerous controlled dietary trials by isocaloric replacement of saturated fatty acids or cis-unsaturated fatty acids with trans fats. It was demonstrated that such replacement:

  • raises LDL-C levels;
  • lowers HDL-C levels, in contrast to saturated fatty acids that increase HDL-C levels when used as replacement in similar study;
  • increases the ratio of total cholesterol to HDL-C, approximately twice that for saturated fatty acids, and, on the basis of this effect alone, trans fatty acids has been estimated to cause about 6% of coronary events in the USA.

Furthermore, trans fats:

  • produce a deleterious increase in small, dense LDL-C subfractions, that is associated with a marked increased in the risk of CHD, even in the presence of relatively normal LDL-C;
  • increase the blood levels of triglycerides, and this is an independent risk factor for CHD;
  • increase levels of Lp(a)lipoprotein, another important coronary risk factor.

But on 2004 prospective studies have shown that the relation between the intake of trans fatty acids and the incidence of CHD is greater than that predicted by changes in serum lipid levels alone. This suggests that trans fats influence other risk factors for CHD, such as inflammation and endothelial-cell dysfunction.

Trans fatty acids, inflammation and endothelial-cell dysfunction

The role of inflammation in atherosclerosis, and consequently in CHD, is burgeoned in the last decade.
Interleukin-6, C-reactive protein (CRP), and an increased activity of tumor necrosis factor (TNF) system are markers of inflammation.
In women greater intake of trans fatty acids is associated with increased activity of TNF system, and in those with a higher body mass index with increased levels of interleukin-6 and CRP. For example, the difference in CRP seen with an average intake of trans fats of 2.1% of the total daily energy intake, as compared with 0.9%, correspond to an increased risk of cardiovascular disease of 30%. Similar results have been reported in patients with established heart disease, in randomized, controlled trials, in in vitro studies, and in studies in which it has been analyzed membrane levels of trans fatty acids, a biomarker of their dietary intake.
So, trans fats promote inflammation, and their inflammatory effects may account at least in part for their effects on CHD that, as seen above, are greater than would be predicted by effects on serum lipoproteins alone.
Attention: the presence of inflammation is an independent risk factor not only for CHD but also for insulin resistance, diabetes, dyslipidemia, and heart failure.

Another site of action of TFA may be endothelial function.
Several studies have suggested the association between greater intake of trans fats and increased levels of circulating biomarkers of endothelial dysfunction, such as E-selectin, sICAM-1, and sVCAM-1.

Other effects of trans fatty acids

In vitro studies have demonstrate that trans fats affect lipid metabolism through several pathways.

  • They alter secretion, lipid composition, and size of apolipoprotein B-100 (apo B-100).
  • They increase cellular accumulation and secretion of free cholesterol and cholesterol esters by hepatocytes.
  • They alter expression in adipocytes of genes for peroxisome proliferator-activated receptor-γ (PPAR- γ), lipoprotein lipase, and resistin, proteins having a central roles in the metabolism of fatty acids and glucose.

Industrial trans fatty acids and CHD

Industrial trans fats are independent cardiovascular risk factor.
Since the early 1990s attention has been focused on the effect of trans fatty acids on plasma lipid and lipoprotein concentrations (see above).
Furthermore, four major prospective studies covering about 140,000 subjects, monitored for 6-14 years, have all found positive epidemiological evidence relating their levels in the diet, assessed with the aid of a detailed questionnaire on the composition of the diet, to the risk of CHD. These four studies are:

  • “The Health Professionals Follow-up study” (2005);
  • “The Alpha-Tocopherol Beta-Carotene Cancer Prevention Study” (1997);
  • “The Nurses’ Health Study” (2005);
  • “The Zutphen Elderly Study” (2001).

These studies cover such different populations that the results very probably hold true for the populations as a whole.
A meta-analysis of these studies have shown that a 2% increase in energy intake from industrial TFA was associated with a 23% increase in the incidence of CHD. The relative risk of heart disease was 1.36 in “The Health Professionals Follow-up Study”, 1.14 in “The Alpha-Tocopherol Beta-Carotene Cancer Prevention Study”; 1.93 (1.43-2.61) in “The Nurses’ Health Study”, and 1.28 (1.01-1.61) in “The Zutphen Elderly Study”.
So,  there is a substantially increased risk even at low levels of intake: 2% of total energy intake, for a 2,000 Kcal diet is 40 Kcal or about 4-5 g of fat corresponding to a teaspoonful of fat!
Moreover, in three of the studies, the association between the intake of industrial trans fats and the risk of CHD was stronger than a corresponding association between the intake of saturated fatty acids and the risk of heart disease. In “The Zutphen Elderly Study”, this association was not investigated.
Because of the adverse effects of industrial trans fatty acids, for the same authors are unethical conducting randomized long-term trials to test their effects on the incidence of CHD.
So, avoidance of industrial trans fats, or a consumption of less 0.5% of total daily energy intake is necessary to avoid their adverse effects, far stronger on average than those of food contaminants or pesticide residues.

Further evidence
A study conducted in an Australia population with a first heart attack and no preceding history of CHD or hyperlipidemia has showed a positive association between levels of trans fatty acids in adipose tissue and the risk of nonfatal myocardial infarction.
It was shown that adipose tissue C18:1Δ7t, found in both animal and vegetable fats, was an independent predictor of a first myocardial infarction, that is, its adipose tissue level is still a predictor for heart disease after adjustment for total cholesterol. Again, it appears that only a minor part of the negative effects of trans fats occurs via plasma lipoproteins.
During the course of this study, mid-1996, TFA were eliminated from margarines sold in Australia (see below). This was a unique opportunity to investigate the temporal relationship between trans fat intake and their adipose tissue levels. It was demonstrated that trans fats disappear from adipose tissue of both case-patients and controls with a rate about 15% of total trans fats/y.
Another study conduct in Costa Rica have found a positive association between myocardial infarction and trans fatty acids.
Interestingly, in a larger, community-based case-control study, levels of trans fats in red blood cell membranes were associated, after adjustment for other risk factors, with an increase in the risk of sudden cardiac death. Moreover, the increased risk appeared to be related to trans-C18:2 levels, that were associated with a tripling of the risk, but not with cell membrane levels of trans-C18:1,  the major trans fatty acids in foods (see above).

Trans fatty acids and diabetes

In a prospective study covering 84,204 female nurses, from “The Nurses’ Health Study”, aged 34–59 y, analyzed from the 1980 to 1996, with no cancer, diabetes, or cardiovascular disease at base line, the intake of trans fatty acids was significantly related to the risk of developing type 2 diabetes. And, after adjustment for other risk factors trans fat intake was positively associated with the incidence of diabetes with a risk up to 39% greater.
Data from controlled intervention studies showed that TFA could impair insulin sensitivity in subjects with insulin resistance and type 2 diabetes (saturated fatty acids do the analogous response, with no significant difference between TFA and them) more than unsaturated fatty acids, in particular the isomer of conjugated linoleic acid (CLA) trans-10, cis-12-CLA. Be careful because some dietary supplements contain CLA isomers and may be diabetogenic and proatherogenic in insulin-resistant subjects.

No significant effect was seen in insulin sensitivity of lean, healthy subjects.

Ruminant trans fatty acids and the risk of CHD

Four prospective studies have evaluated the relation between the intake of ruminant trans fatty acids and the risk of CHD: no significant association was identified.
In another study published on 2008 was analyzed data from four Danish cohort studies that cover 3,686 adults enrolled between 1974 and 1993, and followed for a median of 18 years. In Denmark, consumption of dairy products is relatively high and the range of ruminant trans fat intake is relatively broad, up to 1.1% of energy. Conversely, in the other countries, ruminant trans fatty acid consumption for most people is substantially lower than 1% of energy, in USA about 0.5% of energy. After adjustment for other risk factors, no significant associations between ruminant TFA consumption and incidence of CHD were found, confirming, in a population with relatively high intake of ruminant trans fatty acids, conclusions of four previous prospective studies.
So ruminant trans fats, in amounts actually consumed in diets, do not raise CHD risk.
The absence of risk of CHD with trans fats from ruminants as compared with industrial trans fatty acids  may be due to a lower intake. In the USA, greater part of trans fats have industrial origin (see above); moreover trans fat levels in milk and meats are relatively low, 1 to 8% of total fats.
The absence of a higher risk of CHD may be due also to the presence of different isomers. Ruminant and industrial sources share many common isomers, but there are some quantitative difference (see fig. 4):

  • vaccenic acid level is higher in ruminant fats, 30-50% of trans isomers;
  • trans-C18:2 isomers, present in deodorized and fried vegetable oils, as well as in some partially hydrogenated vegetable oils, are not present in appreciable amounts in ruminants fats.

Finally other, still unknown, potentially protective factors could outweigh harmful effects of ruminant trans fats.

Trans fatty acids: legislation regulating their content

USA
Until 1985 no adverse effects of trans fatty acids on human health was demonstrated, and in 1975 a Procter & Gamble study showed no effect of trans fats on cholesterol.
Their use in fast food preparation grew up from 1980’s, when the role of dietary saturated fats in increasing cardiac risk began clear. Then, it was led a successful campaign to get McDonald’s to switch from beef tallow to vegetable oil for frying its French fries. Meanwhile, studies began to raise concerns about their effects on health. On 1985 Food and Drug Administration (FDA) concluded that TFA and oleic acid affected serum cholesterol level similarly, but from the second half of 1985 their harmful began clear, and the final proof came from both controlled feeding trials and prospective epidemiologic studies.
On 2003 FDA ruled that food labels, for conventional foods and supplements, show their content beginning January 1, 2006. Notably, this ruling was the first substantive change to food labeling since the requirement for per-serving food labels information was added in 1990.
On 2005 the US Department of Agriculture made a minimized intake of trans fatty acids a key recommendation of the new food-pyramid guidelines.
On 2006 American Heart Association recommended to limit their intake to 1% of daily calorie consumption, and suggested food manufacturers and restaurants switch to other fats.
On 2006 New York City Board of Health announced trans fat ban in its 40,000 restaurants within July 1, 2008, followed by the state of California in 2010-2011.

Australia
After June 1996 they were eliminated from margarine sold in Australia, that before contributed about 50% of their dietary intake.

Europe
On March 11, 2003 the Danish government, after a debate started in 1994 and two new reports in 2001 and 2003, decided to phase out the use of industrial trans fats in food before the end of 2003. Two years later, however, the European Commission (EC) asked Denmark to withdraw this law, which was not accepted on the European Community level, unfortunately. However, in 2007, EC decided to closes its infringement procedure against Denmark because of increasing scientific evidence of the danger of this type of fatty acids.
The Danish example was followed by Austria and Switzerland in 2009, Iceland, Norway, and Hungary in 2011, and most recently, Estonia and Georgia in 2014. So, about 10% of the European Union population, about 500 million people, lives in countries where it is illegal to sell food high in industrial trans fats.
Governments of other European Union countries instead rely on the willingness of food producers to reduce trans fatty acid content in their products. This strategy has proved effective only for Western European countries (see below).

Canada
Canada is considering legislation to eliminate them from food supplies, and, in 2005, ruled that pre-packaged food labels show their content.

Therefore, with the exception of the countries where the use of trans fats in the food industry was banned, the only way to reduce their intake in the other countries is consumer’s decision to choose foods free in such fatty acids, avoiding those known containing them, and always reading nutrition facts and ingredients because they may come from margarine, vegetable oil and frying. Indeed, for example in the USA, the producers of foods that contain less than 0.5 g of industrial trans fatty acids per serving can list their content as 0 on the packaging. This content is low but if a consumer eats multiple servings, he consumes substantial amount of them.

Be careful: food labels are not obligatory in restaurants, bakeries, and many other retail food outlets.

Trans fatty acids and food reformulation

Public health organizations, including the World Health Organization in September 2006, have recommended reducing the consumption of industrial trans fatty acids; only in USA the near elimination of these fatty acids might avoid between 72,000 and 280,000 of the 1.2 million of CHD events every year.
Food manufacturers and restaurants may reduce industrial TFA use choosing alternatives to partially hydrogenated oils.
In Denmark, their elimination (see above) from vegetable oils did not increase consumption of saturated fatty acids because they were mostly replaced with cis-unsaturated fatty acids. Moreover, there were no noticeable effects for the consumer: neither increase in the cost nor reduction in availability and quality of foods.
In 2009, Stender et al. have shown that industrial trans fatty acids in food such as French fries, cookies, cakes, and microwave-oven popcorn purchased in USA, South Africa, and many European Country can be replaced, at similar prices, with a mixture of saturated, monounsaturated, and polyunsaturated fatty acids. Such substitution has even greater nutritional benefit than one-to-one substitution of industrial trans fats with saturated fatty acids alone. However, be careful because only in French fries with low industrial trans fats the percentage of saturate fatty acids remains constant, whereas in cookies and cakes is in average +33 percentage points and microwave-oven popcorn +24 percentage points: saturated fatty acids are less dangerous than industrial trans fats but more than mono- and polyunsaturated fatty acids.
The same research group, analyzing some popular foods in Europe, purchased in supermarkets, even of the same supermarket chain, and fast food, namely, McDonald’s and Kentucky Fried Chicken (KFC), from 2005 to 2014, showed that their TFA content was reduced or even absent in several Western European countries while remaining high in Eastern and Southeastern Europe.
In 2010 Mozaffarian et al. evaluated  the levels of industrial trans fats and saturated fatty acids in major brand-name U.S. supermarket and restaurant foods after reformulation to reduce industrial trans fatty acid content, in two time: from 1993 through 2006 and from 2008 through 2009. They found a generally reduction in industrial trans fat content without any substantial or equivalent increase in saturated fatty acid content.

Foods high in trans fatty acids: examples and values

Many foods high in trans fats are popularly consumed worldwide.
In USA greater part of these fatty acids comes from partially hydrogenated vegetable oils, with an average consumption from this source that has been constant since the 1960′s.
It should be noted that the following trans fatty acid values must be interpreted with caution because, as previously said, many fast food establishments, restaurants and industries may have changed, or had to change the type of fat used for frying and cooking since the analysis were done.
The reported values, unless otherwise specified, refer to percentage in trans fatty acids/ 100 g of fatty acids.

Margarine

Among foods with trans fats, stick or hard margarine had the highest percentage of them, but levels of these fatty acids have declined as improved technology allowed the production of softer margarines which have become popular. But there are difference in trans fatty acid content of margarine from different countries. Below some examples.

  • The highest content, 13-16.5%, is found in soft margarine from Iceland, Norway, and the UK.
  • Less content is found in Italy, Germany, Finland, and Greece, 5.1%, 4.8%, 3.2%, and 2.9% respectively).
  • In Portugal, The Netherlands, Belgium, Denmark, France, Spain, and Sweden margarine trans fat content is less than 2%.

USA and Canada lag behind Europe, but in the USA, with the advent of trans fat labeling of foods and the greater knowledge of the risk associated with their consumption by the buyers, change is occurring. For this reason, at now, in the USA margarine is considered to be a minor contributor to the intake of TFA, whereas the major sources are commercially baked and fast food products like cake, cookies, wafer, snack crackers, chicken nuggets, French fries or microwave-oven popcorn (see below).

Vegetable shortenings

Trans fatty acid content of vegetable shortenings ranges from 6% to 50%, and varies in different country: in Germany, Austria and New Zealand it is less than France or USA.
However, like margarines, their trans fat content is decreasing. In Germany it decreased from 12% in 1994 to 6% in 1999, in Denmark is 7% (1996) while in New Zealand is about 6% (1997).

Vegetable oils

At now, non-hydrogenated vegetable oils for salad and cooking contain no or only small amounts of trans fats.
Processing of these oils can produce minimal level of them, ranged from 0.05g/100 food for extra virgin oil to 2.42 g/100 g food for canola oil. So, their contribution to trans fat content of the current food supply is very little.
One exception is represented by Pakistani hydrogenated vegetable oils whose TFA content ranges from 14% to 34%.

Prepared soups

Among foods with trans fats, prepared soups contain significant amount of them, ranging from 10% of beef bouillon to 35% of onion cream. So, they contribute great amount of such fatty acids to the diet if frequently consumed.

Processed foods

Thanks to their properties (see above), trans fatty acids are used in many processed foods as cookies, cakes, croissants, pastries and other baked goods. And, baked goods are the greatest source of these fats in the North American diet. Of course, their trans fat content depends on the type of fat used in processing.

Sauces

Mayonnaise, salad dressings and other sauces contain only small or no-amounts of trans fats.

Human milk and infant foods

Trans fat content of human milk reflects the trans fat content of maternal diet in the previous day, is comprised between 1 and 7%, and is decreasing from 7.1% in 1998 to 4.6% in 2005/2006.
Infant formulas have trans fat values on average 0.1%-4.5%, with a brand up to 15.7%.
Baby foods contain greater than 5% of trans fats.

Fast foods and restaurant’s foods

Vegetable shortenings high in trans fats are used as frying fats, so fast foods and many restaurant’s foods may contain relatively large amounts of them. Foods are fried pies, French fries, chicken nuggets, hamburgers, fried fish as well as fried chicken.
In articles published by Stender et al. from 2006 to 2009, it is showed that for French fries and chicken nuggets their content varies largely from nation to nation, but also within the same fast food chain in the same country, and even in the same city, because of the cooking oil used. For example, oil used in USA and Peru outlets of a famous fast food chain contained 23-24% of trans fats, whereas oil used in many European countries of the same fast food chain contained about 10%, with some countries, such as Denmark, as low as 5% and 1%.
And, considering a meal of French fries and chicken nuggets, in serving size of 171 and 160 g respectively, purchased at McDonald‘s in New York City, it contained over 10 g of TFA, while if purchased at KFC in Hungary they were almost 25 g.
Below, again from the work of Stender et al. it can see a cross-country comparison of trans fat contents of chicken nuggets and French fries purchased at McDonald ‘s or KFC.

Chicken nuggets and French fries from McDonald’s:

  • less than 1 g only if the meals were purchased in Denmark;
  • 1-5 g in Portugal, the Netherlands, Russia, Czech Republic, or Spain;
  • 5-10 g in the United States, Peru, UK, South Africa, Poland, Finland, France, Italy, Norway, Spain, Sweden, Germany, or Hungary.

Chicken and French fries from KFC:

  • less than 2 g if the meals were purchased UK (Aberdeen), Denmark, Russia, or Germany (Wiesbaden);
  • 2-5 in Germany (Hamburg), France, UK (London or Glasgow), Spain, or Portugal;
  • 5-10 in the Bahamas, South Africa, or USA;
  • 10-25 g in Hungary, Poland, Peru, or Czech Republic.

References

Akoh C.C. and Min D.B. Food lipids: chemistry, nutrition, and biotechnology. 3rd Edition. CRC Press Taylor & Francis Group, 2008

Ascherio A., Katan M.B., Zock P.L., Stampfer M.J., Willett W.C. Trans fatty acids and coronary heart disease. N Engl J Med 1999;340:1994-8. doi:10.1056/NEJM199906243402511

Ascherio A., Rimm E.B., Giovannucci E.L., Spiegelman D., Stampfer M., Willett W.C. Dietary fat and risk of coronary heart disease in men: cohort follow up study in the United States. BMJ 1996; 313:84-90. doi:10.1080/17482970601069094

Asp N-G. Fatty acids in focus – the good and the bad ones. Scand J Food Nutr 2006;50:155-60. doi:10.1080/17482970601069094

Baylin A., Kabagambe E.K., Ascherio A., Spiegelman D., Campos H. High 18:2 trans-fatty acids in adipose tissue are associated with increased risk of nonfatal acute myocardial infarction in Costa Rican adults. J Nutr 2003;133:1186-91 doi:10.1093/jn/133.4.1186

Chow C.K. Fatty acids in foods and their health implication. 3rd Edition. CRC Press Taylor & Francis Group, 2008.

Clifton P.M., Keogh J.B., Noakes M. Trans fatty acids in adipose tissue and the food supply are associated with myocardial infarction. J Nutr 2004;134:874-9 doi:10.1093/jn/134.4.874

Costa N., Cruz R., Graça P., Breda J., and Casal S. Trans fatty acids in the Portuguese food market. Food Control 2016;64:128-34. doi:10.1016/j.foodcont.2015.12.010

Eckel R.H., Borra S., Lichtenstein A.H., Yin-Piazza D.Y. Understanding the Complexity of Trans fatty acid reduction in the American diet. American Heart Association trans fat conference 2006 report of the trans fat conference planning group. Circulation 2007;115:2231-46. doi:10.1161/CIRCULATIONAHA.106.181947

Hu F.B., Manson J.E., Stampfer M.J., Colditz G., Liu S., Solomon C.G., and Willett W.C. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med 2001;345:790-7. doi:10.1056/NEJMoa010492

Hu F.B., Willett W.C. Optimal diet for prevention of coronary heart disease JAMA 2002;288:2569-78. doi:10.1001/jama.288.20.2569

Lemaitre R.N., King I.B., Raghunathan T.E., Pearce R.M., Weinmann S., Knopp R.H., Copass M.K., Cobb L.A., Siscovick D.S. Cell membrane trans-fatty acids and the risk of primary cardiac arrest. Circulation 2002;105:697-01. doi:10.1161/hc0602.103583

Lemaitre R.N, King I.B, Mozaffarian D., Sootodehnia N., Siscovick D.S. Trans-fatty acids and sudden cardiac death. Atheroscler Suppl 2006; 7(2):13-5. doi:10.1016/j.atherosclerosissup.2006.04.003

Lichtenstein A.H. Dietary fat, carbohydrate, and protein: effects on plasma lipoprotein patterns J. Lipid Res. 2006;47:1661-7. doi:10.1194/jlr.R600019-JLR200

Lichtenstein A.H., Ausman L., Jalbert S.M., Schaefer E.J. Effect of different forms of dietary hydrogenated fats on serum lipoprotein cholesterol levels. N Engl J Med 1999;340:1933-40. doi:10.1056/NEJM199906243402501

Lopez-Garcia E., Schulze M.B., Meigs J.B., Manson J.E, Rifai N., Stampfer M.J., Willett W.C. and Hu F.B. Consumption of trans fatty acids is related to plasma biomarkers of inflammation and endothelial dysfunction. J Nutr 2005;135:562-66 doi:10.1093/jn/135.3.562

Masanori S. Trans Fatty Acids: Properties, Benefits and Risks J Health Sci 2002;48(1):7-13. [Abstract]

Mensink R.P., Katan M.B. Effect of dietary trans fatty acids on high-density and low-density lipoprotein cholesterol levels in healthy subjects. N Engl J Med 1990;323:439-45. doi:10.1056/NEJM199008163230703

Mozaffarian D. Commentary: Ruminant trans fatty acids and coronary heart disease-cause for concern? Int J Epidemiol 2008;37(1):182-4. doi:10.1093/ije/dym263

Mozaffarian D., Jacobson M.F., Greenstein J.S. Food Reformulations to reduce trans fatty acids. N Eng J Med 2010;362:2037-39 doi:https://doi.org/10.1056/NEJMc1001841

Mozaffarian D., Katan M.B., Ascherio A., Stampfer M.J., Willett W.C. Trans fatty acids and cardiovascular disease. N Engl J Med 2006;354:1601-13. doi:10.1056/NEJMra054035

Mozaffarian D., Pischon T., Hankinson S.E., Joshipura K., Willett W.C., and Rimm E.B. Dietary intake of trans fatty acids and systemic inflammation in women. Am J Clin Nutr 2004;79:606-12 doi:https://doi.org/10.1093/ajcn/79.4.606

Oh K., Hu F.B., Manson J.E., Stampfer M.J., Willett W.C. Dietary fat intake and risk of coronary heart disease in women: 20 years of follow-up of the Nurses’ Health Study. Am J Epidemiol 2005;161(7):672-9. doi:10.1093/aje/kwi085

Okie S.  New York to Trans Fats: You’re Out! N Engl J Med 2007;356:2017-21. doi:10.1056/NEJMp078058

Oomen C.M., Ocke M.C., Feskens E.J., van Erp-Baart M.A., Kok F.J., Kromhout D. Association between trans fatty acid intake and 10-year risk of coronary heart disease in the Zutphen Elderly Study: a prospective population-based study. Lancet 2001; 357(9258):746-51. doi:10.1016/S0140-6736(00)04166-0

Pietinen P., Ascherio A., Korhonen P., Hartman A.M., Willett W.C., Albanes D., VirtamO J.. Intake of fatty acids and risk of coronary heart disease in a cohort of Finnish men: the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. Am J Epidemiol 1997;145(10):876-87. doi:10.1093/oxfordjournals.aje.a009047

Risérus U. Trans fatty acids, insulin sensitivity and type 2 diabetes. Scand J Food Nutr 2006;50(4):161-5. doi:10.1080/17482970601133114

Salmerón J., Hu F.B., Manson J.E., Stampfer M.J., Colditz G.A., Rimm E.B., and Willett W.C. Dietary fat intake and risk of type 2 diabetes in women. Am J Clin Nutr 2001;73:1019-26 doi:10.1093/ajcn/73.6.1019

Stender S., Astrup A.,and Dyerberg J. A trans European Union difference in the decline in trans fatty acids in popular foods: a market basket investigation. BMJ Open 2012;2(5):e000859. doi:10.1136/bmjopen-2012-000859

Stender S., Astrup A., and Dyerberg J. Artificial trans fat in popular foods in 2012 and in 2014: a market basket investigation in six European countries. BMJ Open 2016;6(3):e010673. doi:10.1136/bmjopen-2015-010673

Stender S., Astrup A.,and Dyerberg J. Tracing artificial trans fat in popular foods in Europe: a market basket investigation. BMJ Open 2014;4(5):e005218. doi:10.1136/bmjopen-2014-005218

Stender S., Astrup A., Dyerberg J. What went in when trans went out?. N Engl J Med 2009;361:314-16. doi:10.1056/NEJMc0903380

Stender S., Dyerberg J. The influence of trans fatty acids on health. Fourth edition. The Danish Nutrition Council; publ. no. 34, 2003.

Stender S., Dyerberg J., Astrup A. Consumer protection through a legislative ban on industrially produced trans fatty acids in Denmark. Scand J Food Nutr 2006;50(4):155-60. doi:10.1080/17482970601069458

Stender S., Dyerberg J., Astrup A. High levels of trans fat in popular fast foods. N Engl J Med 2006;354:1650-2. doi:10.1056/NEJMc052959

Willett W., Mozaffarian D. Ruminant or industrial sources of trans fatty acids: public health issue or food label skirmish? Am J Clin Nutr 2008;87(3): 515-6 doi:10.1093/ajcn/87.3.515

Foods high in anthocyanins, their absorption and metabolism

Together with catechins and proanthocyanidins, anthocyanins and their oxidation products are the most abundant flavonoids in the human diet.
Examples of anthocyanin rich foods are:

  • certain varieties of grains, such as some types of pigmented rice (e.g. black rice) and maize (purple corn);
  • in certain varieties of root and leafy vegetables such as aubergine, red cabbage, red onions and radishes, beans;
  • but especially in red fruits.

Example of anthocyanin rich food
Anthocyanins are also present in red wine; as the wine ages, they are transformed into various complex molecules.
Anthocyanin content in vegetables and fruits is generally proportional to their color: it increases during maturation, and it reaches values up to 4 g/kg fresh weight (FW) in cranberries and black currants.
These polyphenols are found primarily in the skin, except for some red fruits, such as cherries and red berries (e.g. strawberries), in which they are present both in the skin and flesh.
Glycosides of cyanidin are the most common anthocyanins in foods.

CONTENTS

Anthocyanin rich fruits

  • Berries are the main source of anthocyanins, with values ranging between 67 and 950 mg/100 g FW.
  • Other fruits, such as red grapes, cherries and plums, have content ranging between 2 and 150 mg/100 g FW.
  • Finally, in fruits such as nectarines, peaches, and some types of apples and pears, anthocyanins are poorly present, with a content of less than 10 mg/100 g FW.

Cranberries, besides their very high content of anthocyanins, are one of the rare food that contain glycosides of the six most commonly anthocyanidins present in foods: pelargonidin, delphinidin, cyanidin, petunidin, peonidin, and malvidin. The main anthocyanins are the 3-O-arabinosides and 3-O-galactosides of peonidin and cyanidin. A total of 13 anthocyanins have been detected, mainly 3-O-monoglycosides.

Anthocyanin absorption

Until recently, it was believed that anthocyanins, together with proanthocyanidins and gallic acid ester derivatives of catechins, were the least well-absorbed polyphenols, with a time of appearance in the plasma consistent with the absorption in the stomach and small intestine. Indeed, some studies have shown that their bioavailability has been underestimated since, probably, all of their metabolites have not been yet identified.
In this regard, it should be underlined that only a small part of the food anthocyanins is absorbed in their glycated forms or as hydrolysis products in which the sugar moiety has been removed. Therefore, a large amount of these ingested polyphenols enters the colon, where they can also suffer methylation, sulphatation, glucuronidation and oxidation reactions.

Anthocyanins and colonic microbiota

Few studies have examined the metabolism of anthocyanins by the gut microbiota in the colon.
Within two hours, it seems that all the anthocyanins lose their sugar moieties, thus producing anthocyanidins.
Anthocyanidins are chemically unstable in the neutral pH of the colon. They can be metabolized by colonic microbiota or chemically degraded producing a set of new molecules that have not yet fully identified, but which include phenolic acids such as gallic acid, syringic acid, protocatechuic acid, vanillic acid and phloroglucinol (1,3,5-trihydroxybenzene). These molecules, thanks to their higher microbial and chemical stability, might be the main responsible for the antioxidant activities and the other physiological effects that have been observed in vivo and attributed to anthocyanins.

References

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

de Pascual-Teresa S., Moreno D.A. and García-Viguera C. Flavanols and anthocyanins in cardiovascular health: a review of current evidence. Int J Mol Sci 2010;11:1679-1703. doi:10.3390/ijms11041679

Escribano-Bailòn M.T., Santos-Buelga C., Rivas-Gonzalo J.C. Anthocyanins in cereals. J Chromatogr A 2004:1054;129-141. doi:10.1016/j.chroma.2004.08.152

Han X., Shen T. and Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci 2007;9:950-988. doi:10.3390/i8090950

Manach C., Scalbert A., Morand C., Rémésy C., and Jime´nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-47 doi:10.1093/ajcn/79.5.727

Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010;2:1231-1246. doi:10.3390/nu2121231

Isoflavones: chemical structure, foods and health effects

Isoflavones are colorless polyphenols belonging to the class of flavonoids.
Unlike the majority of the other flavonoids, they have a restricted taxonomic distribution, being present almost exclusively in the Leguminosae or Fabaceae plant family, mainly in soy.
Since legumes, soy in primis, are a major part of the diet in many cultures, these flavonoids may have a great impact on human health.
They are also present in beans and broad beans, but in much lower concentrations than those found in soy and soy products.
Also red clover or meadow clover (Trifolium pratense), another member of Leguminosae family, is a good source.
Currently, they are not found in fruits and vegetables.

Together with phenolic acids, such as caffeic acid and gallic acid, and quercetin glycosides, they are the most well-absorbed polyphenols, followed by flavanones and catechins (but not gallocatechins).

In plants, some isoflavones have antimicrobial activity and are synthesized in response to attacks by bacteria or fungi; thus they act as phytoalexins.

CONTENTS

Chemical structure of isoflavones

While most flavonoids have B ring attached to position 2 of C ring, isoflavones have B ring attached to position 3 of C ring.

Basic skeleton structure of isoflavones
Fig. 1 – Basic Skeleton of Isoflavones

Even if they are not steroids, they have structural similarities to estrogens, particularly estradiol. This confers them pseudohormonal properties, such as the ability to bind estrogen receptors; therefore, they are classified as phytoestrogens or plant estrogens. The benefits often ascribed to soy and soy products (e.g. tofu) are believed to result from the ability of isoflavones to act as estrogen mimics .
It should be underlined that the binding to estrogen receptors seems to lose strength with time, therefore their potential efficacy should not be overestimated.
In foods, they are present in four forms:

  • aglycone;
  • 7-O-glucoside;
  • 6′-O-acetyl-7-O-glucoside;
  • 6′-O-malonyl-7-O-glucoside.

Soy isoflavones: genistein, daidzein and glycitein

Soy and soy products, such as soy milk, tofu, tempeh and miso, are the main source of isoflavones in the human diet.
The isoflavone content of soy and soy products varies greatly as a function of growing conditions, geographic zone, and processing; for example, in soy it ranges between 580 and 3800mg/kg fresh weight, while in soy milk it range between 30 and 175 mg/L. The most abundant isoflavones in soy and soy products are genistein, daidzein and glycitein, generally present in a concentration ratio of 1:1:0,2.; biochanin A and formononetin are other isoflavones present in less concentrations.

Structural formulas of isoflavones genistein, daidzein, glycitein, biochanin A, formononetin
Fig. 2 – Isoflavones

The 6′-O-malonyl derivatives have a bitter, unpleasant, and astringent taste; therefore they give a bad flavor to the food in which they are contained. However, being sensitive to temperature, they are often hydrolyzed to glycosides during processing, such as the production of soy milk.
The fermentation processes needed for the preparation of certain foods, such as tempeh and miso, determines in turn the hydrolysis of glycosides to aglycones, i.e. the sugar-free molecule.
Isoflavone glycosides present in soy and soy products can also be deglycosylated by β-glucosidases in the small intestine.
The aglycones are very resistant to heat.
Although many compounds present in the diet are converted by intestinal bacteria to less active molecules, other compounds are converted to molecules with increased biological activity. This is the case of isoflavones, but also of prenylflavonoids from hops (Humulus lupulus), and lignans, that are other phytoestrogens.

Phytoestrogens and menopause

Vasomotor symptoms, such as night sweats and hot flashes, and bone loss are very common in perimenopause, also called menopausal transition, and menopause. Hormone replacement therapy (HRT) has proved to be a highly effective treatment for the prevention of menopausal bone loss and vasomotor symptoms.
The use of alternative therapies based on phytoestrogens is increased as a result of the publication of the “Women’s Health Initiative” study, that suggests that hormone replacement therapy could lead to more risks than benefits, in particular an increased risk of developing some chronic diseases.
Soy isoflavones are among the most used phytoestrogens by menopausal women, often taken in the form of isoflavone fortified foods or isoflavone supplements.
However, many studies have highlighted the lack of efficacy of soy isoflavones, and red clover isoflavones, even in large doses, in the prevention of vasomotor symptoms (hot flushes and night sweats) and bone loss during menopause.

References

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Han X., Shen T. and Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci 2007;9:950-988. doi:10.3390/i8090950

Lethaby A., Marjoribanks J., Kronenberg F., Roberts H., Eden J., Brown J. Phytoestrogens for menopausal vasomotor symptom. Cochrane Database of Systematic Reviews 2013, Issue 12. Art. No.: CD001395. doi:10.1002/14651858.CD001395.pub4

Manach C., Scalbert A., Morand C., Rémésy C., and Jime´nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-47 doi:10.1093/ajcn/79.5.727

Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010;2:1231-46. doi:10.3390/nu2121231

Proanthocyanidins and procyanidins: food sources

The interest on proanthocyanidins, and their content in foods, has increased as a result of the discovery, due to clinical and laboratory studies, of their anti-infectious, anti-inflammatory, cardioprotective and anticarcinogenic properties. These protective effects have been attributed to their ability to:

  • act as free radical scavenger;
  • inhibit lipid peroxidation;
  • act on various protein targets within the cell, modulating their activity.

Proanthocyanidins in different foods vary greatly in terms of:

  • total content;
  • distribution of oligomers and polymers;
  • constituent catechin units and bonds between units.

In some foods, such as black beans and cashew nuts, only dimers are present, called A-type procyanidins and B-type procyanidins, whereas in most of the foods proanthocyanidins are found in a wide range of polymerizations, from 2 to 10 units or more.

Foods with the highest proanthocyanidin content are cinnamon and sorghum, which contain respectively about 8,000 and up to 4,000 mg/100 g of fresh weight (FW); grape seeds (Vitis vinifera) are another rich source, with a content of about 3,500 mg/100 g dry weight.
Other important sources are fruits and berries, some legumes (peas and beans), red wine and to a less extent beer, hazelnuts, pistachios, almonds, walnuts and cocoa.
The coffee is not a good source.
Proanthocyanidins are not detectable in the majority of vegetables; they have been found in small concentrations in Indian pumpkin. They are not detectable also in maize, rice and wheat, while there are present in barley.

CONTENTS

A-type procyanidins in foods

Although many food plants contain high amounts of proanthocyanidins, only a few, such as plums, avocados, peanuts or cinnamon, contain A-type procyanidins, and none in amounts equal to cranberries (Vacciniun macrocarpon).

Procyanidins: structural formula of procyanidin A2
Procyanidin A2

Note: A-type procyanidins exhibit, in vitro, a capacity of inhibition of P-fimbriated Escherichia coli adhesion to uroepithelial cells greater than B-type procyanidins (adhesion represents the initial step of urogenital infections).

B-type procyanidins in foods

B-type procyanidins, consisting of catechin and/or epicatechin as constituent units, are the exclusive proanthocyanidins in at least 20 kinds of foods including blueberries (Vaccinium myrtillus), blackberries, marion berries, choke berries, grape seeds, apples, peaches, pears, nectarines, kiwi, mango, dates, bananas, Indian pumpkin, sorghum, barley, black eye peas, beans blacks, walnuts and cashews.

Proanthocyanidins in fruits

In the Western diet, fruit is the most important source of proanthocyanidins.

  • The major sources are some berries (blueberries, cranberries, and black currant) and plums (prunes), with a content of about 200 mg/100 g FW.
  • Intermediate sources are apples, chokeberries, strawberries, and green and red grapes (60-90 mg/100 g FW).
  • In other fruits the content is less than 40 mg/100 g FW.

In fruit, the most common proanthocyanidins are tetramers, hexamers, and polymers.
Good sources of proanthocyanidins are also some fruit juices.

Proanthocyanidins in grape seeds

A particularly rich source of proanthocyanidins is the seeds of grape.
Proanthocyanidins in grape seeds are only B-type procyanidins, for the most part present in the form of dimers, trimers and highly polymerized oligomers.
Grape seed proanthocyanidins are potent antioxidants and free radical scavenger, being the more effective either than vitamin E and vitamin C (ascorbic acid).
In vivo and in vitro experiments support the idea that proanthocyanidins, and in particular those from grape seeds, can act as anti-carcinogenic agents; it seems that they are involved, in cancer cells, in:

  • reduction of cell proliferation;
  • increase of apoptosis;
  • cell cycle arrest;
  • modulation of the expression and activity of NF-kB and NF-kB target genes.

References

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Gu L., Kelm M.A., Hammerstone J.F., Beecher G., Holden J., Haytowitz D., Gebhardt S., and Prior R.L. Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J Nutr 2004;134(3):613-617. doi:10.1093/jn/134.3.613

Han X., Shen T. and Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci 2007;9:950-988. doi:10.3390/i8090950

Manach C., Scalbert A., Morand C., Rémésy C., and Jime´nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-47 doi:10.1093/ajcn/79.5.727

Nandakumar V., Singh T., and Katiyar S.K. Multi-targeted prevention and therapy of cancer by proanthocyanidins. Cancer Lett 2008;269(2):378-387. doi:10.1016/j.canlet.2008.03.049

Ottaviani J.I., Kwik-Uribe C., Keen C.L., and Schroeter H. Intake of dietary procyanidins does not contribute to the pool of circulating flavanols in humans. Am J Clin Nutr 2012;95:851-8. doi:10.3945/ajcn.111.028340

Santos-Buelga C. and Scalbert A. Proanthocyanidins and tannin-like compounds: nature, occurrence, dietary intake and effects on nutrition and health. J Sci Food Agr 2000;80(7):1094-1117. doi:10.1002/(SICI)1097-0010(20000515)80:7<1094::AID-JSFA569>3.0.CO;2-1

Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010;2:1231-46. doi:10.3390/nu2121231

Wang Y.,Chung S., Song W.O., and Chun O.K. Estimation of daily proanthocyanidin intake and major food sources in the U.S. diet. J Nutr 2011;141(3):447-452. doi:10.3945/jn.110.133900