Tag Archives: endurance sports

Maltodextrin, fructose and endurance sports

Carbohydrate ingestion can improve endurance capacity and performance.
The ingestion of different types of carbohydrates, which use different intestinal transporters, can:

  • increase total carbohydrate absorption;
  • increase exogenous carbohydrate oxidation;
  • and therefore improve performance.

Glucose and fructose

When a mixture of glucose and fructose is ingested (in the analyzed literature, respectively 1.2 and 0.6 g/min, ratio 2:1, for total carbohydrate intake rate to 1.8 g/min), there is less competition for intestinal absorption compared with the ingestion of an iso-energetic amount of glucose or fructose,  two different intestinal transporters being involved. Furthermore, fructose absorption is stimulated by the presence of glucose.

This can:

  • contribute to a faster rate of monosaccharide absorption;
  • increase the availability of exogenous carbohydrates in the bloodstream;
  • cause the higher exogenous carbohydrate oxidation rates in fructose plus glucose combination compared to high glucose intake alone.

The combined ingestion of glucose and fructose allows to obtain exogenous carbohydrate oxidation rate around 1,26 g/min, therefore, higher than the rate reported with glucose alone (1g/min), also in high concentration.
The observed difference (+0,26 g/min) can be fully attributed to the oxidation of ingested fructose.

Sucrose and glucose

The ingestion of sucrose and glucose, in the same conditions of the ingestion of glucose and fructose (therefore, respectively 1.2 and 0.6 g/min, ratio 2:1, for total carbohydrate intake rate to 1.8 g/min), gives similar results.

Glucose, sucrose and fructose

Very high oxidation rates are found with a mixture of glucose, sucrose, and fructose (in the analyzed literature, respectively 1.2, 0.6 and 0.6 g/min, ratio 2:1:1, for total carbohydrate intake rate to 2.4 g/min; however, note the higher amounts of ingested carbohydrates).

Maltodextrin and fructose

High oxidation rates are also observed with combinations of maltodextrin and fructose, in the same conditions of the ingestion of glucose plus fructose (therefore, respectively 1.2 and 0.6 g/min, ratio 2:1, for total carbohydrate intake rate to 1.8 g/min).

Such high oxidation rates can be achieved with carbohydrates ingested in a beverage, in a gel or in a low-fat, low protein, low-fiber energy bar.

The best combination of carbohydrates ingested during exercise seems to be the mixture of maltodextrin and fructose in a 2:1 ratio, in a 5% solution, and in a dose around 80-90 g/h.

Maltodextrin and Fructose: Oxidation of Ingested Carbohydrates
Fig. 1 – Oxidation of Ingested Carbohydrates

Why?

  • This mixture has the best ratio between amount of ingested carbohydrates and their oxidation rate and it means that smaller amounts of carbohydrates remain in the stomach or gut reducing the risk of gastrointestinal complication/discomfort during prolonged exercise (see brackets grafa in the figure).
  • A solution containing a combination of multiple transportable carbohydrates and a carbohydrate content not exceeding 5% optimizes gastric emptying rate and improves fluid delivery.

Example of a 5% carbohydrate solution containing around 80-90 g of maltodextrin and fructose in a 2:1 rate; ingestion time around 1 h.

  • 1.5 L solution: 80 g of carbohydrates, including around 55 g of maltodextrin and around 25 of fructose.
  • 1.8 L solution: 90 g of carbohydrates, including 60 g of maltodextrin and 30 of fructose.

Conclusion

During prolonged exercise, when high exogenous carbohydrate oxidation rates are needed, the ingestion of multiple transportable carbohydrates is preferred above that of large amounts of a single carbohydrate.
The best mixture seems to be maltodextrin and , in a 2:1 ratio, in a 5% concentration solution, and at ingestion rate of around 80-90 g/h.

References

Burke L.M., Hawley J.A., Wong S.H.S., & Jeukendrup A. Carbohydrates for training and competition. J Sport Sci 2011;29:Sup1,S17-S27. doi:10.1080/02640414.2011.585473

Jentjens R.L.P.G., Moseley L., Waring R.H., Harding L.K., and Jeukendrup A.E. Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol 2004:96;1277-1284. doi:10.1152/japplphysiol.00974.2003

Jentjens R.L.P.G., Venables M.C., and Jeukendrup A.E. Oxidation of exogenous glucose, sucrose, and maltose during prolonged cycling exercise. J Appl Physiol 2004:96;1285-1291. doi:10.1152/japplphysiol.01023.2003

Jeukendrup A.E. Carbohydrate feeding during exercise. Eur J Sport Sci 2008:2;77-86. doi:10.1080/17461390801918971

Jeukendrup A.E. Nutrition for endurance sports: marathon, triathlon, and road cycling. J Sport Sci 2011:29;sup1, S91-S99. doi:10.1080/02640414.2011.610348

Prolonged exercise and carbohydrate ingestion

Prolonged Exercise: Open Water Swimming
Fig. 1 – Open Water Swimming

During prolonged exercise (>90 min), like marathon, Ironman, cross-country skiing, road cycling or open water swimming, the effects of supplementary carbohydrates on performance are mainly metabolic rather than central and include:

  • the provision of an additional muscle fuel source when glycogen stores become depleted;
  • muscle glycogen sparing;
  • the prevention of low blood glucose concentrations.

How many carbohydrates should an athlete take?

The optimal amount of ingested carbohydrate is that which results in the maximal rate of exogenous carbohydrate oxidation without causing gastrointestinal discomfort”. (Jeukendrup A.E., 2008, see References).

Prolonged exercise: which carbohydrates should an athlete take?

Until 2004 it was believed that carbohydrates ingested during exercise (also prolonged exercise) could be oxidized at a rate no higher than 1 g/min, that is, 60 g/h, independent of the type of carbohydrate.
Exogenous carbohydrate oxidation is limited by their intestinal absorption and the ingestion of more than around 60 g/min of a single type of carbohydrate will not increase carbohydrate oxidation rate but it is likely to be associated with gastrointestinal discomfort (see later).
Why?
At intestinal level, the passage of glucose (and galactose) is mediated by a sodium dependent transporter called SGLT1. This transporter becomes saturated at a carbohydrate intake about 60 g/h and this (and/or glucose disposal by the liver that regulates its transport into the bloodstream) limits the oxidation rate to 1g/min or 60 g/h. For this reason, also when glucose is ingested at very high rate (>60 g/h), exogenous carbohydrate oxidation rates higher 1.0-1.1 g/min are not observed.

The rate of oxidation of ingested maltose, sucrose, maltodextrins and glucose polymer is fairly similar to that of ingested glucose.

Fructose uses a different sodium independent transporter called GLUT5. Compared with glucose, fructose has, like galactose, a lower oxidation rate, probably due to its lower rate of intestinal absorption and the need to be converted into glucose in the liver, again like galactose, before it can be oxidized.
However, if the athlete ingests different types of carbohydrates, which use different intestinal transporters, exogenous carbohydrate oxidation rate can increase significantly.
It seems that the best mixture is maltodextrins and fructose.

Prolonged Exercise: Maltodextrin and Fructose: Oxidation of Ingested Carbohydrates
Fig. 1 – Oxidation of Ingested Carbohydrates

Note: the high rates of carbohydrate ingestion may be associated with delayed gastric emptying and fluid absorption; this can be minimized by ingesting combinations of multiple transportable carbohydrates that enhance fluid delivery compared with a single carbohydrate. This also causes relatively little gastrointestinal distress.

Conclusion

The ingestion of different types of carbohydrates that use different intestinal transporters can:

  • increase total carbohydrate absorption;
  • increase exogenous carbohydrate oxidation;
  • improve performance.
References

Burke L.M., Hawley J.A., Wong S.H.S., & Jeukendrup A. Carbohydrates for training and competition. J Sport Sci 2011;29:Sup1,S17-S27. doi:10.1080/02640414.2011.585473

Jentjens R.L.P.G., Moseley L., Waring R.H., Harding L.K., and Jeukendrup A.E. Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol 2004:96;1277-1284. doi:10.1152/japplphysiol.00974.2003

Jentjens R.L.P.G., Venables M.C., and Jeukendrup A.E. Oxidation of exogenous glucose, sucrose, and maltose during prolonged cycling exercise. J Appl Physiol 2004:96;1285-1291. doi:10.1152/japplphysiol.01023.2003

Jeukendrup A.E. Carbohydrate feeding during exercise. Eur J Sport Sci 2008:2;77-86. doi:10.1080/17461390801918971

Jeukendrup A.E. Nutrition for endurance sports: marathon, triathlon, and road cycling. J Sport Sci 2011:29;sup1, S91-S99. doi:10.1080/02640414.2011.610348

Mahan L.K., Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Shils M.E., Olson J.A., Shike M., Ross A.C.: “Modern nutrition in health and disease” 9th ed. 1999

Hydration before endurance sports

Pre-hydration
Fig. 1 – Pre-hydration

In endurance sports, like Ironman, open water swimming, road cycling, marathon, or cross-country skiing, the most likely contributors to fatigue are dehydration and carbohydrate (especially liver and muscle glycogen) depletion.

Pre-hydration

Due to sweat loss needed to dissipate the heat generated during exercise, dehydration can compromise exercise performance.
It is important to start exercising in a euhydrated state, with normal plasma electrolyte levels, and attempt to maintain this state during any activity.
When an adequate amount of beverages with meals are consumed and a protracted recovery period (8-12 hours) has elapsed since the last exercise, the athlete should be euhydrated.
However, if s/he has not had adequate time or fluids/electrolytes volume to re-establish euhydration, a pre-hydration program may be useful to correct any previously incurred fluid-electrolyte deficit prior to initiating the next exercise.

Pre-hydration program

If during exercise the nutritional target is to reduce sweat loss to less than 2–3% of body weight, prior to exercise the athlete should drink beverages at least 4 hours before the start of the activity, for example, about 5-7 mL/kg body weight.
But if the urine is still dark (highly concentrated) and/or is minimal, s/he should slowly drink more beverages, for example, another 3-5 mL/kg body weight, about 2 hours before the start of activity so that urine output normalizes before starting the event.

It is advisable to consume small amounts of sodium-containing foods or salted snacks and/or beverages with sodium that help to stimulate thirst and retain the consumed fluids.
Moreover, palatability of the ingested beverages is important to promote fluid consumption before, during, and after exercise. Fluid palatability is influenced by several factors, such as:

  • temperature, often between 15 and 21 °C;
  • sodium content;
  • flavoring.

And hyper-hydration?

Hyper-hydration, especially in the heat, could improve thermoregulation and exercise performance, therefore, it might be useful for those who lose body water at high rates, as during exercise in hot conditions or who have difficulty drinking sufficient amounts of fluid during exercise.
However there are several risks:

  • fluids that expand the intra- and extra-cellular spaces (e.g. glycerol solutions plus water) greatly increase the risk of having to void during exercise;
  • hyper-hydration may dilute and lower plasma sodium which increases the risk of dilutional hyponatraemia, if during exercise, fluids are replaced aggressively.

Finally, it must be noted that plasma expanders or hyper-hydrating agents are banned by the World Anti-Doping Agency (WADA).

Conclusion
“Pre-hydrating with beverages, if needed, should be initiated at least several hours before the exercise task to enable fluid absorption and allow urine output to return toward normal levels. Consuming beverages with sodium and/or salted snacks or small meals with beverages can help stimulate thirst and retain needed fluids” (Sawka et al., 2007, see References).

References

Jeukendrup A.E. Nutrition for endurance sports: marathon, triathlon, and road cycling. J Sport Sci 2011:29;sup1, S91-S99. doi:10.1080/02640414.2011.610348

Mahan L.K., Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Sawka M.N., Burke L.M., Eichner E.R., Maughan, R.J., Montain S.J., Stachenfeld N.S. American College of Sports Medicine position stand: exercise and fluid replacement. Med Sci Sport Exercise 2007;39:377-390. doi:10.1249/mss.0b013e31802ca597

Shils M.E., Olson J.A., Shike M., Ross A.C.: “Modern nutrition in health and disease” 9th ed. 1999

Shirreffs S., Sawka M.N. Fluid and electrolyte needs for training, competition and recovery. J Sport Sci 2011;29:sup1, S39-S46. doi:10.1080/02640414.2011.614269

Hypoglycemia and carbohydrate ingestion 60 min before exercise

Hypoglycemia: Fatigue
Fig. 1 – Fatigue

From several studies it appears that the risk of developing hypoglycemia (blood glucose < 3.5 mmol /l or < 63 mg/l) is highly individual: some athletes are very prone to develop it and others are much more resistant.

Strategies to limit hypoglycemia in susceptible subjects

A strategy to minimize glycemic and insulinemic responses during exercise is to delay carbohydrate ingestion just prior to exercise: in the last 5-15 min before exercise or during warm-up (even though followed by a short break).
Why?

  • Warm-up and then exercise increase catecholamine concentrations blunting insulin response.
  • Moreover, it has been shown that ingestion of carbohydrate-containing beverages during a warm-up (even if followed by a short break) does not lead to rebound hypoglycemia, independent of the amount of carbohydrates, but instead increases glycemia. When carbohydrates are ingested within 10 min before the onset of the exercise, exercise will start before the increase of insulin concentration.

Therefore, this timing strategy would provide carbohydrates minimizing the risk of a possible reactive hypoglycaemia.
In addition, it is possible to choose low glycemic index carbohydrates that lead to more stable glycemic and insulinemic responses during subsequent exercise.

Example: a 5-6% carbohydrate solution, often maltodextrin (i.e. 50-60 g maltodextrin in 1000 ml) or maltodextrin plus fructose (e.g. respectively 33 g plus 17 g in 1000 ml).

An intriguing observation is the lack of a clear relation between hypoglycaemia and its symptoms (likely related to a reduced delivery of glucose to the brain). In fact, symptoms are often reported in the absence of true hypoglycemia and hypoglycemia is not always associated with symptoms. Though the cause of the symptoms is still unknown, it is clearly not related to a glycemic threshold.

Conclusion
Some athletes develop symptoms similar to those of hypoglycemia, even though they aren’t always linked to actual low glycemia. To minimize these symptoms, for these subjects an individual approach is advisable. It may include:

  • carbohydrate ingestion just before the onset of exercise or during warm-up;
  • choose low-to-moderate GI carbohydrates that result in more stable glycemic and insulinemic responses;
  • or avoid carbohydrates 90 min before the onset of exercise.
References

Jeukendrup A.E. Carbohydrate feeding during exercise. Eur J Sport Sci 2008:2;77-86. doi:10.1080/17461390801918971

Jeukendrup A.E., C. Killer S.C. The myths surrounding pre-exercise carbohydrate feeding. Ann Nutr Metab 2010;57(suppl 2):18-25. doi:10.1159/000322698

Mahan L.K., Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Moseley L., Lancaster G.I, Jeukendrup A.E. Effects of timing of pre-exercise ingestion of carbohydrate on subsequent metabolism and cycling performance. Eur J Appl Physiol 2003;88:453-8. doi:10.1007/s00421-002-0728-8

Shils M.E., Olson J.A., Shike M., Ross A.C.: “Modern nutrition in health and disease” 9th ed. 1999

Carbohydrate loading before competition

Carbohydrate loading is a good strategy to increase fuel stores in muscles before the start of the competition.

What does the muscle “eat” during endurance exercise?

Carbohydrate loading: Alberto Sordi and SpaghettiMuscle “eats” carbohydrates, in the form of glycogen, stored in the muscles and liver, carbohydrates ingested during the exercise or just before that, and fat.

During endurance exercise, the most likely contributors to fatigue are dehydration and carbohydrate depletion, especially of muscle and liver glycogen.
To prevent the “crisis” due to the depletion of muscle and liver carbohydrates, it is essential having high glycogen stores before the start of the activity.

What does affect glycogen stores?

  • The diet in the days before the competition.
  • The level of training (well-trained athletes synthesize more glycogen and have potentially higher stores, because they have more efficient enzymes).
  • The activity in the day of the competition and the days before (if muscle doesn’t work it doesn’t lose glycogen). Therefore, it is better to do light trainings in the days before the competition, not to deplete glycogen stores, and to take care of nutrition.

The “Swedish origin” of carbohydrate loading

Very high muscle glycogen levels (the so-called glycogen supercompensation) can improve performance, i.e. time to complete a predetermined distance, by 2-3% in the events lasting more than 90 minutes, compared with low to normal glycogen, while benefits seem to be little or absent when the duration of the event is less than 90 min.
Well-trained athletes can achieve glycogen supercompensation without the depletion phase prior to carbohydrate loading, the old technique discovered by two Swedish researchers, Saltin and Hermansen, in 1960s.
The researchers discovered that muscle glycogen concentration could be doubled in the six days before the competition following this diet:

  • three days of low carb menu (a nutritional plan very poor in carbohydrates, i.e. without pasta, rice, bread, potatoes, legumes, fruits etc.);
  • three days of high carbohydrate diet, the so-called carbohydrate loading (a nutritional plan very rich in carbohydrates).

This diet causes a lot of problems: the first three days are very hard and there may be symptoms similar to depression due to low glucose delivery to brain, and the benefits are few.
Moreover, with the current training techniques, the type and amount of work done, we can indeed obtain high levels of glycogen: above 2.5 g/kg of body weight.

The “corrent” carbohydrate loading

If we compete on Sunday, a possible training/nutritional plan to obtain supercompensation of glycogen stores can be the following:

  • Wednesday, namely four days before the competition, moderate training and then dinner without carbohydrates;
  • from Thursday on, namely the three days before the competition, hyperglucidic diet and light trainings.
Carbohydrate Loading
Fig. 1 – Carbohydrate Loading: 2500 kcal Diet

The amount of dietary carbohydrates needed to recover glycogen stores or to promote glycogen loading depends on the duration and intensity of the training programme, and they span from 5 to 12 g/kg of body weight/d, depending on the athlete and his activity. With higher carbohydrate intake you can achieve higher glycogen stores but this does not always results in better performance; moreover, it should be noted that glycogen storage is associated with weight gain due to water retention (approximately 3 g per gram of glycogen), and this may not be desirable in some sports.

References

Burke L.M., Hawley J.A., Wong S.H.S., & Jeukendrup A. Carbohydrates for training and competition. J Sport Sci 2011;29:Sup1,S17-S27. doi:10.1080/02640414.2011.585473

Hargreaves M., Hawley J.A., & Jeukendrup A.E. Pre-exercise carbohydrate and fat ingestion: effects on metabolism and performance. J Sport Sci 2004;22:31-38. doi10.1080/0264041031000140536

Jeukendrup A.E., C. Killer S.C. The myths surrounding pre-exercise carbohydrate feeding. Ann Nutr Metab 2010;57(suppl 2):18-25. doi:10.1159/000322698

Mahan L.K., Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Moseley L., Lancaster G.I, Jeukendrup A.E. Effects of timing of pre-exercise ingestion of carbohydrate on subsequent metabolism and cycling performance. Eur J Appl Physiol 2003;88:453-8. doi:10.1007/s00421-002-0728-8

Shils M.E., Olson J.A., Shike M., Ross A.C.: “Modern nutrition in health and disease” 9th ed. 1999

Skeletal muscle glycogen stores and sports

Muscle glycogen represents a source of glucose, therefore energy, that can be used by muscle during physical activity: it is an energy store where needed!
Furthermore a close relationship exists between the onset of fatigue and depletion of its muscle stores.

Glycogen as energy source

Carbohydrates and fatty acids represent the main energy source for muscle during exercise and their relative contribution varies depending on:

  • the intensity and duration of exercise;
  • the level of training.

Skeletal Muscle GlycogenIf for fatty acids there are no problems regarding body stores so it is not for carbohydrates whose stores, present in glycogen form principally in the liver and the muscle, are modest, less than 5% of total body energy stores: in a non-fasting 70 kg adult male there are about 250 g of glycogen in the muscle and 100 g in the liver, for a total energy of about 1400 kcal. In athletes the amount could be higher, for example in the best marathoners, again considering an adult male as above, you can reach up to 475 g in total, muscle plus liver, which corresponds to about 1900 kcal.
In spite of this, glycogen contribution to the total energy needed to sustain muscular workload rises with the increase of exercise intensity, whereas we reduce that in the form of fatty acids.
Furthermore, in the absence of replenishment with exogenous carbohydrates, performance is determined by the endogenous stores of liver and skeletal muscle glycogen, of which relative consumption is different: an increase of intensity increases that of the second (muscle) while remain more or less constant in that of the first (liver).

Skeletal muscle glycogen and intese exercises

In fact, skeletal muscle glycogen represents the most important energy reserve for prolonged moderate-high intensity exercise, an importance that increase in the case of high-intensity interval exercise (common in training session undertaken by swimmers runners, rowers or in team-sport players) or in resistance exercise, therefore both endurance and resistance exercises. If for example we consider the marathon about 80% of utilized energy derives from carbohydrate oxidation, for the most part skeletal muscle glycogen.
Finally, the replenishment rate of glycogen stores in post-exercise is one of the most important factors in establishing necessary recovery time.

Muscle glycogen and fatigue

Fatigue and low glycogen levels are closely correlate but it is not clear which mechanisms are at the basis of this relationship; one hypothesis is that there exists a minimum glycogen concentration that is “protected” and is resistant to being used during exercise, perhaps to ensure an energy reserve in case of extreme necessity.
Because of the closely relationship between skeletal muscle glycogen depletion and fatigue, its replenish rate in the post-exercise is one of the most important factors in determining necessary recovery time.

References

Arienti G. “Le basi molecolari della nutrizione”. Seconda edizione. Piccin, 2003

Beelen M., Burke L.M., Gibala M.J., van Loon J.C. Nutritional strategies to promote postexercise recovery. Int J Sport Nutr Exerc Metab 2010:20(6);515-32 doi:10.1123/ijsnem.20.6.515

Cozzani I. and Dainese E. “Biochimica degli alimenti e della nutrizione”. Piccin Editore, 2006

Giampietro M. “L’alimentazione per l’esercizio fisico e lo sport”. Il Pensiero Scientifico Editore, 2005

Mahan LK, Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Mariani Costantini A., Cannella C., Tomassi G. “Fondamenti di nutrizione umana”. 1th ed. Il Pensiero Scientifico Editore, 1999

Nelson D.L., M. M. Cox M.M. Lehninger. Principles of biochemistry. 4th Edition. W.H. Freeman and Company, 2004

Stipanuk M.H., Caudill M.A. Biochemical, physiological, and molecular aspects of human nutrition. 3rd Edition. Elsevier health sciences, 2013 [Google eBooks]