Tag Archives: biochemistry

Bile salts: structure, function, synthesis, and enterohepatic circulation

Bile salts and bile acids are polar cholesterol derivatives, and represent the major route for the elimination of the steroid from the body.
They are molecules with similar but not identical structures, and diverse physical and biological characteristics.
They are synthesized in the liver, stored in the gallbladder, secreted into the duodenum, and finally, for the most part, reabsorbed in the ileum.
Because at physiological pH these molecules are present as anions, the terms bile acid and bile salts are used herein as synonyms.

CONTENTS

Chemical structure of bile salts

Bile salts have similarities and differences with cholesterol molecule.
Like the steroid, they have a nucleus composed of four fused rings: three cyclohexane rings, labeled A, B and C, and a cyclopentane ring, labeled D. This structure is the perhydrocyclopentanophenanthrene, more commonly known as steroid nucleus.

Structures and names of the most abundant bile acids and their conjugates
Bile Acids and Their Conjugates

In higher vertebrates, they have 24 carbon atoms, as the side chain is three carbons shorter than the original. In lower vertebrates, bile acids have 25, 26, or 27 carbon atoms. The side chain ends with a carboxyl group, ionized at pH 7, that can be linked to the amino acid glycine or taurine (see below).
In addition to the hydroxyl group at position 3, they have hydroxyl groups at positions 7 and/or 12.
All this makes them much more polar than cholesterol.
Since A and B rings are fused in cis configuration, the planar structure of the steroid nucleus is curved, and it is possible to identify:

  • a concave side, which is hydrophilic because the hydroxyl groups and the carboxyl group of the side chain, with or without the linked amino acid, are oriented towards it;
  • a convex side, which is hydrophobic because the methyl groups present at position 18 and 19 are orientated towards it.
Cholic Acid Structure
Cholic Acid Structure

Therefore, having both polar and nonpolar groups, they are amphiphilic molecules and excellent surfactants. However, their chemical structure makes them different from many other surfactants, often composed of a polar head region and a nonpolar tail.

Primary, conjugated and secondary bile salts

Primary bile acids are those synthesized directly from cholesterol in the hepatocytes. In humans, the most important are cholic acid and chenodeoxycholic acid, which make up 80% of all bile acids. Before being secreted into the biliary tree, they are almost completely conjugated, up to 98%, with the glycine or taurine, to form glycoconjugates and tauroconjugates, respectively. In particular, approximately 75% of cholic acid and chenodeoxycholic acid are conjugated with glycine, to form glycocholic acid  and glycochenodeoxycholic acid, the remaining 25% with taurine, to form taurocholic acid and taurochenodeoxycholic.

Synthesis of taurine- and glycine-conjugated bile acids
Synthesis of Conjugated Bile Acids

Conjugated bile acids are molecules with more hydrophilic groups than unconjugated bile acids, therefore with a increased emulsifying capacity. In fact, conjugation decreases the pKa of bile acids, from about 6, a value typical of non-conjugated molecules, to about 4 for glycocholic acid, and about 2 for taurocholic acid. This makes that conjugated bile acids are ionized in a broader range of pH to form the corresponding salts.
The hydrophilicity of the common acid and bile salts decreases in the following order: glycine-conjugated < taurine-conjugated < lithocholic acid  < deoxycholic acid  < chenodeoxycholic acid < cholic acid <ursodeoxycholic acid.
Finally, conjugation also decreases the cytotoxicity of primary bile acids.

Secondary bile acids  are formed from primary bile acids which have not been reabsorbed from the small intestine. Once they reach the colon, they can undergo several modifications by gut  microbiota to form secondary bile acids (see below). They make up the remaining 20% of the body’s bile acid pool.

Another way of categorizing bile salts is based on their conjugation with glycine and taurine and their degree of hydroxylation. On this basis, three categories are identified.

  • Trihydroxy conjugates, such as taurocholic acid and glycocholic acid.
  • Dihydroxy conjugates, such as glycodeoxycholic acid, glycochenodeoxycholic acid, taurochenodeoxycholic acid, and taurodeoxycholic acid. They account for about 60% of bile salts present in the bile.
  • Unconjugated forms, such as cholic acid, deoxycholic acid, chenodeoxycholic acid, and lithocholic acid.

Function of bile acids

All their physiological functions are performed in the conjugated form.

  • They are the major route for the elimination of cholesterol from human body.
    Indeed, humans do not have the enzymes to break open the cyclohexane rings or  the cyclopentane ring of the steroid nucleus, nor to oxidize cholesterol to CO2 and water.
    The other mechanism to eliminate the steroid from the body is as cholesterol per se in the bile.
  • Bile salts are strong surfactants. And in particular, di- and trihydroxy conjugates are the best surfactants among bile acids, much more effective than unconjugated counterparts, since they have more polar groups.
    Once in contact with apolar lipids in the lumen of the small intestine, the convex apolar surface interacts with the apolar lipids, such as triglycerides, cholesterol esters, and ester of fat-soluble vitamins, whereas the concave polar surface interacts with the surrounding aqueous medium. This increases the dispersion of apolar lipids in the aqueous medium, as it allows the formation of tiny lipid droplets, increasing the surface area for:

lipase activity, mainly pancreatic lipase, (bile salts also play a direct role in the activation of this enzyme);

intestinal esterase activity.

Subsequently, they facilitate the absorption of lipid digestion products, as well as of fat soluble vitamins by the intestinal mucosa thanks to the formation of mixed micelles.
Bile acids perform a similar function in the gallbladder where, forming mixed micelles with phospholipids, they prevent the precipitation of cholesterol.
Note: As a consequence of the arrangement of polar and nonpolar groups, bile acids form micelles in aqueous solution, usually made up of less than 10 monomers, as long as their concentration is above the so-called critical micellar concentration or CMC.

  • At the intestinal level, they modulate the secretion of pancreatic enzymes and cholecystokinin.
  • In the small and large intestine, they have a potent antimicrobial activity, mainly deoxycholic acid, in particular against Gram-positive bacteria. This activity may be due to oxidative DNA damage, and/or to the damage of the cell membrane. Therefore, they play an important role in the prevention of bacterial overgrowth, but also in the regulation of gut microbiota composition.
  • In the last few years, it becomes apparent their regulatory role in the control of energy metabolism, and in particular for the hepatic glucose handling.

Enterohepatic circulation of bile salts

After fat intake, enteroendocrine cells of the duodenum secrete cholecystokinin into the blood stream. Hormone binding to receptors on smooth muscle cells of the gallbladder promotes their contraction; the hormone also causes the relaxation of the sphincter of Oddi. All this results in the secretion of the bile, and therefore of bile acids into the duodenum.
Under physiological conditions, human bile salt pool is constant, and equal to about 3-5 g. This is made possible by two processes:

  • their intestinal reabsorption;
  • their de novo synthesis (see below).

Up to 95% of the secreted bile salts is reabsorbed from the gut, not together with the products of lipid digestion, but through a process called enterohepatic circulation.
It is an extremely efficient recycling system, which seems to occur at least two times for each meal, and includes the liver, the biliary tree, the small intestine, the colon, and the portal circulation through which reabsorbed molecules return to the liver. Such recirculation is necessary since liver’s capacity to synthesize bile acids is limited and insufficient to satisfy intestinal needs if the bile salts were excreted in the feces in high amounts.
Most of the bile salts are reabsorbed into the distal ileum, the lower part of the small intestine, by a sodium-dependent transporter within the brush border of the enterocytes, called sodium-dependent bile acid transporter or ASBT, which carries out the cotransport of a molecule of bile acid and two sodium ions.
Within the enterocyte, it is thought that bile acids are transported across the cytosol to the basolateral membrane by the ileal bile acid-binding protein or IBABP. They cross the basolateral membrane by the organic solute transporter alpha-beta or OSTα/OSTβ, pass into the portal circulation, and, bound to albumin, reach the liver.
It should be noted that a small percentage of bile acids reach the liver through the hepatic artery.
A hepatic level, their extraction is very efficient, with a first-pass extraction fraction ranging from 50 to 90%, a percentage that depends on bile acid structure. The uptake of conjugated bile acids is mainly mediated by a Na+-dependent active transport system, that is, the sodium-dependent taurocholate cotransporting polypeptide or NTCP. However, a sodium-independent uptake can also occur, carried out by proteins of the family of organic anion transporting polypeptides or OATP, mainly OATP1B1 and OATP1B3.
The rate limiting step in the enterohepatic circulation is their canalicular secretion, largely mediated by the bile salt export pump or BSEP, in an ATP-dependent process. This pump carries monoanionic bile salts, which are the most abundant. Bile acids conjugated with glucuronic acid or sulfate, which are dianionic, are transported by different carriers, such as MRP2 and BCRP.

Note: Serum levels of bile acids vary on the basis of the rate of their reabsorption, and therefore they are higher during meals, when the enterohepatic circulation is more active.

Intestinal metabolism of bile acids

Bile acids which escape ileal absorption pass into the colon where they partly undergo modifications by intestinal microbiota and are converted to secondary bile acids.
The main reactions are listed below.

  • Deconjugation
    On the side chain, hydrolysis of the C24 N-acyl amide bond can occur, with release of unconjugated bile acids and glycine or taurine. This reaction is catalyzed by bacterial hydrolases present both in the small intestine and in the colon.
  • 7α-Dehydroxylation
    Quantitatively, it is the most important reaction, carried out by colonic bacterial dehydratases that remove the hydroxyl group at position 7 to form 7-deoxy bile acids. In particular, deoxycholic acid is formed from cholic acid, and lithocholic acid, a toxic secondary bile acid, from chenodeoxycholic acid.
    It should be noted that 7α-dehydroxylation, unlike oxidation and epimerization (see below), can only occur on unconjugated bile acids, and therefore, deconjugation is an essential prerequisite.
  • Oxidation and epimerization
    They are reactions involving the hydroxyl groups at positions 3, 7 and 12, catalyzed by bacterial hydroxysteroid dehydrogenases. For example, ursodeoxycholic acid derives from the epimerization of chenodeoxycholic acid.
Conversion of bile acids to secondary bile acids by intestinal microbiota
Intestinal Metabolism of Bile Acids

Some of the secondary bile acids are then reabsorbed from the colon and return to the liver. In the hepatocytes, they are reconjugated, if necessary, and resecreted. Those that are not reabsorbed, are excreted in the feces.
Whereas oxidations and deconjugations are carried out by a broad spectrum of anaerobic bacteria, 7α-dehydroxylations is carried out by a limited number of colonic anaerobes.
7α-Dehydroxylations and deconjugations increase the pKa of the bile acids, and therefore their hydrophobicity, allowing a certain degree of passive absorption across the colonic wall.
The increase of hydrophobicity is also associated with an increased toxicity of these molecules. And a high concentration of secondary bile acids in the bile, blood, and feces has been associated to the pathogenesis of colon cancer.

Soluble fibers and reabsorption of bile salts

The reabsorption of bile salts can be reduced by chelating action of soluble fibers, such as those found in fresh fruits, legumes, oats and oat bran, which bind them, decreasing their uptake. In turn, this increases bile acid de novo synthesis, up-regulating the expression of the 7α-hydroxylase and sterol 12α-hydroxylase (see below), and thereby reduces hepatocyte cholesterol concentration.
The depletion of hepatic cholesterol increases the expression of the LDL receptor, and thus reduces plasma concentration of LDL cholesterol. On the other hand, it also stimulates the synthesis of HMG-CoA reductase, the key enzyme in cholesterol biosynthesis.
Note: Some anti-cholesterol drugs act by binding bile acids in the intestine, thereby preventing their reabsorption.

Synthesis of primary bile acids

Quantitatively, bile acids are the major product of cholesterol metabolism.
As previously said, enterohepatic circulation and their de novo synthesis maintain a constant bile acid pool size. In particular, de novo synthesis allows the replacement of bile salts excreted in the faces, about 5-10% of the body pool, namely ~ 0.5 g/day.
Below, the synthesis of cholic acid and chenodeoxycholic acid, and their conjugation with the amino acids taurine and glycine, is described.
There are two main pathways for bile acid synthesis: the classical pathway and the alternative pathway. In addition, some other minor pathways will also be described.

De novo synthesis of primary bile acids and their conjugates: classical and alternative pathways
De Novo Synthesis of Primary Bile Acids and Their Conjugates

The classical or neutral pathway

In humans, up to 90% of bile salts are produced via the classical pathway (see fig. 5), also referred to as “neutral” pathway since intermediates are neutral molecules.
It is a metabolic pathway present only in the liver, that consists of reactions catalyzed by enzymes localized in the cytosol, endoplasmic reticulum, peroxisomes, and mitochondria, and whose end products are the conjugates of cholic acid and chenodeoxycholic acid.

  • The first reaction is the hydroxylation at position 7 of cholesterol, to form 7α-hydroxycholesterol. The reaction is catalyzed by cholesterol 7α-hydroxylase or CYP7A1 (E.C. 1.14.14.23). It is an enzyme localized in the endoplasmic reticulum, and catalyzes the rate-limiting step of the pathway.

Cholesterol + NADPH + H+ + O2 → 7α-Hydroxycholesterol + NADP+ + H2O

  • 7α-Hydroxycholesterol undergoes oxidation of the 3β-hydroxyl group and the shift of the double bond from the 5,6 position to the 4,5 position, to form 7α-hydroxy-4-cholesten-3-one. The reaction is catalyzed by 3β-hydroxy-Δ5-C27-steroid oxidoreductase or HSD3B7 (E.C. 1.1.1.181), an enzyme localized in the endoplasmic reticulum.
  • 7α-Hydroxy-4-cholesten-3-one can follow two routes:

to enter the pathway that leads to the synthesis of cholic acid, through the reaction catalyzed by 7α-hydroxy-4-cholesten-3-one 12α-monooxygenase or sterol 12α-hydroxylase or CYP8B1 (E.C. 1.14.18.8), an enzyme localized in the endoplasmic reticulum;

to enter the pathway that leads the synthesis of chenodeoxycholic acid, through the reaction catalyzed by 3-oxo-Δ4-steroid 5β-reductase or AKR1D1 (E.C. 1.3.1.3), a cytosolic enzyme.

It should be underlined that the activity of sterol 12α-hydroxylase determines the ratio of cholic acid to chenodeoxycholic acid, and, ultimately, the detergent capacity of bile acid pool. And in fact, the regulation of sterol 12α-hydroxylase gene transcription is one of the main regulatory step of the classical pathway.

Therefore, if 7α-hydroxy-4-cholesten-3-one proceeds via the reaction catalyzed by sterol 12α-hydroxylase, the following reactions will occur.

  • 7α-Hydroxy-4-cholesten-3-one is hydroxylated at position 12 by sterol 12α-hydroxylase, to form 7α,12α-dihydroxy-4-cholesten-3-one.
  • 7α,12α-Dihydroxy-4-cholesten-3-one undergoes reduction of the double bond at 4,5 position, in the reaction catalyzed by 3-oxo-Δ4-steroid 5β-reductase, to form 5β-cholestan-7α,12α-diol-3-one.
  • 5β-Cholestan-7α,12α-diol-3-one undergoes reduction of the hydroxyl group at position 4, in the reaction catalyzed by 3α-hydroxysteroid dehydrogenase or AKR1C4 (EC 1.1.1.213), a cytosolic enzyme, to form 5β-cholestan-3α,7α,12α-triol.
  • 5β-Cholestan-3α,7α,12α-triol undergoes oxidation of the side chain via three reactions catalyzed by sterol 27-hydroxylase or CYP27A1 (EC 1.14.15.15). It is a mitochondrial enzyme also present in extrahepatic tissues and macrophages, which introduces a hydroxyl group at position 27. The hydroxyl group is oxidized to aldehyde, and then to carboxylic acid, to form 3α,7α,12α-trihydroxy-5β-cholestanoic acid.
  • 3α,7α,12α-Trihydroxy-5β-cholestanoic  acid is activated to its coenzyme A ester, 3α,7α,12α-trihydroxy-5β-cholestanoyl-CoA, in the reaction catalyzed by either very long chain acyl-CoA synthetase or VLCS (EC 6.2.1.-), or bile acid CoA synthetase or BACS (EC 6.2.1.7), both localized in the endoplasmic reticulum.
  • 3α,7α,12α-Trihydroxy-5β-cholestanoyl-CoA is transported to peroxisomes where it undergoes five successive reactions, each catalyzed by a different enzyme. In the last two reactions, the side chain is shortened to four carbon atoms, and finally cholylCoA is formed.
  • In the last step, the conjugation, via amide bond, of the carboxylic acid group of the side chain with the amino acid glycine or taurine occurs. The reaction is catalyzed by bile acid-CoA:amino acid N-acyltransferase or the BAAT (EC 2.3.1.65), which is predominantly localized in peroxisomes.
    The reaction products are thus the conjugated bile acids: glycocholic acid and taurocholic acid.

If 7α-hydroxy-4-cholesten-3-one does not proceed via the reaction catalyzed by sterol 12α-hydroxylase, it enters the pathway that leads to the synthesis of chenodeoxycholic acid conjugates, through the reactions described below.

  • 7α-Hydroxy-4-cholesten-3-one is converted to 7α-hydroxy-5β-cholestan-3-one in the reaction catalyzed by 3-oxo-Δ4-steroid 5β-reductase.
  • 7α-Hydroxy-5β-cholestan-3-one is converted to 5β-cholestan-3α,7α-diol in the reaction catalyzed by 3α-hydroxysteroid dehydrogenase.

Then, the conjugated bile acids glycochenodeoxycholic acid and taurochenodeoxycholic acid are formed by modifications similar to those seen for the conjugation of cholic acid, and catalyzed mostly by the same enzymes.

Note: Unconjugated bile acids formed in the intestine must reach the liver to be reconjugated.

The alternative or acidic pathway

It is prevalent in the fetus and neonate, whereas in adults it leads to the synthesis of less than 10% of the bile salts.
This pathway  (see fig. 5) differs from the classical pathway in that:

  • the intermediate products are acidic molecules, from which the alternative name “acidic pathway”;
  • the oxidation of the side chain is followed by modifications of the steroid nucleus, and not vice versa;
  • the final products are conjugates of chenodeoxycholic acid.

The first step involves the conversion of cholesterol into 27-hydroxycholesterol in the reaction catalyzed by sterol 27-hydroxylase.
27-Hydroxycholesterol can follow two routes.

Route A

  • 27-hydroxycholesterol is converted to 3β-hydroxy-5-cholestenoic acid in a reaction catalyzed by sterol 27-hydroxylase.
  • 3β-Hydroxy-5-cholestenoic acid is hydroxylated at position 7 in the reaction catalyzed by oxysterol 7α-hydroxylase or CYP7B1 (EC 1.14.13.100), an enzyme localized in the endoplasmic reticulum, to form 3β-7α-dihydroxy-5-colestenoic acid.
  • 3β-7α-Dihydroxy-5-cholestenoic acid is converted to 3-oxo-7α-hydroxy-4-cholestenoic acid, in the reaction catalyzed by 3β-hydroxy-Δ5-C27-steroid oxidoreductase.
  • 3-Oxo-7α-hydroxy-4-cholestenoic acid, as a result of side chain modifications, forms chenodeoxycholic acid, and then its conjugates.

Route B

  • 27-Hydroxycholesterol is converted to 7α,27-dihydroxycholesterol in the reaction catalyzed by oxysterol 7α-hydroxylase and cholesterol 7α-hydroxylase.
  • 7α,27-Dihydroxycholesterol is converted to 7α,26-dihydroxy-4-cholesten-3-one in the reaction catalyzed by 3β-hydroxy-Δ5-C27-steroid oxidoreductase;

7α, 26-Dihydroxy-4-cholesten-3-one can be transformed directly to conjugates of chenodeoxycholic acid, or can be converted to 3-oxo-7α-hydroxy-4-colestenoic acid,  and then undergo side chain modifications and other reactions that lead to the synthesis of the conjugates of chenodeoxycholic acid.

Minor pathways

There are also minor pathways (see fig. 5) that contribute to bile salt synthesis, although to a lesser extent than classical and alternative pathways.

For example:

  • A cholesterol 25-hydroxylase (EC 1.14.99.38) is expressed in the liver.
  • A cholesterol 24-hydroxylase or CYP46A1 (EC 1.14.14.25) is expressed in the brain, and therefore, although the organ cannot export cholesterol, it exports oxysterols.
  • A nonspecific 7α-hydroxylase has also been discovered. It is  expressed in all tissues and appears to be involved in the generation of oxysterols, which may be transported to hepatocytes to be converted to chenodeoxycholic acid.

Additionally, sterol 27-hydroxylase is expressed in various tissues, and therefore its reaction products must be transported to the liver to be converted to bile salts.

Bile salts: regulation of synthesis

Regulation of bile acid synthesis occurs via a negative feedback mechanism, particularly on the expression of cholesterol 7α-hydroxylase and sterol 12α-hydroxylase.
When an excess of bile acids, both free and conjugated, occurs, these molecules bind to the nuclear receptor farnesoid X receptor or FRX, activating it: the most efficacious bile acid is chenodeoxycholic acid, while others, such as ursodeoxycholic acid, do not activate it.
FRX induces the expression of the transcriptional repressor small heterodimer partner or SHP, which in turn interacts with other transcription factors, such as liver receptor homolog-1 or LRH-1, and hepatocyte nuclear factor-4α or HNF-4α. These transcription factors bind to a sequence in the promoter region of 7α-hydroxylase and 12α-hydroxylase genes, region called bile acid response elements or BAREs, inhibiting their transcription.
One of the reasons why bile salt synthesis is tightly regulated is because many of their metabolites are toxic.

References

Chiang J.Y.L. Bile acids: regulation of synthesis. J Lipid Res 2009;50(10):1955-1966. doi:10.1194/jlr.R900010-JLR200

Gropper S.S., Smith J.L. Advanced nutrition and human metabolism. 6th Edition. Cengage Learning, 2012

Moghimipour E., Ameri A., and Handali S. Absorption-enhancing effects of bile salts. Molecules 2015;20(8); 14451-14473. doi:10.3390/molecules200814451

Monte M.J., Marin J.J.G., Antelo A., Vazquez-Tato J. Bile acids: Chemistry, physiology, and pathophysiology. World J Gastroenterol 2009;15(7):804-816. doi:10.3748/wjg.15.804

Rosenthal M.D., Glew R.H. Medical biochemistry – Human metabolism in health and disease. John Wiley J. & Sons, Inc., Publication, 2009

Sundaram S.S., Bove K.E., Lovell M.A. and Sokol R.J. Mechanisms of Disease: inborn errors of bile acid synthesis. Nat Clin Pract Gastroenterol Hepatol 2008;5(8):456-468. doi:10.1038/ncpgasthep1179

Flavonoid biosynthesis pathway: genes and enzymes

The biosynthesis of flavonoids, probably the best characterized pathway of plant secondary metabolism, is part of the phenylpropanoid pathway that, in addition to flavonoids, leads to the formation of a wide range of phenolic compounds, such as hydroxycinnamic acids, stilbenes, lignans and lignins.
Flavonoid biosynthesis is linked to primary metabolism through both mitochondria- and plastid-derived molecules. Since it seems that most of the involved enzymes characterized to date operate in protein complexes located in the cell cytosol, these molecules must be exported to the cytoplasm to be used.
The end products are transported to different intracellular or extracellular locations, with flavonoids involved in pigmentation usually transported into the vacuoles.
The biosynthesis of this group of polyphenols requires one p-coumaroyl-CoA and three malonyl-CoA molecules as initial substrates.

Flavonoid biosynthesis pathway
Flavonoid Biosynthesis

CONTENTS

Biosynthesis of p-coumaroyl-CoA

p-Coumaroyl-CoA is the pivotal branch-point metabolite in the phenylpropanoid pathway, being the precursor of a wide variety of phenolic compounds, both flavonoid and non-flavonoid polyphenols.
It is produced from phenylalanine via three reactions catalyzed by cytosolic enzymes collectively called group I or early-acting enzymes, in order of action:

  • phenylalanine ammonia lyase (EC 4.3.1.24);
  • trans-cinnamate 4-monooxygenase (EC:1.14.14.91);
  • 4-coumarate-CoA ligase (EC 6.2.1.12).
Biosynthesis of p-coumaroyl-CoA from phenylalanine
Biosynthesis of p-coumaroyl-CoA

They seems to be associated in a multienzyme complex anchored to the endoplasmic reticulum membrane. The anchoring is probably ensured by cinnamate 4-hydroxylase that inserts its N-terminal domain into the membrane of the endoplasmic reticulum itself. These complexes, referred to as “metabolons”, allow the product of a reaction to be channeled directly as substrate to the active site of the enzyme that catalyzes the consecutive reaction in the metabolic pathway.
With the exception of cinnamate 4-hydroxylase, the enzymes which act downstream of phenylalanine ammonia lyase are encoded by small gene families in all species analyzed so far.
The different isoenzymes show distinct temporal, tissue, and elicitor-induced patterns of expression. It seems, in fact, that each member of each family can be used mainly for the synthesis of a specific compound, thus acting as a control point for carbon flux among the metabolic pathways leading to lignan, lignin, and flavonoid biosynthesis.

Note: Phenylalanine is a product of the shikimic acid pathway, which converts simple precursors derived from carbohydrate metabolism, phosphoenolpyruvate and erythrose-4-phosphate, into the aromatic amino acids phenylalanine, tyrosine and tryptophan. Unlike plants and microorganisms, animals do not possess the shikimic acid pathway, and are not able to synthesize the three above-mentioned amino acids, which are therefore essential nutrients.

Phenylalanine ammonia lyase (PAL)

It is one of the most studied and best characterized enzymes of plant secondary metabolism. It requires no cofactors and catalyzes the reaction that links primary and secondary metabolism: the reversible deamination of phenylalanine to trans-cinnamic acid, with the release of nitrogen as ammonia and introduction of a trans double bond between carbon atoms 7 and 8 of the side chain.

Phenylalanine ⇄ trans-Cinnamic Acid + NH3

Therefore, it directs the flow of carbon from the shikimic acid pathway to the different branches of the phenylpropanoid pathway. The released ammonia is probably fixed in the reaction catalyzed by glutamine synthetase.
The enzyme from monocots is also able to act as tyrosine ammonia lyase (EC 4.3.1.25), converting tyrosine to p-coumaric acid directly, (therefore without the 4-hydroxylation step), but with a lower efficiency.
In all plant species investigated,  several copies of phenylalanine ammonia lyase gene are found, copies that probably respond differentially to internal and external stimuli. Indeed, gene transcription, and then enzyme activity, are under the control of both internal developmental and external environmental stimuli. Here are some examples that require increased enzyme activity.

  • The flowering.
  • The  production of lignin to strengthen the secondary wall of xylem cells.
  • The production of flower pigments that attract pollinators.
  • Pathogen infections, that require the production of phenylpropanoid phytoalexins, or exposure to UV rays.

trans-Cinnamate 4-monooxygenase

It belongs to the cytochrome P450 superfamily (EC 1.14.-.-), is a microsomal monooxygenase containing a heme cofactor, and dependent on both O2  and NADPH. It catalyzes the formation of p-coumaric acid  through the introduction of a hydroxyl group in 4-position of trans-cinnamic acid (this hydroxyl group is present in most flavonoids).

trans-Cinnamic Acid + NADPH + H+ + O2 ⇄ p-Coumaric Acid + NADP+ + H2O

This reaction is also part of the biosynthesis of hydroxycinnamic acids.
Increases in transcription rates and enzyme activity are observed in correlation with the synthesis of phytoalexins (in response to fungal infections), lignification as well as wounding.

4-Coumarate:CoA ligase (4CL)

With Mg2+ as a cofactor, it catalyzes the ATP-dependent activation of the carboxyl group of p-coumaric acid and other hydroxycinnamic acids, metabolically rather inert molecules, through the formation of the corresponding CoA-thioester.

p-Coumaric Acid + ATP + CoA ⇄ p-Coumaroyl-CoA + AMP + PPi

Generally, p-coumaric acid and caffeic acid are the preferred substrates, followed by ferulic acid and 5-hydroxyferulic acid, low activity against trans-cinnamic acid and none against sinapic acid. These CoA-thioesters are able to enter various reactions such as:

  • reduction to alcohol (monolignols) or aldehydes;
  • stilbene and flavonoid biosynthesis;
  • transfer to acceptor molecules.

It should finally be pointed out that the activation of the carboxyl group can also be obtained through an UDP-glucose-dependent transfer to glucose.

Biosynthesis of malonyl-CoA

Malonyl-CoA does not derived from the phenylpropanoid pathway, but from the reaction catalyzed by acetyl-CoA carboxylase (EC 6.4.1.2, the cytosolic form, see below). The enzyme, with biotin and Mg2+ as cofactors, catalyzes the ATP-dependent carboxylation of acetyl-CoA, using bicarbonate as a source of carbon dioxide (CO2).

Acetyl-CoA + HCO3 + ATP → Malonyl-CoA + ADP + Pi

It is found both in the plastids, where it participates in the synthesis of fatty acids, and the cytoplasm, and is the latter that catalyzes the formation of malonyl-CoA that is used in the biosynthesis of flavonoids and other compounds. Increases in the transcription rate of the gene and enzyme activity are induced in response to stimuli that increase the biosynthesis of these polyphenols, such as exposure to pathogenic fungi or UV-rays.
In turn, acetyl-CoA is produced in plastids, mitochondria, peroxisomes and cytosol through different metabolic pathways. The molecules used in the biosynthesis of malonyl-CoA, and therefore of the flavonoids, are  the cytosolic ones, produced in the reaction catalyzed by ATP-citrate lyase (EC 2.3.3.8) that cleaves citrate, in the presence of CoA and ATP, to form oxaloacetate and acetyl-CoA, plus ADP and inorganic phosphate.

First steps in flavonoid biosynthesis

The first step in flavonoid biosynthesis is catalyzed by chalcone synthase (EC 2.3.1.74), an enzyme anchored to the endoplasmic reticulum and with no known cofactors.
From one p-coumaroyl-CoA and three malonyl-CoA, it catalyzes sequential condensation and decarboxylation reactions in the course of which a polyketide intermediate is formed. The polyketide undergoes cyclizations and aromatizations leading to the formation of the A ring. The product of the reactions is naringenin chalcone (2′,4,4′,6′-tetrahydroxychalcone), a 6′-hydroxychalcone and the first flavonoid to be synthesized by plants.

p-Coumaroyl-CoA + 3 Malonyl-CoA → Naringenin Chalcone + 4 CoA + 3 CO2

The reaction, cytosolic, is irreversible due to the release of three CO2 and 4 CoA.
The B ring and the three-carbon bridge of the molecule originate from p-coumaroyl-CoA (and therefore from phenylalanine), the A ring from the three malonyl-CoA units.

Flavonoid biosynthesis and the origin of the flavonoid skeleton
The Origin of the Flavonoid Skeleton

Also 6’-deoxychalcone can be produced; its synthesis is thought to involve an additional reduction step catalyzed by polyketide reductase (EC. 1.1.1.-).
Chalcone synthase from some plant species, such as barley (Hordeum vulgare), accepts as substrates also caffeoil-CoA, feruloil-CoA and cinnamoyl-CoA.
It is the most abundant enzyme of the phenylpropanoid pathway, probably because it has a low catalytic activity, and, in fact, is considered to be the rate-limiting enzyme in flavonoid biosynthesis.
As for phenylalanine ammonia lyase, chalcone synthase gene expression is under the control of both internal and external factors. In some plants, one or two isoenzymes are found, while in others up to 9.
Chalcone synthase belongs to polyketide synthase group, present in bacteria, fungi and plants. These enzymes are able to catalyze the production of polyketide chains through sequential condensations of acetate units provided by malonyl-CoA units. They also includes stilbene synthase (EC 2.3.1.146), which catalyzes the formation of resveratrol, a non flavonoid polyphenol compound that has attracted much interest because of its potential health benefits.
Generally, chalcones do not accumulate in plants because naringenin chalcone is converted to (2S)-naringenin, a flavanone, in the reaction catalyzed by chalcone isomerase (EC 5.5.1.6).
The enzyme, the first of the flavonoid biosynthesis to be discovered, catalyzes a stereospecific isomerization and closes the C ring. Two types of chalcone isomerases are known, called type I and II. Type I enzymes use only 6′-hydroxychalcone substrates, like naringenin chalcone, while type II, prevalent in legumes, use both 6′-hydroxy- and 6′-deoxychalcone substrates.
It should be noted that with 6′-hydroxychalcones, isomerization can also occur nonenzymically to form a racemic mixture, both in vitro and in vivo, enough to allow a moderate synthesis of anthocyanins. On the contrary, under physiological conditions 6′-deoxychalcones are stable, and so the activity of type II chalcone isomerases is required to form flavanones.
The enzyme increases the rate of the reaction of 107 fold compared to the spontaneous reaction, but with a higher kinetics for the 6′-hydroxychalcones than 6′-deoxychalcones. Finally, it produces (2S)-flavanones, which are the biosynthetically required enantiomers.
As other enzymes in flavonoid biosynthesis, also chalcone isomerase gene expression is subject to strict control. And, as phenylalanine ammonia lyase and chalcone synthase, it is induced by elicitors.
In the reaction catalysed by flavanone-3β-hydroxylase (EC 1.14.11.9), (2S)-flavanones undergo a stereospecific isomerization that converts them into the respective (2R,3R)-dihydroflavonols. In particular, naringenin is converted into dihydrokaempferol.
The enzyme is a cytosolic non-heme-dependent dioxygenase, dependent on Fe2+ and 2-oxoglutarate, and therefore belonging to the family of 2-oxoglutarate-dependent dioxygenase (which distinguishes them from the other hydroxylases of the flavonoid biosynthetic pathway which are cytochrome P450 enzymes).

Naringenin chalcone, (2S)-naringenin, and dihydrokaempferol are central intermediates in flavonoid biosynthesis, since they act as branch-point compounds from which the synthesis of distinct flavonoid subclasses can occur. For example, directly or indirectly:

Not all of these side metabolic pathways are present in every plant species, or are active within each tissue type of a given plant. Like enzymes previously seen, the activity of those involved in these “side-routes” is subject to strict control, resulting in a tissue-specific profile of flavonoid compounds. For example, grape seeds, flesh and skin have distinct anthocyanin, catechin, flavonol and condensed tannin profiles, whose synthesis and accumulation are strictly and temporally coordinated during the ripening process.

References

Andersen Ø.M., Markham K.R. Flavonoids: chemistry, biochemistry, and applications. CRC Press Taylor & Francis Group, 2006

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Heldt H-W. Plant biochemistry – 3th Edition. Elsevier Academic Press, 2005

Vogt T. Phenylpropanoid biosynthesis. Mol Plant 2010;3(1):2-20. doi:10.1093/mp/ssp106

Wink M. Biochemistry of plant secondary metabolism – 2nd Edition. Annual plant reviews (v. 40), Wiley J. & Sons, Inc., Publication, 2010

Digestion of starch and alpha-amylase

Amylose and amylopectin, the two families of homopolysaccharides constituting starch, during their biosynthesis within vegetable cells, are deposited in highly organized particles called granules.

alpha-amylase
alpha-Amylase

Granules have a partially crystalline structure and diameter ranging from 3 to 300 µm.
The access of the alpha-amylase (EC 3.2.1.1), the enzyme that catalyzes the breakdown of amylose and amylopectin into maltose, maltotriose, and alpha-dextrins or alpha-limit dextrins, to carbohydrates making up granules varies as a function of:

  • amylose-amylopectin ratio;
  • temperature and packaging of amylose and amylopectin;
  • granules-associated proteins;
  • presence of fibers.

Amylose-amylopectin ratio

Starch for foodstuff use is obtained from various sources, the most important of which are corn (normal, waxy or high amylose content), potatoes, rice, tapioca and wheat.
Depending on botanical origin, molecular weight, degree of branching, and amylose-amylopectin ratio will vary.
Generally, there is 20-30% amylose and 70-80% amylopectin, even if there are starches with high amylose or amylopectin content (e.g. waxy corn). These differences justify the existence of starches with different chemical-physical characteristics and, to a certain extent, different digestibility.

  • corn: 24% amylose, 76% amylopectin;
  • waxy corn: 0,8% amylose, 99.2% amylopectin;
  • Hylon VII corn: 70% amylose, 30% amylopectin;
  • potatoes: 20% amylose, 80% amylopectin;
  • rice: 18.5 amylose, 81.5% amylopectin;
  • tapioca: 16.7% amylose, 83.3% amylopectin;
  • wheat: 25% amylose, 75% amylopectin.

Temperature and packaging of amylose and amylopectin

The chains of amylose, and to a lesser extent ramifications of amylopectin, thanks to the formation of hydrogen bonds with neighboring molecules and within the same molecules, have the tendency to aggregate. For this reason, pure amylose and amylopectin are poorly soluble in water at below 55 °C (131°F), and are more resistant to alpha-amylase action (resistant starch).
However, in aqueous solution, these granules hydrate increasing in volume of about 10%.
Above 55°C (131°F), the partially crystalline structure is lost, granules absorb further water, swell and pass to a disorganized structure, that is, starch gelatinization occurs, by which starch assumes an amorphous structure more easily attachable by alpha-amylase.

Granules-associated proteins

In granules, starch is present in association with proteins, many of which are hydrophobic, that means with low affinity for water. This association have the effect to hinder the interaction, in the intestinal lumen, between alpha-amylase, a polar protein, and the carbohydrates making up starch granules.
The physical processes to which cereals undergo before being eaten, such as milling or heating for several minutes, change the relationship between starch and the associated proteins, making it more available to α-amylase action.

Fibers

Alpha-amylase activity may also be hindered by the presence of nondigestible polysaccharides, the fibers: cellulose, hemicellulose and pectin.

Conclusions

The presence of inhibitors, of both chemical and physical type, hinders starch digestion, even when pancreatic α-amylase secretion is normal. This means that a part of starch, ranging from 1% to 10%, may escape the action of the enzyme, being then metabolized by colonic bacteria.
Refined starch is instead hydrolyzed efficiently, even when there is an exocrine pancreatic insufficiency (EPI), condition in which alpha-amylase concentration in gut lumen may be reduced to 10% of the normal.

References

Belitz .H.-D., Grosch W., Schieberle P. “Food Chemistry” 4th ed. Springer, 2009

Bender D.A. “Benders’ Dictionary of Nutrition and Food Technology”. 8th Edition. Woodhead Publishing. Oxford, 2006

Osorio-Dıaz P., Bello-Perez L.A., Agama-Acevedo E., Vargas-Torres A., Tovar J., Paredes-Lopez O. In vitro digestibility and resistant starch content of some industrialized commercial beans (Phaseolus vulgaris L.). Food Chem 2002;78:333-7 doi:10.1016/S0308-8146(02)00117-6

Stipanuk M.H.. “Biochemical and physiological aspects of human nutrition” W.B. Saunders Company-An imprint of Elsevier Science, 2012

Flavonoids: chimical structure, classification, and examples

Flavonoids are the most abundant polyphenols in human diet, representing about 2/3 of all those ones ingested. Like other phytochemicals, they are the products of secondary metabolism of plants and, currently, it is not possible to determine precisely their number, even if over 4000 have been identified.
In fruits and vegetables, they are usually found in the form of glycosides and sometimes as acylglycosides, while acylated, methylated and sulfate molecules are less frequent and in lower concentrations.
They are water-soluble and accumulate in cell vacuoles.

CONTENTS

Chemical structure of flavonoids

Their basic structure is a skeleton of diphenylpropane, namely, two benzene rings (ring A and B, see figure) linked by a three carbon chain that forms a closed pyran ring (heterocyclic ring containing oxygen, the C ring) with benzenic A ring. Therefore, their structure is also referred to as C6-C3-C6.

Basic skeleton structure of flavonoids, the most abundant polyphenols in human diet
Basic Skeleton of Flavonoids

In most cases, B ring is attached to position 2 of C ring, but it can also bind in position 3 or 4; this, together with the structural features of the ring B and the patterns of glycosylation and hydroxylation of the three rings, makes the flavonoids one of the larger and more diversified groups of phytochemicals, so not only of polyphenols, in nature.
Their biological activities, for example they are potent antioxidants, depend both on the structural characteristics and the pattern of glycosylation.

Classification of flavonoids

They can be subdivided into different subclasses depending on the carbon of the C ring on which B ring is attached, and the degree of unsaturation and oxidation of the C ring.
Flavonoids in which B ring is linked in position 3 of the ring C are called isoflavones; those in which B ring is linked in position 4, neoflavonoids, while those in which the B ring is linked in position 2 can be further subdivided into several subgroups on the basis of the structural features of the C ring. These subgroup are: flavones, flavonols, flavanones, flavanonols, flavanols or catechins and anthocyanins.
Finally, flavonoids with open C ring are called chalcones.

Basic skeleton structure of flavonoid subclasses
Flavonoid Subclasses

Flavones

They have a double bond between positions 2 and 3 and a ketone in position 4 of the C ring. Most flavones of vegetables and fruits has a hydroxyl group in position 5 of the A ring, while the hydroxylation in other positions, for the most part in position 7 of the A ring or 3′ and 4′ of the B ring may vary according to the taxonomic classification of the particular vegetable or fruit.
Glycosylation occurs primarily on position 5 and 7, methylation and acylation on the hydroxyl groups of the B ring.
Some flavones, such as nobiletin and tangeretin, are polymethoxylated.

Flavonols

Compared to flavones, they have a hydroxyl group in position 3 of the C ring, which may also be glycosylated. Again, like flavones, flavonols are very diverse in methylation and hydroxylation patterns as well, and, considering the different glycosylation patterns, they are perhaps the most common and largest subgroup of flavonoids in fruits and vegetables. For example, quercetin is present in many plant foods.

Flavanones

Flavanones, also called dihydroflavones, have the C ring saturated; therefore, unlike flavones, the double bond between positions 2 and 3 is saturated and this is the only structural difference between the two subgroups of flavonoids.
The flavanones can be multi-hydroxylated, and several hydroxyl groups can be glycosylated and/or methylated.
Some have unique patterns of substitution, for example, furanoflavanones, prenylated flavanones, pyranoflavanones or benzylated flavanones, giving a great number of substituted derivatives.
Over the past 15 years, the number of flavanones discovered is significantly increased.

Flavanonols

Flavanonols, also called dihydroflavonols, are the 3-hydroxy derivatives of flavanones; they are an highly diversified and multisubstituted subgroup.

Isoflavones

As anticipated, isoflavones are a subgroup of flavonoids in which the B ring is attached to position 3 of the C ring. They have structural similarities to estrogens, such as estradiol, and for this reason they are also called phytoestrogens.

Catechins

Catechins are also referred to flavan-3-ols as the hydroxyl group is almost always bound to position 3 of C ring; they are called flavanols as well.
Catechins have two chiral centers in the molecule, on positions 2 and 3, then four possible diastereoisomers. Epicatechin is the isomer with the cis configuration and catechin is the one with the trans configuration. Each of these configurations has two stereoisomers, namely, (+)-epicatechin and (-)-epicatechin, (+)-catechin and (-)-catechin.
(+)-Catechin and (-)-epicatechin are the two isomers most often present in edible plants.
Another important feature of flavanols, particularly of catechin and epicatechin, is the ability to form polymers, called proanthocyanidins or condensed tannins. The name “proanthocyanidins” is due to the fact that an acid-catalyzed cleavage produces anthocyanidins.
Proanthocyanidins typically contain 2 to 60 monomers of flavanols.
Monomeric and oligomeric flavanols (containing 2 to 7 monomers) are strong antioxidants.

Anthocyanidins

Chemically, anthocyanidins are flavylium cations and are generally present as chloride salts.
They are the only group of flavonoids that gives plants colors (all other flavonoids are colorless).
Anthocyanins are glycosides of anthocyanidins. Sugar units are bound mostly to position 3 of the C ring and they are often conjugated with phenolic acids, such as ferulic acid.
The color of the anthocyanins depends on the pH and also by methylation or acylation at the hydroxyl groups on the A and B rings.

Chalcones

Chalcones and dihydrochalcones are flavonoids with open structure; they are classified as flavonoids because they have similar synthetic pathways.

References

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Han X., Shen T. and Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci 2007;9:950-988. doi:10.3390/i8090950

Manach C., Scalbert A., Morand C., Rémésy C., and Jime´nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-747. doi:10.1093/ajcn/79.5.727

Panche A.N., Diwan A.D., and  Chandra S.R. Flavonoids: an overview. J Nutr Sci. 2016;5:e47. doi:10.1017/jns.2016.41

Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010;2:1231-1246. doi:10.3390/nu2121231

Polyphenols: chimical structure, classification, food sources

Polyphenols are one of the most important and certainly the most numerous among the groups of phytochemicals present in the plant kingdom.
Currently, over 8,000 phenolic structures have been identified, of which more than 4,000 belonging to the class of flavonoids, and several hundred occur in edible plants.
However, it is thought that the total content of polyphenols in plants is underestimated as many of the phenolic compounds present in fruits, vegetables and derivatives have not yet been identified, escaping the methods and techniques of analysis used, and the composition in polyphenols for most fruits and some varieties of cereals is not yet known.
They are present in many edible plants, both for men and animals, and it is thought to be their presence, along with that of other molecules such as carotenoids, vitamin C or vitamin E, the responsible for the healthy effects of fruits and vegetables.
In the human diet, they are the most abundant natural antioxidants, and the main sources are fruits, vegetables, whole grains, but also other types of foods and beverages derived from them, such as red wine, rich in resveratrol, the extra virgin olive oil, rich in hydroxytyrosol, chocolate or tea, in particularly green tea, rich in epigallocatechin gallate (EGCG).

CONTENTS

Chemical structure of polyphenols

The term polyphenols refers to a wide variety of molecules that can be divided into many subclasses, subdivisions that can be made on the basis of their origin, biological function, or chemical structure.
Chemically, they are compounds with structural phenolic features, which can be associated with different organic acids and carbohydrates.

Ball-and-stick model of phenol

In plants, the most part of them are linked to sugars, and therefore they are in the form of glycosides. Carbohydrates and organic acids can be bound in different positions on polyphenol skeletons.
Among polyphenols, there are simple molecules, such as phenolic acids, or complex structures such as proanthocyanidins, that are highly polymerized molecules.

Classification

They can be classified into different classes, according to the number of phenolic rings in their structure, the structural elements that bind these rings each others, and the substituents linked to the rings. Therefore, two main groups can then be identified: the flavonoid group and the non-flavonoid group.
Flavonoids share a structure formed by two aromatic rings, indicated as A and B, linked together by three carbon atoms forming an oxygenated heterocycle, the C ring; they can be further subdivided into six main subclasses, as a function of the type of heterocycle (the C ring) that is involved:

Non-flavonoids can be subdivided into:

  • simple phenols
  • phenolic acids
  • benzoic aldehydes
  • hydrolyzable tannins
  • acetophenones and phenylacetic acids
  • hydroxycinnamic acids
  • coumarins
  • benzophenones
  • xanthones
  • stilbenes;
  • lignans
  • secoiridoids

Variability of polyphenol content of plants and plant products

Although several classes of phenolic molecules, such as quercetin (a flavonol, see figure), are present in most plant foods (tea, wine, cereals, legumes, fruits, fruit juices, etc.), other classes are found only in a particular type of food (e.g. flavanones in citrus, isoflavones in soya, phloridzin in apples, etc.).
However, it is common that different types of polyphenols are in the same product; for example, apples contain flavanols, chlorogenic acid, hydroxycinnamic acids, glycosides of phloretin, glycosides of quercetin and anthocyanins.
The polyphenol composition may also be influenced by other parameters such as environmental factors, the degree of ripeness at harvest time, household or industrial processing, storage, and plant variety. From currently available data, it seems that the fruits with the highest content of polyphenols are strawberries, lychees and grapes, and the vegetables are artichokes, parsley and brussels sprouts. Melons and avocados have the lowest concentrations.

References

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Han X., Shen T. and Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci 2007;9:950-988. doi:10.3390/i8090950

Manach C., Scalbert A., Morand C., Rémésy C., and Jime´nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-747. doi:10.1093/ajcn/79.5.727

Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010;2:1231-1246. doi:10.3390/nu2121231

Role of carotenoids in plants and foods

Through the course of evolution, carotenoids, thank to their unique physical and chemical properties, have proven to be highly versatile molecules, being able to perform many functions in many different organisms, like plants.

Carotenoids in photosynthesis

Carotenoids, in the early stages of the emergence of single-celled photosynthetic organisms, are probably been used for light harvesting at wavelengths different from those covered by chlorophyll. Therefore carotenoids, acting as light absorbing accessory pigments, have allowed to expand the range of solar radiation absorbed and so utilized for photosynthesis, energy that is then transferred to chlorophyll itself.
The major carotenoids involved in light harvesting, that accumulate in green plant tissues, are beta-carotene, lutein, neoxanthin, and violaxanthin, that absorb light energy in the 400- to 500-nm range.
Moreover, they protect chlorophyll from photooxidation (in humans, they may contribute to the protection of photo-oxidative damage caused by UV rays, thus acting as a endogenous photo-protective agents).

Carotenoids and autumn leaf color

Leaf color of deciduous plants in different seasons, green, yellow, orange or red, is due to the presence in them of natural pigments.
In spring and summer, the predominant pigment present in the leaf is chlorophyll, and therefore the color is green.
Carotenoids and PlantsDuring the fall, the color changes from green to yellow, orange or red, depending on the type of plant: this is a consequence of the change, both qualitative and quantitative, in the pigment content.
In fact, as a result of the decrease of the temperature and daylight hours, the production of chlorophyll is interrupted and that already present is demolished into colorless metabolites. In this way the predominant pigments become carotenoids (yellow-orange), molecules much more stable than the chlorophyll, which remain in the leaf coloring it (it do not seem to be synthesized de novo), and anthocyanins (red-purple), which, unlike carotenoids, are not present during the growing season, but are synthesized in autumn, just before leaf fall. Therefore, it can be concluded that the red-purple color assumed from the leaves of certain plants is not a side effect of leaf senescence but results from anthocyanins de-novo synthesis.
Depending on the prevalence of carotenoids or anthocyanins, leaf color changes from green to yellow/orange, as in Ginkgo biloba (yellow), or red-purple as in some maples.

And plants with non green leaves?
Their color is not due to the absence of chlorophyll but the presence of very high amounts of other pigments, typically carotenoids and anthocyanins, that “cover” the chlorophyll, determining the color of the leaf.

Some functions of apocarotenoids in plants and foods

These oxygenated carotenoids, containing fewer than 40 carbon atoms, have many functions in plants and animals and are also important for the aroma and flavor of foods.
Some of their main functions include the following.

  • Apocarotenoids have significant roles in the response signals involved in the development and in the response to the environment (for example abscisic acid).
  • They can act as visual or volatile signals to attract pollinators.
  • They are important in the defense mechanisms of plants.
  • They have a role in regulating plant architecture.
  • An apocarotenal, trans-beta-apo-8′-carotenal, found in citrus fruits and spinach, with a low provitamin A activity, is used in pharmaceuticals and cosmetics, and is also a food additive (E160e) legalized by the European Commission for human consumption.
  • Apocarotenoids make an important contribution to the nutritional quality and flavor of many types of foods such as fruits, wine and tea. Two natural apocarotenoids, crocetin and bixina, have economic importance as they are used as pigments and aroma in foods.
  • Finally, a broad range of apocarotenals derive from oxidative reactions that occur in food processing; these molecules are intermediates in the formation of smaller molecules, important for the color and flavor of the food.

References

Archetti, M., Döring T.F., Hagen S.B., Hughes N.M., Leather S.R., Lee D.W., Lev-Yadun S., Manetas Y., Ougham H.J. Unravelling the evolution of autumn colours: an interdisciplinary approach. Trends Ecol Evol 2009;24(3):166-73. doi:10.1016/j.tree.2008.10.006

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Carotenoids: definition, structure and classification

Carotenoids
Fig. 1 – Carrots

Carotenoids are soluble-fat pigments found throughout nature.
Carotenoids were discovered during the 19th century.
In 1831 Wachen proposed the term “carotene” for a pigment crystallized from carrot roots.
Berzelius called the more polar yellow pigments extracted from autumn leaves “xanthophylls” (originally phylloxanthins), from Greek words xanthos, meaning yellow, and phyllon, meaning leaf.
Tswett separated many pigments and called them “carotenoids.”
They occur in the chromoplasts of plants and some other photosynthetic organisms such as algae and in some types of fungi and bacteria; they are also produced by some invertebrates (Aphids).
There are more than 750 different carotenoids ranging in color from red (such as lycopene), to orange (such as alpha-carotene, beta-carotene, and gamma-carotene) or yellow (such as lutein, alfa-cryptoxanthin or violaxanthin); more than 100 have been found in fruits and vegetables.
In some green plants and in their parts, generally the darker the green color, the higher the carotenoid content: for example, carotenoid content in pale green cabbage is less than 1% of that in dark green one.
Fruit carotenoids are very different, and those present in ripe fruits may be different from those present in unripe fruits.
They also occur extensively in microorganisms and animals.
In plants, microorganism and animals carotenoids have diverse and important functions and actions.

CONTENTS

Chemical structure of carotenoids

Carotenoids are a class of hydrocarbon compounds consisting of 40 carbon atoms (tetraterpenes), with a structure characterized by an extensive conjugated double-bond system that determines the color (it serves as a light-absorbing chromophore): as the number of conjugated double-bond increases, color changes from pale yellow, to orange, to red.
In nature, they exist primarily in the more stable all-trans isomeric configuration, even though small amounts of cis isomers do occur too (they can be produced from all-trans forms also during processing).
Traditionally, carotenoids have been given trivial names derived from the biological source from which they are extracted. However, a semisystematic scheme exists: it allows carotenoids to be named in a way that describes and defines their structure.

Classification

Depending on the presence or absence of oxygen in the molecule, they can be divided into:

  • xanthophylls, which contain oxygen, such as:

Antheraxanthin
Astaxanthin (red)
Auroxanthin
Bixin, E160b
Canthaxanthin (red), E161g
Capsanthin, E160c
Capsorubin, E160c
beta-Carotene-5,6-epoxide
alfa-Cryptoxanthin (yellow)
beta-Cryptoxanthin (orange)
Crocetin
Lutein (yellow), E161b
Lutein-5,6-epoxide or taraxanthin
Luteoxanthin
Lycophyll
Lycoxanthin
Neoxanthin
Rubixanthin
Tunaxanthin
Violaxanthin (yellow)
Zeaxanthin (yellow-orange)
Zeinoxanthin

  • carotenes, which lack oxygen, as such:

alfa-Carotene (orange)
beta-Carotene (orange), E160a
delta-Carotene
gamma-Carotene (orange)
Lycopene (red), E160d
Neurosporene
Phytoene (colorless)
Phytofluene
alfa-Zeacarotene
beta-Zeacarotene
zeta-Carotene

Depending on chemical structure they can be divided into:

  • acyclic carotenes: formed by a linear carbon chain such as:

zeta-Carotene
Phytoene (colorless)
Lycopene (red), E160d
Neurosporene
Phytofluene

  • cyclic carotenes: containing one or two cyclic structures such as:

alfa-Carotene (orange)
beta-Carotene (orange), E160a
gamma-Carotene (orange)
delta-Carotene
alfa-Zeacarotene
beta-Zeacarotene

  • hydroxycarotenoids (or carotenols): containing at least an hydroxyl group (xanthophylls) such as:

alfa-Cryptoxanthin (yellow)
beta-Cryptoxanthin (orange)
Lutein (yellow), E161b
Lycofill
Lycoxanthin
Rubixanthin
Zeaxanthin (yellow-orange)
Zeinoxanthin

  • epoxycarotenoids: containing at least an epoxic group (xanthophylls) such as:

Antheraxanthin
Auroxanthin
beta-Carotene-5,6-epoxide
Lutein-5,6-epoxide
Luteoxanthin
Neoxanthin
Violaxanthin (yellow)

  • uncommon or species-specific carotenoids such as:

Bixin, E160b
Capsanthin, E160c
Capsorubin, E160c
Crocetin

Note: Although green leaves contain unesterified hydroxycarotenoids, most carotenols in ripe fruits are esterified with fatty acids. However, those of some fruits, particularly those that remain green when ripe (example kiwi fruit) undergo no or limited esterification.

Apocarotenoids

Apocarotenoids are a class of carotenoids containing less than 40 carbon atoms, very widespread in nature and with extremely different structures.
They derive from 40 carbon atom carotenoids by oxidative cleavage that can occurs through non-specific mechanisms, such as photo-oxidation, or through the action of specific enzymes (these enzymatic activities, identified in plants, animals and microorganisms, are collectively referred to as carotenoid cleavage dioxygenases).
Some of the most well-known

  • vitamin A
  • abscisic acid
  • bixin, E160b
  • crocetin
  • trans-β-apo-8′-carotenal, E160e

References

Boileau A.C., Merchen N.R., Wasson K., Atkinson C.A. and Erdman Jr J.W. cis-Lycopene is more bioavailable than trans-lycopene in vitro and in vivo in lymph-cannulated ferrets. J Nutr 1999;129:1176-1181. doi:10.1093/jn/129.6.1176

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Engelmann N.J., Clinton S.K., and Erdman Jr J.W. Nutritional aspects of phytoene and phytofluene,carotenoid precursors to lycopene. Adv Nutr 2011:2;51-61. doi:10.3945/​an.110.000075

Olempska-Beer Z. Lycopene (synthetic): chemical and technical assessment (CTA). Office of Food Additive Safety, Center for Food Safety and Applied Nutrition. U.S. Food and Drug Administration. College Park, Maryland, USA.

Periago M.J., Bravo S., García-Alonso F.J., and Rincón F. Detection of key factors affecting lycopene in vitro accessibility. J Agr Food Chem 2013;61(16):3859-3867. doi:10.1021/jf3052994

Ross A.B., Thuy Vuong L., Ruckle J., Synal H.A., Schulze-König T., Wertz K., Rümbeli R., Liberman R.G., Skipper P.L., Tannenbaum S.R., Bourgeois A., Guy P.A., Enslen M., Nielsen I.L.F., Kochhar S., Richelle M., Fay L.B., and Williamson G. Lycopene bioavailability and metabolism in humans: an accelerator mass spectrometry study. Am J Clin Nutr 2011;93:1263-1273. doi:10.3945/ajcn.110.008375

Wang X-D. Lycopene metabolism and its biological significance. Am J Clin Nutr 2012:96;1214S-1222S. doi:10.3945/​ajcn.111.032359

Glycogen: definition, structure and functions

Glycogen is an homopolysaccharide formed by units of glucose. Chemically similar to amylopectin, and therefore sometimes referred to as animal starch, compared to the latter it is more compact, extensively branched and larger, reaching a molecular weight up to 108 Da corresponding to about 600000 glucose molecules.
As in the amylopectin, glucose units in the main chain and in the lateral chains are linked by α-(1→4) glycosidic bonds. Lateral chains are joined to the main chain by an α-(1→6) glycosidic bond; unlike amylopectin branches are more frequent, approximately every 10 glucose units (rather than every 25-30 as in amylopectin) and are formed by a smaller numbers of glucose units.

Glycogen
Fig. 1 – Glycogen Structure

Glycogen is located in the cytosol of the cell in the form of hydrated granules of diameter between 1 to 4 µm and forms complexes with regulatory proteins and enzymes responsible for its synthesis and degradation.

Functions

Glycogen, discovered in 1857 by French physiologist Claude Bernard, is the storage form of glucose, and therefore of energy, in animals in which it is present in the liver, muscle (skeletal and heart muscle) and in lower amounts in nearly all the other tissues and organs.
In humans it represents less than 1% of the body’s caloric stores (the other form of caloric reserve, much more abundant, is triacylglycerols stored in adipose tissue) and is essential for maintaining normal glycemia too.
It represents about 10% of liver weight and 1% of muscle weight; although it is present in a higher concentration in the liver, the total stores in muscle are much higher thanks to its greater mass (in a non-fasting 70 kg adult male there are about 100 g of glycogen in the liver and 250 g in the muscle).

  • Liver glycogen stores is a glucose reserve that hepatocyte releases when needed to maintain a normal blood sugar levels: if you consider glucose availability (in a non-fasting 70 kg adult male) there is about 10 grams or 40 kcal in body fluids while hepatic glycogen can supply, also after a fasting night, about 600 kcal.
  • In skeletal and cardiac muscle, glucose from glycogen stores remains within the cell and is used as an energy source for muscle work.
  • The brain contains a small amount of glycogen, primarily in astrocytes. It accumulates during sleep and is mobilized upon waking, therefore suggesting its functional role in the conscious brain. These glycogen reserves also provide a moderate degree of protection against hypoglycemia.
  • It has a specialized role in fetal lung type II pulmonary cells. At about 26 weeks of gestation these cells start to accumulate glycogen and then to synthesize pulmonary surfactant, using it as a major substrate for the synthesis of surfactant lipids, of which dipalmitoylphosphatidylcholine is the major component.
Glycogen: Dipalmitoylphosphatidylcholine
Fig. 2 – Dipalmitoylphosphatidylcholine

Glycogen and foods

It is absent from almost all foods because after an animal is killed it is rapidly broken down to glucose and then to lactic acid; it should be noted that the acidity consequently to lactic acid production gradually improves the texture and keeping qualities of the meat. The only dietary sources are oysters and other shellfish that are eaten virtually alive: they contain about 5% glycogen.

In humans, accumulation of glycogen is associated with weight gain due to water retention: for each gram of stored glycogen 3 grams of water are retained.

References

Nelson D.L., M. M. Cox M.M. Lehninger. Principles of biochemistry. 6th Edition. W.H. Freeman and Company, 2012

Roach P.J., Depaoli-Roach A.A., Hurley T.D and Tagliabracci V.C. Glycogen and its metabolism: some new developments and old themes. Biochem J 2012;441:763-787. doi:10.1042/BJ20111416

Stipanuk M.H., Caudill M.A. Biochemical, physiological, and molecular aspects of human nutrition. 3rd Edition. Elsevier health sciences, 2012

Long chain fatty acid synthesis in plants and animals

When excess calories are consumed from carbohydrates or proteins, such surplus is used to synthesize fatty acids and then triacylglycerols, while it doesn’t occur if the excess come from fats.

Metabolic pathways for saturated and unsaturated long chain fatty acid synthesis
Long Chain Fatty Acids Biosynthesis

CONTENTS

De novo fatty acid synthesis in plants and animals

De novo fatty acid synthesis is largely similar among plants and animals.
It occurs in chloroplasts of photosynthetic cells of higher plants, and in cytosol of animal cells by the concerted action of two enzymes: acetyl-CoA carboxylase (EC 6.4.1.2) and fatty acid synthase (EC 2.3.1.85).
Fatty acid synthase catalyzes a repeating four-step sequence by which the fatty acyl chain is extended by two carbons, at the carboxyl end, every each passage through the cycle; this four-step process is the same in all organisms.
In animals, the primary site for lipid metabolism is liver, not the adipose tissue. However, adipose tissue is a major organ system in which fatty acid synthesis occurs, though in humans it is less active than in many other animal species.
Although myristic acid, lauric acid and a trace of stearic acid may also be produced, in animals and plants the main product of these reactions is palmitic acid.
It should be noted that in certain plants, such as palm and coconut, chain termination occurs earlier than palmitic acid release: up to 90% of the fatty acids produced and then present in the oils of these plants are between 8 (caprylic acid) and 14 (myristic acid) carbons long (palmitic acid: 16 carbon atoms).

Synthesis of long chain saturated and unsaturated fatty acids

Palmitic acid is the commonest saturated fatty acid in plant and animal lipids, but generally it is not present in very large proportions because it may be undergo into several metabolic pathways.
In fact:

  • it is the precursor of stearic acid;
  • it may be desaturated (insertion of a double bond into fatty acid chain) to palmitoleic acid, the precursor of all fatty acids of omega-7 or n-7 family, in a reaction catalyzed by Δ9-desaturase (EC 1.14.19.1), an ubiquitous enzyme in both plant and animal kingdoms and the most active lipid enzyme in mammalian tissues, the same enzyme that catalyzes the desaturation of stearic acid to oleic acid (see below).
    Note: Δ9- desaturase inserts double bounds in the 9-10 position of the fatty acid carbon chain, position numbered from the carboxyl end of the molecule, and:

if the substrate is palmitic acid, the double bond is inserted between n-7 and n-8 position of the chain (in this case numbered from the methyl end of the molecule), so producing palmitoleic acid, the founder of omega-7 series;Numbering of carbons of palmitic acid, delta-9 desaturase and insertion of a double bond at the omega-7 position

if the substrate is stearic acid, the double bond is inserted between n-9 and n-10 position of the chain and oleic acid will be produced.Numbering of carbons of stearic, delta-9 desaturase and insertion of a double bond at the omega-9 position

  • It may be esterified into complex lipids.

Of course, in plants and animals there are fatty acids longer and/or more unsaturated than these just seen thanks to modification systems (again desaturation and elongation) that catalyze reactions of fatty acid synthesis that are organism- tissue- and cell- specific.
For example, stearic acid may be:

  • elongated to arachidic acid, behenic acid and lignoceric acid, all saturated fatty acids, in reactions catalyzed by elongases. Again, chain elongation occurs, both in mitochondria and in the smooth endoplasmic reticulum, by the addition of two carbon atom units at a time at the carboxylic end of the fatty acid through the action of fatty acid elongation systems (particularly long and very long saturated fatty acids, from 18 to 24 carbon atoms, are synthesized only on cytosolic face of the smooth endoplasmic reticulum);
  • desaturated, as seen, to oleic acid, an omega-9 or n-9 fatty acid, in a reaction catalyzed by Δ9-desaturase.
    Several researchers have postulated that the reason for which stearic acid is not hypercholesterolemic is its rapid conversion to oleic acid.

Oleic acid is the start point for the synthesis of many other unsaturated fatty acids by reactions of elongation and/or desaturation.
In fact:

  • gadoleic acid, erucic acid and nervonic acid, all monounsaturated fatty acids.
    Saturated fatty acids, and unsaturated fatty acids of the omega-9 series, usually oleic acid (but also palmitoleic acid and other omega-7 fatty acids) are the only fatty acids produced de novo in mammal systems.
  • Thanks to the consecutive action of the enzymes Δ12-desaturase (1.14.19.6) and Δ15-desaturase (EC 1.14.19.25), that insert a double bond respectively in the 12-13 and 15-16 position of the carbon chain of the fatty acid, oleic acid is converted first to linoleic acid, founder of all the omega-6 polyunsaturated fatty acids, and then to alpha-linolenic acid, founder of all the omega-3 polyunsaturated fatty acids (omega-3 and omega-6 PUFA that will be produced from these precursors through repeating reactions of elongation and desaturation).Numbering of carbon atoms of oleic acid and specific targets of desaturase action
  • In the case of essential fatty acid (EFA) deficiency, oleic acid may be desaturated and elongated to omega-9 polyunsaturated fatty acids, with accumulation especially of Mead acid.

Omega-3 and omega-6 PUFA synthesis

Animal tissues can desaturate fatty acids in the 9-10 position of the chain, thanks to the presence of Δ9 desaturase; as previously seen, if the substrate of the reaction is palmitic acid, the double bond will appear between n-7 and n-8 position, with stearic acid between n-9 and n-10 position, so leading to formation respectively of palmitoleic acid and oleic acid.
Animals lack Δ12- and Δ15-desaturases, enzymes able to desaturate carbon carbon bonds beyond the 9-10 position of the chain. For these reason, they can’t produce de novo omega-3 and omega-6 PUFA (which have double bonds also beyond the 9-10 position), that are so essential fatty acids.
Δ12- and Δ15-desaturases are present in plants; though many land plants lack Δ15-desaturase, also called omega-3 desaturase, planktons and aquatic plants in colder water possess it and produce abundant amounts of the omega-3 fatty acids.

References

Akoh C.C. and Min D.B. “Food lipids: chemistry, nutrition, and biotechnology”. CRC Press Taylor & Francis Group, 2008 3th ed. 2008

Bender D.A. “Benders’ dictionary of nutrition and food technology”. 2006, 8th Edition. Woodhead Publishing. Oxford

Burr G.O. and Burr M.M. A new deficiency disease produced by the rigid exclusion of fat from the diet. Nutr Rev 1973;31(8):148-149. doi:10.1111/j.1753-4887.1973.tb06008.x

Chow Ching K. “Fatty acids in foods and their health implication”. 3rd Edition. CRC Press Taylor & Francis Group, 2008

Rosenthal M.D., Glew R.H. Mediacal biochemistry. Human metabolism in health and disease. John Wiley & Sons, Inc. 2009

Stipanuk M.H., Caudill M.A. Biochemical, physiological, and molecular aspects of human nutrition. 3rd Edition. Elsevier health sciences, 2012

Strategies to maximize muscle glycogen resynthesis after exercise

An important energy source for working muscle is its glycogen store, whose level is correlated with the onset of fatigue.
The highly trained athlete not only has glycogen stores potentially higher but he is also able to synthesize it faster thanks to more efficient enzymes.

Glycogen
Fig. 1 – Glycogen Structure

To synthesize glycogen it is necessary to ingest carbohydrates; but how many, which, when, and how often?

CONTENTS

The two phases of muscle glycogen synthesis after exercise

In order to restore as quickly as possible muscle glycogen depots, it is useful to know that, as a result of training sessions that deplete muscle glycogen to values below 75% those at rest and not fasting, glycogen synthesis occurs in two phases.
To know and therefore take advantage of the biphasicity is important for those athletes who are engaged in more daily training sessions, or who otherwise have little time for recovery between a high intensity exercise and the subsequent one (less than 8 hours), in order to maximize glycogen synthesis and achieve the optimal performance during a second close exercise session.
The two phases are characterized by:

  • a different sensitivity to circulating insulin levels;
  • a different velocity.

The first phase

The first phase, immediately following the end of an activity and lasting 30-60 minutes, is insulin-independent, i.e. glucose uptake by muscle cell as glycogen synthesis are independent from hormone action.
This phase is characterized by an elevated rate of synthesis that however decreases rapidly if you do not take in carbohydrates: the maximum rate is in the first 30 minutes, then declines to about one fifth in 60 minutes, and to about one ninth in 120 minutes from the end of exercise.
How is it possible to take advantage of this first phase to replenish muscle glycogen stores as much as possible? By making sure that the greatest possible amount of glucose arrives to muscle in the phase immediately following to the end of exercise, best if done within the first 30 minutes.

  • What to ingest?
    High glycemic index, but easy to digest and absorb, carbohydrates.
    Therefore, it is advisable to replace foods, even though of high glycemic index, that need some time for digestion and the subsequent absorption, with solutions/gel containing for example glucose and/or sucrose. These solutions ensure the maximal possible absorption rate and resupply of glucose to muscle because of they contain only glucose and are without fiber or anything else that could slow their digestion and the following absorption of the monosaccharide, that is, they are capable of producing high blood glucose levels in a relatively short time.
    It is also possible to play on temperature and concentration of the solution to accelerate the gastric transit.
    It should be further underlined that the use of these carbohydrate solutions is recommended only when the recovery time from a training/competition session causing significant depletion of muscle glycogen and the following one is short, less than 8 hours.
  • How many carbohydrates do you need?
    Many studies has been conducted to find the ideal amount of carbohydrates to ingest.
    If in post-exercise the athlete does not eat, glycogen synthesis rate is very low, while if he ingests adequate amounts of carbohydrates immediately after cessation of exercise, synthesis rate can reach a value over 20 times higher.
    From the analysis of scientific literature it seems reasonable to state that, as a result of training sessions that deplete muscle glycogen stores as seen above (<75% of those at rest and not fasting), the maximum synthesis rate is obtained by carbohydrate intake, with high glycemic index and high digestion and absorption rates, equal to about 1.2 g/kg of body weight/h for the next 4-5 hours from the end of exercise.
    In this way, the amount of glycogen produced is higher than 150% compared to the ingestion of 0.8 g/kg/h.
    Because further increases, up to 1.6 g/kg/h, do not lead to further rise in glycogen synthesis rate, the carbohydrate amount equal to 1.2 g/kg/h can be considered optimum to maximize the resynthesis rate of muscle glycogen stores during post-exercise.
  • And the frequency of carbohydrate ingestion?
    It was observed that if carbohydrates are ingested frequently, every 15-30 minutes, it seems there is a further stimulation of muscle glucose uptake as of muscle glycogen replenishment compared with ingestion at 2-hours intervals. Particularly, ingestions in the first post-exercise hours seem to optimize glycogen levels.

The second phase

The second phase begins from the end of the first, lasts until the start of the last meal before the next exercise (hence, from several hours to days), and is insulin-dependent i.e. muscle glucose uptake and glycogen synthesis are sensitive to circulating hormone levels.
Moreover, you observe a significant reduction in muscle glycogen synthesis rate: with adequate carbohydrate intake the synthesis rate is at a value of about 10-30% lower than that observed during the first phase.
This phase can last for several hours, but tends to be shorter if:

  • carbohydrate intake is high;
  • glycogen synthesis is more active;
  • muscle glycogen levels are increased.

In order to optimize the resynthesis rate of glycogen, experimental data indicate that meals with high glycemic index carbohydrates are more effective than those with low glycemic index carbohydrates; but if between a training/competition session and the subsequent one days and not hours spend, the evidences do not favor high glycemic index carbohydrates as compared to low glycemic index ones as long as an adequate amount is taken in.

Muscle glycogen synthesis rate and ingestion of carbohydrates and proteins

The combined ingestion of carbohydrates and proteins (or free insulinotropic amino acids) allows to obtain post-exercise glycogen synthesis rate that does not significantly differ from that obtained with larger amounts of carbohydrates alone. This could be an advantage for the athlete who may ingest smaller amount of carbohydrates, therefore reducing possible gastrointestinal complications commons during training/competition afterward to their great consumption.
From the analysis of scientific literature it seems reasonable to affirm that, after an exercise that depletes at least 75% of muscle glycogen stores, you can obtain a glycogen synthesis rate similar to that reached with 1.2 g/kg/h of carbohydrates alone (the maximum obtainable) with the coingestion of 0.8 g/kg/h of carbohydrates and 0.4 g/kg /h of proteins, maintaining the same frequency of ingestion, therefore every 15-30 minutes during the first 4-5 hours of post-exercise.

The two phases: molecular mechanisms

The biphasicity is consequence, in both phases, of an increase in:

  • glucose transport rate into cell;
  • the activity of glycogen synthase, the enzyme that catalyzes glycogen synthesis.

However, the molecular mechanisms underlying these changes are different.
In the first phase, the increase in glucose transport rate, independent from insulin presence, is mediated by the translocation, induced by the contraction, of glucose transporters, called GLUT4, on the cytoplasmatic membrane of the muscle cell.
In addition, the low glycogen levels also stimulate glucose transport as it is believed that a large portion of transporter-containing vesicles are bound to glycogen, and therefore they may become available when its levels are depleted.
Finally, the low muscle glycogen levels stimulate glycogen synthase activity too: it has been demonstrated that these levels are a regulator of enzyme activity far more potent than insulin.
In the second phase, the increase in muscle glycogen synthesis is due to insulin action on glucose transporters and on glycogen synthase activity of muscle cell. This sensibility to the action of circulating insulin, that can persist up to 48 hours, depending on carbohydrate intake and the amount of resynthesized muscle glycogen, has attracted much attention: it is in fact possible, through appropriate nutritional intervention, to increase the secretion in order to improve glycogen synthesis itself, but also protein anabolism, reducing at the same time the protein-breakdown rate.

Glycogen synthesis rate and insulin

The coingestion of carbohydrates and proteins (or free amino acids) increases postprandial insulin secretion compared to carbohydrates alone (in some studies there was an increase in hormone secretion 2-3 times higher compared to carbohydrates alone).
It was speculated that, thanks to the higher circulating insulin concentrations, further increases in post-exercise glycogen synthesis rate could be obtained compared to those observed with carbohydrates alone, but in reality it does not seem so. In fact, if carbohydrate intake is increased to 1.2 g/kg/h plus 0.4 g/kg/h of proteins no further increases in glycogen synthesis rate are observed if compared to those obtained with the ingestion of carbohydrates alone in the same amount (1,2 g/kg/h, that, as mentioned above, like the coingestion of 0,8 g/kg/h of carbohydrates and 0,4 g/kg/h of proteins, allows to attain the maximum achievable rate in post-exercise) or in isoenergetic quantities, that is, 1.6 g/kg (proteins and carbohydrates contain the same calorie/g)

Insulin and preferential carbohydrate storage

The greater circulating insulin levels reached with the coingestion of carbohydrates and proteins (or free amino acids) might stimulate the accumulation of ingested carbohydrates in tissues most sensitive to its action, such as liver and previously worked muscle, thus resulting in a more efficient storage, for the purposes of sport activity, of the same carbohydrates.

References

Beelen M., Burke L.M., Gibala M.J., van Loon J.C. Nutritional strategies to promote postexercise recovery. Int J Sport Nutr Exerc Metab 2010:20(6);515-532. doi:10.1123/ijsnem.20.6.515

Berardi J.M., Noreen E.E., Lemon P.W.R. Recovery from a cycling time trial is enhanced with carbohydrate-protein supplementation vs. isoenergetic carbohydrate supplementation. J Intern Soc Sports Nutrition 2008;5:24. doi:10.1186/1550-2783-5-24

Betts J., Williams C., Duffy K., Gunner F. The influence of carbohydrate and protein ingestion during recovery from prolonged exercise on subsequent endurance performance. J Sports Sciences 2007;25(13):1449-1460. doi:10.1080/02640410701213459

Howarth K.R., Moreau N.A., Phillips S.M., and Gibala M.J. Coingestion of protein with carbohydrate during recovery from endurance exercise stimulates skeletal muscle protein synthesis in humans. J Appl Physiol 2009:106;1394–1402. doi:10.1152/japplphysiol.90333.2008

Jentjens R., Jeukendrup A. E. Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Medicine 2003:33(2);117-144. doi:10.2165/00007256-200333020-00004

Millard-Stafford M., Childers W.L., Conger S.A., Kampfer A.J., Rahnert J.A. Recovery nutrition: timing and composition after endurance exercise. Curr Sports Med Rep 2008;7(4):193-201. doi:10.1249/JSR.0b013e31817fc0fd

Price T.B., Rothman D.L., Taylor R., Avison M.J., Shulman G.I., Shulman R.G. Human muscle glycogen resynthesis after exercise: insulin-dependent and –independent phases. J App Physiol 1994:76(1);104–111. doi:10.1152/jappl.1994.76.1.104

van Loon L.J.C., Saris W.H.M., Kruijshoop M., Wagenmakers A.J.M. Maximizing postexercise muscle glycogen synthesis: carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures. Am J Clin Nutr 2000;72: 106-111. doi:10.1093/ajcn/72.1.106