Skin, blood pressure, rheumatoid arthritis and gamma-linolenic acid

Healthy skin and gamma-linolenic acid

gamma-Linolenic acid (GLA), an omega-6 essential fatty acid, like its precursor linoleic acid (the most abundant polyunsaturated fatty acid in human skin epidermis, where it’s involved in the maintenance of the epidermal water barrier), plays important roles in the physiology and pathophysiology of the skin.
Studies conducted on humans revealed that gamma-linolenic acid:

  • improves skin moisture, firmness, roughness;
  • decreases transepidermal water loss (one of the abnormalities of the skin in essential fatty acid deficiency animals).
Skin and gamma-Linolenic Acid
GLA

Using guinea pig skin epidermis as a model of human epidermis (they are functionally similar), it was demonstrated that supplementation of animals with gamma-linolenic acid-rich foods results in a major production of PGE1 and 15-HETrE in the skin (as previously demonstrated in in vitro experiments).
Because these molecules have both anti-inflammatory/anti-proliferative properties supplementation of diet with gamma-linolenic acid acid-rich foods may be an adjuncts to standard therapy for inflammatory/proliferative skin disorders.

Supplemental sources of GLA

The main supplemental sources of gamma-linolenic acid are oils of the seeds of:

  • borage (20%-27% of the total fatty acids);
  • black currant (from 15% to 19% of the total fatty acids);
  • evening primrose (from 7% to 14% of the total fatty acids), and

Role of gamma-linolenic acid in lowering blood pressure

The relationship between dietary fatty acid intake and blood pressure mainly comes from studies conducted on genetically modified rats that spontaneously develops hypertension (a commonly used animal model for human hypertension).
In these studies many membrane abnormalities were seen so hypertension in rat model may be related to change in polyunsaturated fatty acid metabolism at cell membrane level.
About polyunsaturated fatty acids, several research teams have reported that gamma-linolenic acid reduces blood pressure in normal and genetically modified rats (greater effect) and it was purported by interfering with Renin-Angiotensin System (that promote vascular resistance and renal retention) altering the properties of the vascular smooth muscle cell membrane and so interfering with the action of angiotensin II.
Another possible mechanism of action of gamma-linolenic acid to lower blood pressure could be by its metabolite dihomo-gamma-linolenic acid: it may be incorporated in vascular smooth muscle cell membrane phospholipids, then released by the action of phospholipase A2 and transformed by COX-1 in PGE1 that induces vascular smooth muscle relaxation.

Role gamma-linolenic acid in treatment of rheumatoid arthritis

In a study conducted by Leventhal et al. on 1993 it was demonstrated the dietary intake of higher concentration of borage oil (about 1400 mg of gamma-linolenic acid/day) for 24 weeks resulted in clinically significant reductions in signs and symptoms of rheumatoid arthritis activity.
In a subsequent study by Zurier et al. on 1996 the dietary intake of an higher dose (about 2.8 g/day gamma-linolenic acid) for 6 months reduced, in a clinically relevant manner, signs and symptoms of the disease activity; patients who remained for 1 year on the 2.8 g/day dietary gamma-linolenic acid exhibited continued improvement in symptoms (the use of gamma-linolenic acid also at the above higher dose is well tolerated, with minimal deleterious effects). These data underscore that the daily amount and the duration of gamma-linolenic acid dietary intake do correlate with the clinical efficacy.

References

Akoh C.C. and Min D.B. “Food lipids: chemistry, nutrition, and biotechnology” 3th ed. 2008

Chow Ching K. “Fatty acids in foods and their health implication” 3th ed. 2008

Fan Y.Y. and Chapkin R.S. Importance of dietary γ-linolenic acid in human health and nutrition. J Nutr 1998;128:1411-14. doi:10.1093/jn/128.9.1411

Leventhal L.J., Boyce E.G. and Zurier R.B. Treatment of rheumatoid arthritis with gammalinolenic acid. Ann Intern Med 1993 119:867-73. doi:10.7326/0003-4819-119-9-199311010-00001

Miller C.C. and Ziboh V.A. Gammalinolenic acid-enriched diet alters cutaneous eicosanoids. Biochem Biophys Res Commun 1988 154:967-74. doi:10.1016/0006-291X(88)90234-3

Zurier R.B., Rossetti R.G., Jacobson E.W., DeMarco D.M., Liu N.Y., Temming J.E., White B.M. and Laposata M. Gamma-linolenic acid treatment of rheumatoid arthritis. A randomized, placebocontrolled trial. Arthritis Rheum 1996 39:1808-17. doi:10.1002/art.1780391106

Alcohol, blood pressure, and hypertension

CONTENTS

Alcohol intake and blood pressure

Many studies have shown a direct, dose-dependent relationship between alcohol intake and blood pressure, particularly for intake above two drinks per day.
This relationship is independent of:

  • age;
  • salt intake;
  • obesity;
  • finally, it persists regardless of beverage type.

Furthermore, heavy consumption of alcoholic beverages for long periods of time is one of the factors predisposing to hypertension: from 5 to 7% of hypertension cases is due to an excessive alcohol consumption.
A meta-analysis of 15 randomized controlled trials has shown that decreasing alcoholic beverage intake intake has therapeutic benefit to hypertensive and normotensive with similar systolic and diastolic blood pressure reductions (in hypertensive reduction occurs within weeks).

Alcohol intake and prevention of hypertension

AlcoholGuidelines on the primary prevention of hypertension recommend that alcohol (ethanol) consumption in most men, in absence of other contra, should be less than 28 g/day, the limit in which it may reduce coronary heart disease risk.
The consumption limited to these quantities must be obtained by intake of drinks with low ethanol content, preferably at meals (drinking even lightly to moderately outside of meals increases the probability to have hypertension). This means no more than 680 ml or 24 oz of regular beer or 280 ml or 10 oz of wine (12% ethanol), especially in hypertension; for women and thinner subjects consumption should be halved1.
To avoid intake of drinks with high ethanol content even though the total ethanol content not exceeding 28 g/day.

Relationship between ethanol intake and blood pressure

Anyway, uncertainty remains regarding benefits or risks attributable to light-to-moderate alcoholic beverage intake on the risk of hypertension.
In a study published on April 2008, the authors examined the association between ethanol intake and the risk of developing hypertension in 28848 women from “The Women’s Health Study” and 13455 men from the “Physicians’ Health Study”, (the follow-up lasted respectively for 10.9 and 21.8 years). The study confirms that heavy ethanol intake (exceeding 2 drinks/day) increases hypertension risk in both men and women but, surprisingly, found that the association between light-to-moderate alcohol intake (up to 2 drinks/day) and the risk of developing hypertension is different in women and men. Women have a potential reduced risk of hypertension from a light-to-moderate ethanol consumption with a J-shaped association2; men have no benefits of light-to-moderate ethanol consumption but an increased risk of hypertension.
However, guidelines for the primary prevention of hypertension limit alcohol consumption to less 2 drinks/day in men and less 1 drink/day in thinner subjects and women.

1. A standard drink contains approximately 14 g of ethanol i.e. a 340 ml or 12 oz of regular beer, 140 ml or 5 oz wine (12% alcohol), or 42 ml or 1,5 oz of distilled spirits (inadvisable).

2. Many studies have shown a J-shaped relationship between ethanol intake and blood pressure. Light drinker (no more than 28 g of ethanol/day) have lower blood pressure than teetotalers; instead, who consumes more than 28 g ethanol/day have higher blood pressure than non drinker. So alcohol is a vasodilator at low doses but a vasoconstrictor at higher doses.

References

Pickering T.G. New guidelines on diet and blood pressure. Hypertension 2006;47:135-6. doi:10.1161/01.HYP.0000202417.57909.26

Sesso H.D., Cook N.R., Buring J.E., Manson J.E. and Gaziano J.M. Alcohol consumption and the risk of hypertension in women and men. Hypertension 2008;51:1080-87. doi:10.1161/HYPERTENSIONAHA.107.104968

Writing Group of the PREMIER Collaborative Research Group. Effects of comprehensive lifestyle modification on blood pressure control: main results of the PREMIER Clinical Trial. JAMA 2003;289:2083-2093. doi:10.1001/jama.289.16.2083

World Health Organization, International Society of Hypertension Writing Group. 2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension. Guidelines and recommendations. J Hyperten 2003;21:1983-92.


Overweight, physical activity, blood pressure, and hypertension

Overweight, obesity and blood pressure

Body weight is a determinant of blood pressure at all age; in fact:

  • it has been estimated that the risk of developing elevated blood pressure is two to six time higher in overweight than in normal-weight individuals;
  • there is a linear correlation between blood pressure and body weight or body mass index (BMI) (a BMI greater than 27, i.e. overweight or obesity, is correlated with increased blood pressure): even when dietary sodium intake is held constant, the correlation between change in weight and change in blood pressure is linear;
  • 60% of hypertensives are more than 20% overweight;
  • centripetal distribution of body fat (waist circumference greater than 34 inches in women and 39 inches in man), also associated with insulin resistance, is more important determinant of blood pressure elevation than that peripherally located in both man and women;
  • it has been shown that weight loss, both in hypertensive and normotensive individual, can reduce blood pressure and reductions occur before, and without, attainment of a desirable body weight.

In view of the difficulties of sustaining weight loss, efforts to prevent weight gain among those who have normal body weight are critically important.

How to calculate BMI

BMI is total body weight, expressed in kilograms [kg] or pounds [lb], divided by the height squared, expressed in meters or inches (in.).
It can be calculated using the following equations:

BMI = weight [kg]/height2 [m] or
BMI = (weight [lb.]/heigth2 [in.]) x 705

BMI is a good indication of body fat because most of the weight differential among adults is due to body fat; its major flaw is that some muscular individuals may be classified as obese even if they are not.
A healthy BMI is between 18 to 24,9.
Overweight is considered to be between 25 to 29,9.
Obesity is categorized by BMI according to three grades:

  • 30 to 34,9 I grade obesity;
  • 35 to 40 II grade obesity:
  • 40 and above III grade obesity.

Physical activity, and blood pressure

overweightMaintaining a high level of physical activity is a critical factor in sustaining weight loss.
In addition to the effect on body weight, activity and exercise in itself reduce the rise in blood pressure.
Physical activity produces a fall in systolic blood pressure and diastolic blood pressure; so, increasing physical activity of low to moderate intensity to 30 to 45 minutes 3-4 days/week up to 1 hour nearly every day, as recommended by World Health Organization, is important for the primary prevention of hypertension.
Less active persons are 30% to 50% more likely to develop hypertension than active ones.
Remember: a rolling stone gathers no moss!

References

Mahan LK, Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Shils M.E., Olson J.A., Shike M., Ross A.C. “Modern nutrition in health and disease” 9th ed., by Lippincott, Williams & Wilkins, 1999

Writing Group of the PREMIER Collaborative Research Group. Effects of comprehensive lifestyle modification on blood pressure control: main results of the PREMIER Clinical Trial. JAMA 2003;289:2083-2093. doi:10.1001/jama.289.16.2083

World Health Organization, International Society of Hypertension Writing Group. 2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension. Guidelines and recommendations. J Hyperten 2003;21:1983-92.

Trans fatty acids

CONTENTS

Definition and chemical structure of trans fatty acids

Trans fatty acids (TFA) or trans-unsaturated fatty acids or trans fats are unsaturated fatty acids with at least one a double bond in the trans or E configuration.
Carbon-carbon double bonds show planar conformation, and so they can be considered as plains from whose opposite sides carbon chain attaches and continues. “The entry” and “the exit” of the carbon chain from the plain may occur on the same side of the plain, and in this case double bond is defined in cis or Z configuration, or on opposite side, and in that case it is defined in trans configuration.

Fatty Acids
Fig. 1 – Cis and Trans Isomers

Unsaturated fatty acids most commonly have their double bonds in cis configuration; the other, less common configuration is trans.
Cis bond causes a bend in the fatty acid chain, whereas the geometry of trans bond straightens the fatty acid chain, imparting a structure more similar to that of saturated fatty acids.

Properties of fats rich in trans fatty acids

Below, some distinctive characteristics of the fats rich in trans fats, that make them particularly suited for the production of margarines and vegetable shortening used in home and commercial cooking, and manufacturing processes.

  • Bent molecules can’t pack together easily, but linear ones can do it.
    This means that trans fatty acids contribute, together with the geometrically similar saturated fatty acids, to the hardness of the fats in which they are, giving them a higher melting point.
    Heightening the melting point of fats means that it is possible to convert them from liquid form to semi-solids and solids at room temperature.
    Note: trans fats tend to be less solid than saturated fatty acids.
  • They have:

a melting point, consistency and “mouth feel” similar to those of butter;
a long shelf life at room temperature;
a flavor stability.

  • They are stable during frying.

Sources of trans fatty acids

Dietary TFA come from different sources briefly reviewed below.

  • In industrialized countries, greater part of the consumed trans fatty acids, in USA about 80 percent of the total, are produced industrially, in varying amounts, during partial hydrogenation of edible oils containing unsaturated fatty acids (see below).
  • They are produced at home during frying with vegetable oils containing unsaturated fatty acids.
  • They come from bacterial transformation of unsaturated fatty acids ingested by ruminants in their rumen (see below).
  • Another natural source is represented by some plant species, such as leeks, peas, lettuce and spinach, that contain trans-3-hexadecenoic acid, and rapeseed oil, that contains brassidic acid (22:1∆13t) and gondoic acid (20:1∆11t). In these sources trans fatty acids are present in small amounts.
  • Very small amounts, less than 2 percent, are formed during deodorization of vegetable oils, a process necessary in the refining of edible oils. During this process trans fatty acids with more than one double bond are formed in small amounts. These isomers are also present in fried foods and in considerable amounts in some partially hydrogenated vegetable oils (see below).

Industrial trans fatty acids

Hydrogenation is a chemical reaction in which hydrogen atoms react, in the presence of a catalyst, with a molecule.
The hydrogenation of unsaturated fatty acids involves the addition of hydrogen atoms to double bonds on the carbon chains of fatty acids. The reaction occurs in presence of metal catalyst and hydrogen, and is favored by heating vegetable oils containing unsaturated fatty acids.

Partial hydrogenation of vegetable oils

The process of hydrogenation was first discovered in 1897 by French Nobel prize in Chemistry, jointly with fellow Frenchman Victor Grignard, Paul Sabatier using a nickel catalyst.
Partially hydrogenated vegetable oils were developed in 1903 by a German chemist, Wilhelm Normann, who files British patent on “Process for converting unsaturated fatty acids or their glycerides into saturated compounds”. The term trans fatty acids or trans fats appeared for the first time in the Remark column of the 5th edition of the “Standard Tables of Food Composition” in Japan.
During partial hydrogenation, an incomplete saturation of the unsaturated sites on the carbon chains of unsaturated fatty acids occurs. For example, with regard to fish oil, trans fatty acid content in non-hydrogenated oils and in highly hydrogenated oils is 0.5 and 3.6%, respectively, whereas in partially hydrogenated oils is 30%.

Trans Fatty Acids
Fig. 2 – From Oleic Acid to Vaccenic Acid

But, most importantly, some of the remaining cis double bonds may be moved in their positions on the carbon chain, producing geometrical and positional isomers, that is, double bonds can be modified in both conformation and position.
Below, other changes that occur during partial hydrogenation are listed.

Trans Fatty Acids
Fig. 3 – Vegetable Shortenings

Partially hydrogenated vegetable oils were developed for the production of vegetable fats, a cheaper alternative to animal fats. In fact, through hydrogenation, oils such as soybean, safflower and cottonseed oils, which are rich in unsaturated fatty acids, are converted into semi-solid fats (see above).
The first hydrogenated oil was cottonseed oil in USA in 1911 to produce vegetable shortening.
In the 1930’s, partial hydrogenation became popular with the development of margarine.
Currently, per year in USA, 6-8 billion tons of hydrogenated vegetable oil are produced.

Ruminant trans fatty acids

Ruminant trans fats are produced by bacteria in the rumen of the animals, for example cows, sheep and goats, using as a substrate a proportion of the relatively small amounts of unsaturated fatty acids present in their feedstuffs, that is, feed, plants and herbs. And, considering an animal that lives at least a year, and has the opportunity to graze and/or eat hay, there is a season variability in unsaturated fatty acids intake, and trans fats produced. In fact, in summer and spring, pasture plants and herbs may contain more unsaturated fatty acids than the winter feed supply.
Then, TFA are present at low levels in meat and full fat dairy products, typically <5% of total fatty acids, and are located in the sn-1 and sn-3 positions of the triacylglycerols, whereas in margarines and other industrially hydrogenated products they appear to be concentrated in the sn-2 position of the triacylglycerols.

Stereospecific Numbering (sn) in Triacylglycerols
Fig. 4 – The sn Positions of Triglycerides

Ruminant trans fatty acids are mainly monounsaturated fatty acids, with 16 to 18 carbon atoms, and constitute a small percentage of the trans fatty acids in the diet (see below).

Isomers of dietary trans fatty acids

The most important cluster of trans fatty acids is trans-C18:1 isomers, that is, fatty acids containing 18 carbon atoms plus one double bond, whose position varies between Δ6 and Δ16 carbon atoms. In both sources, the most common isomers are those with double bonds between positions Δ9 and Δ11.
However, even if these molecules are present both in industrial and ruminant TFA, there is a considerable quantitative difference. For example, vaccenic acid (C18:1 Δ11t) represents over 60 percent of the trans-C18:1 isomers in ruminant trans fatty acids, whereas in industrial ones elaidic acid (C18:1Δ9t) comprises 15-20 percent and C18:1 Δ10t and vaccenic acid over 20 percent each others.

Trans fatty acids
Fig. 5 – trans-C18:1 Isomers

Trans fatty acids: effects on human health

Ruminant trans fatty acids, in amounts actually consumed in diets, are not harmful for human health (see below).
Conversely, consumption of industrial trans fats has neither apparent benefit nor intrinsic value, above their caloric contribution, and, from human health standpoint they are only harmful, having adverse effects on:

  • serum lipid levels;
  • endothelial cells;
  • systemic inflammation;
  • other risk factors for cardiovascular disease;

Moreover, they are positively associated with the risk of coronary heart disease (CHD), and sudden death from cardiac causes and diabetes.
Note: further in the text, we will refer to industrial trans fatty acids as trans fats or trans fatty acids.

Trans fatty acids: effects at plasmatic level

Low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) plasma levels are well-documented risk markers for the development of coronary heart disease (CHD).

  • High LDL-C levels are associated with an increased incidence of ischemic heart disease.
  • High HDL-C levels are associated with a reduced incidence of the risk.

For this reason, the ratio between total cholesterol level and HDL-C is often used as a combined risk marker for these two components in relation to the development of heart disease: the higher the ratio, the higher the risk.
TFA, as previously said, have adverse effects on serum lipids.
These effects have been evaluated in numerous controlled dietary trials by isocaloric replacement of saturated fatty acids or cisunsaturated fatty acids with trans fats. It was demonstrated that such replacement:

  • raises LDL-C levels;
  • lowers HDL-C levels, in contrast to saturated fatty acids that increase HDL-C levels when used as replacement in similar study;
  • increases the ratio of total cholesterol to HDL-C, approximately twice that for saturated fatty acids, and, on the basis of this effect alone, trans fatty acids has been estimated to cause about 6% of coronary events in the USA.

Furthermore, trans fats:

  • produce a deleterious increase in small, dense LDL-C subfractions, that is associated with a marked increased in the risk of CHD, even in the presence of relatively normal LDL-C;
  • increase the blood levels of triglycerides, and this is an independent risk factor for CHD;
  • increase levels of Lp(a)lipoprotein, another important coronary risk factor.

But on 2004 prospective studies have shown that the relation between the intake of trans fatty acids and the incidence of CHD is greater than that predicted by changes in serum lipid levels alone. This suggests that trans fats influence other risk factors for CHD, such as inflammation and endothelial-cell dysfunction.

Trans fatty acids, inflammation and endothelial-cell dysfunction

The role of inflammation in atherosclerosis, and consequently in CHD, is burgeoned in the last decade.
Interleukin-6, C-reactive protein (CRP), and an increased activity of tumor necrosis factor (TNF) system are markers of inflammation.
In women greater intake of trans fatty acids is associated with increased activity of TNF system, and in those with a higher body mass index with increased levels of interleukin-6 and CRP. For example, the difference in CRP seen with an average intake of trans fats of 2.1% of the total daily energy intake, as compared with 0.9%, correspond to an increased risk of cardiovascular disease of 30%. Similar results have been reported in patients with established heart disease, in randomized, controlled trials, in in vitro studies, and in studies in which it has been analyzed membrane levels of trans fatty acids, a biomarker of their dietary intake.
So, trans fats promote inflammation, and their inflammatory effects may account at least in part for their effects on CHD that, as seen above, are greater than would be predicted by effects on serum lipoproteins alone.
Attention: the presence of inflammation is an independent risk factor not only for CHD but also for insulin resistance, diabetes, dyslipidemia, and heart failure.

Another site of action of TFA may be endothelial function.
Several studies have suggested the association between greater intake of trans fats and increased levels of circulating biomarkers of endothelial dysfunction, such as E-selectin, sICAM-1, and sVCAM-1.

Other effects of trans fatty acids

In vitro studies have demonstrate that trans fats affect lipid metabolism through several pathways.

  • They alter secretion, lipid composition, and size of apolipoprotein B-100 (apo B-100).
  • They increase cellular accumulation and secretion of free cholesterol and cholesterol esters by hepatocytes.
  • They alter expression in adipocytes of genes for peroxisome proliferator-activated receptor-γ (PPAR- γ), lipoprotein lipase, and resistin, proteins having a central roles in the metabolism of fatty acids and glucose.

Industrial trans fatty acids and CHD

Industrial trans fats are independent cardiovascular risk factor.
Since the early 1990s attention has been focused on the effect of trans fatty acids on plasma lipid and lipoprotein concentrations (see above).
Furthermore, four major prospective studies covering about 140,000 subjects, monitored for 6-14 years, have all found positive epidemiological evidence relating their levels in the diet, assessed with the aid of a detailed questionnaire on the composition of the diet, to the risk of CHD. These four studies are:

  • “The Health Professionals Follow-up study” (2005);
  • “The Alpha-Tocopherol Beta-Carotene Cancer Prevention Study” (1997);
  • “The Nurses’ Health Study” (2005);
  • “The Zutphen Elderly Study” (2001).

These studies cover such different populations that the results very probably hold true for the populations as a whole.
A meta-analysis of these studies have shown that a 2% increase in energy intake from industrial TFA was associated with a 23% increase in the incidence of CHD. The relative risk of heart disease was 1.36 in “The Health Professionals Follow-up Study”, 1.14 in “The Alpha-Tocopherol Beta-Carotene Cancer Prevention Study”; 1.93 (1.43-2.61) in “The Nurses’ Health Study”, and 1.28 (1.01-1.61) in “The Zutphen Elderly Study”.
So,  there is a substantially increased risk even at low levels of intake: 2% of total energy intake, for a 2,000 Kcal diet is 40 Kcal or about 4-5 g of fat corresponding to a teaspoonful of fat!
Moreover, in three of the studies, the association between the intake of industrial trans fats and the risk of CHD was stronger than a corresponding association between the intake of saturated fatty acids and the risk of heart disease. In “The Zutphen Elderly Study”, this association was not investigated.
Because of the adverse effects of industrial trans fatty acids, for the same authors are unethical conducting randomized long-term trials to test their effects on the incidence of CHD.
So, avoidance of industrial trans fats, or a consumption of less 0.5% of total daily energy intake is necessary to avoid their adverse effects, far stronger on average than those of food contaminants or pesticide residues.

Further evidence
A study conducted in an Australia population with a first heart attack and no preceding history of CHD or hyperlipidemia has showed a positive association between levels of trans fatty acids in adipose tissue and the risk of nonfatal myocardial infarction.
It was shown that adipose tissue C18:1Δ7t, found in both animal and vegetable fats, was an independent predictor of a first myocardial infarction, that is, its adipose tissue level is still a predictor for heart disease after adjustment for total cholesterol. Again, it appears that only a minor part of the negative effects of trans fats occurs via plasma lipoproteins.
During the course of this study, mid-1996, TFA were eliminated from margarines sold in Australia (see below). This was a unique opportunity to investigate the temporal relationship between trans fat intake and their adipose tissue levels. It was demonstrated that trans fats disappear from adipose tissue of both case-patients and controls with a rate about 15% of total trans fats/y.
Another study conduct in Costa Rica have found a positive association between myocardial infarction and trans fatty acids.
Interestingly, in a larger, community-based case-control study, levels of trans fats in red blood cell membranes were associated, after adjustment for other risk factors, with an increase in the risk of sudden cardiac death. Moreover, the increased risk appeared to be related to trans-C18:2 levels, that were associated with a tripling of the risk, but not with cell membrane levels of trans-C18:1,  the major trans fatty acids in foods (see above).

Trans fatty acids and diabetes

In a prospective study covering 84,204 female nurses, from “The Nurses’ Health Study”, aged 34–59 y, analyzed from the 1980 to 1996, with no cancer, diabetes, or cardiovascular disease at base line, the intake of trans fatty acids was significantly related to the risk of developing type 2 diabetes. And, after adjustment for other risk factors trans fat intake was positively associated with the incidence of diabetes with a risk up to 39% greater.
Data from controlled intervention studies showed that TFA could impair insulin sensitivity in subjects with insulin resistance and type 2 diabetes (saturated fatty acids do the analogous response, with no significant difference between TFA and them) more than unsaturated fatty acids, in particular the isomer of conjugated linoleic acid (CLA) trans-10, cis-12-CLA. Be careful because some dietary supplements contain CLA isomers and may be diabetogenic and proatherogenic in insulin-resistant subjects.

No significant effect was seen in insulin sensitivity of lean, healthy subjects.

Ruminant trans fatty acids and the risk of CHD

Four prospective studies have evaluated the relation between the intake of ruminant trans fatty acids and the risk of CHD: no significant association was identified.
In another study published on 2008 was analyzed data from four Danish cohort studies that cover 3,686 adults enrolled between 1974 and 1993, and followed for a median of 18 years. In Denmark, consumption of dairy products is relatively high and the range of ruminant trans fat intake is relatively broad, up to 1.1% of energy. Conversely, in the other countries, ruminant trans fatty acid consumption for most people is substantially lower than 1% of energy, in USA about 0.5% of energy. After adjustment for other risk factors, no significant associations between ruminant TFA consumption and incidence of CHD were found, confirming, in a population with relatively high intake of ruminant trans fatty acids, conclusions of four previous prospective studies.
So ruminant trans fats, in amounts actually consumed in diets, do not raise CHD risk.
The absence of risk of CHD with trans fats from ruminants as compared with industrial trans fatty acids  may be due to a lower intake. In the USA, greater part of trans fats have industrial origin (see above); moreover trans fat levels in milk and meats are relatively low, 1 to 8% of total fats.
The absence of a higher risk of CHD may be due also to the presence of different isomers. Ruminant and industrial sources share many common isomers, but there are some quantitative difference (see fig. 4):

  • vaccenic acid level is higher in ruminant fats, 30-50% of trans isomers;
  • trans-C18:2 isomers, present in deodorized and fried vegetable oils, as well as in some partially hydrogenated vegetable oils, are not present in appreciable amounts in ruminants fats.

Finally other, still unknown, potentially protective factors could outweigh harmful effects of ruminant trans fats.

Trans fatty acids: legislation regulating their content

USA
Until 1985 no adverse effects of trans fatty acids on human health was demonstrated, and in 1975 a Procter & Gamble study showed no effect of trans fats on cholesterol.
Their use in fast food preparation grew up from 1980’s, when the role of dietary saturated fats in increasing cardiac risk began clear. Then, it was led a successful campaign to get McDonald’s to switch from beef tallow to vegetable oil for frying its French fries. Meanwhile, studies began to raise concerns about their effects on health. On 1985 Food and Drug Administration (FDA) concluded that TFA and oleic acid affected serum cholesterol level similarly, but from the second half of 1985 their harmful began clear, and the final proof came from both controlled feeding trials and prospective epidemiologic studies.
On 2003 FDA ruled that food labels, for conventional foods and supplements, show their content beginning January 1, 2006. Notably, this ruling was the first substantive change to food labeling since the requirement for per-serving food labels information was added in 1990.
On 2005 the US Department of Agriculture made a minimized intake of trans fatty acids a key recommendation of the new food-pyramid guidelines.
On 2006 American Heart Association recommended to limit their intake to 1% of daily calorie consumption, and suggested food manufacturers and restaurants switch to other fats.
On 2006 New York City Board of Health announced trans fat ban in its 40,000 restaurants within July 1, 2008, followed by the state of California in 2010-2011.

Australia
After June 1996 they were eliminated from margarine sold in Australia, that before contributed about 50% of their dietary intake.

Europe
On March 11, 2003 the Danish government, after a debate started in 1994 and two new reports in 2001 and 2003, decided to phase out the use of industrial trans fats in food before the end of 2003. Two years later, however, the European Commission (EC) asked Denmark to withdraw this law, which was not accepted on the European Community level, unfortunately. However, in 2007, EC decided to closes its infringement procedure against Denmark because of increasing scientific evidence of the danger of this type of fatty acids.
The Danish example was followed by Austria and Switzerland in 2009, Iceland, Norway, and Hungary in 2011, and most recently, Estonia and Georgia in 2014. So, about 10% of the European Union population, about 500 million people, lives in countries where it is illegal to sell food high in industrial trans fats.
Governments of other European Union countries instead rely on the willingness of food producers to reduce trans fatty acid content in their products. This strategy has proved effective only for Western European countries (see below).

Canada
Canada is considering legislation to eliminate them from food supplies, and, in 2005, ruled that pre-packaged food labels show their content.

Industrial Trans Fats
Fig. 6 – Cookies High in Industrial Trans Fats

Therefore, with the exception of the countries where the use of trans fats in the food industry was banned, the only way to reduce their intake in the other countries is consumer’s decision to choose foods free in such fatty acids, avoiding those known containing them, and always reading nutrition facts and ingredients because they may come from margarine, vegetable oil and frying. Indeed, for example in the USA, the producers of foods that contain less than 0.5 g of industrial trans fatty acids per serving can list their content as 0 on the packaging. This content is low but if a consumer eats multiple servings, he consumes substantial amount of them.
Be careful: food labels are not obligatory in restaurants, bakeries, and many other retail food outlets.

Trans fatty acids and food reformulation

Public health organizations, including the World Health Organization in September 2006, have recommended reducing the consumption of industrial trans fatty acids; only in USA the near elimination of these fatty acids might avoid between 72,000 and 280,000 of the 1.2 million of CHD events every year.
Food manufacturers and restaurants may reduce industrial TFA use choosing alternatives to partially hydrogenated oils.
In Denmark, their elimination (see above) from vegetable oils did not increase consumption of saturated fatty acids because they were mostly replaced with cisunsaturated fatty acids. Moreover, there were no noticeable effects for the consumer: neither increase in the cost nor reduction in availability and quality of foods.
In 2009, Stender et al. have shown that industrial trans fatty acids in food such as French fries, cookies, cakes, and microwave-oven popcorn purchased in USA, South Africa, and many European Country can be replaced, at similar prices, with a mixture of saturated, monounsaturated, and polyunsaturated fatty acids. Such substitution has even greater nutritional benefit than one-to-one substitution of industrial trans fats with saturated fatty acids alone. However, be careful because only in French fries with low industrial trans fats the percentage of saturate fatty acids remains constant, whereas in cookies and cakes is in average +33 percentage points and microwave-oven popcorn +24 percentage points: saturated fatty acids are less dangerous than industrial trans fats but more than mono- and polyunsaturated fatty acids.
The same research group, analyzing some popular foods in Europe, purchased in supermarkets, even of the same supermarket chain, and fast food, namely, McDonald’s and Kentucky Fried Chicken (KFC), from 2005 to 2014, showed that their TFA content was reduced or even absent in several Western European countries while remaining high in Eastern and Southeastern Europe.
In 2010 Mozaffarian et al. evaluated  the levels of industrial trans fats and saturated fatty acids in major brand-name U.S. supermarket and restaurant foods after reformulation to reduce industrial trans fatty acid content, in two time: from 1993 through 2006 and from 2008 through 2009. They found a generally reduction in industrial trans fat content without any substantial or equivalent increase in saturated fatty acid content.

Foods high in trans fatty acids: examples and values

Many foods high in trans fats are popularly consumed worldwide.
In USA greater part of these fatty acids comes from partially hydrogenated vegetable oils, with an average consumption from this source that has been constant since the 1960′s.
It should be noted that the following trans fatty acid values must be interpreted with caution because, as previously said, many fast food establishments, restaurants and industries may have changed, or had to change the type of fat used for frying and cooking since the analysis were done.
The reported values, unless otherwise specified, refer to percentage in trans fatty acids/ 100 g of fatty acids.

Margarine

Trans Fatty Acids
Fig. 7 – Margarine

Among foods with trans fats, stick or hard margarine had the highest percentage of them, but levels of these fatty acids have declined as improved technology allowed the production of softer margarines which have become popular. But there are difference in trans fatty acid content of margarine from different countries. Below some examples.

  • The highest content, 13-16.5%, is found in soft margarine from Iceland, Norway, and the UK.
  • Less content is found in Italy, Germany, Finland, and Greece, 5.1%, 4.8%, 3.2%, and 2.9% respectively).
  • In Portugal, The Netherlands, Belgium, Denmark, France, Spain, and Sweden margarine trans fat content is less than 2%.

USA and Canada lag behind Europe, but in the USA, with the advent of trans fat labeling of foods and the greater knowledge of the risk associated with their consumption by the buyers, change is occurring. For this reason, at now, in the USA margarine is considered to be a minor contributor to the intake of TFA, whereas the major sources are commercially baked and fast food products like cake, cookies, wafer, snack crackers, chicken nuggets, French fries or microwave-oven popcorn (see below).

Vegetable shortenings

Trans fatty acid content of vegetable shortenings ranges from 6% to 50%, and varies in different country: in Germany, Austria and New Zealand it is less than France or USA.
However, like margarines, their trans fat content is decreasing. In Germany it decreased from 12% in 1994 to 6% in 1999, in Denmark is 7% (1996) while in New Zealand is about 6% (1997).

Vegetable oils

At now, non-hydrogenated vegetable oils for salad and cooking contain no or only small amounts of trans fats.
Processing of these oils can produce minimal level of them, ranged from 0.05g/100 food for extra virgin oil to 2.42 g/100 g food for canola oil. So, their contribution to trans fat content of the current food supply is very little.
One exception is represented by Pakistani hydrogenated vegetable oils whose TFA content ranges from 14% to 34%.

Prepared soups

Among foods with trans fats, prepared soups contain significant amount of them, ranging from 10% of beef bouillon to 35% of onion cream. So, they contribute great amount of such fatty acids to the diet if frequently consumed.

Processed foods

Thanks to their properties (see above), trans fatty acids are used in many processed foods as cookies, cakes, croissants, pastries and other baked goods. And, baked goods are the greatest source of these fats in the North American diet. Of course, their trans fat content depends on the type of fat used in processing.

Sauces

Mayonnaise, salad dressings and other sauces contain only small or no-amounts of trans fats.

Human milk and infant foods

Trans fat content of human milk reflects the trans fat content of maternal diet in the previous day, is comprised between 1 and 7%, and is decreasing from 7.1% in 1998 to 4.6% in 2005/2006.
Infant formulas have trans fat values on average 0.1%-4.5%, with a brand up to 15.7%.
Baby foods contain greater than 5% of trans fats.

Fast foods and restaurant’s foods

Trans fatty acids
Fig. 8 – French Fries

Vegetable shortenings high in trans fats are used as frying fats, so fast foods and many restaurant’s foods may contain relatively large amounts of them. Foods are fried pies, French fries, chicken nuggets, hamburgers, fried fish as well as fried chicken.
In articles published by Stender et al. from 2006 to 2009, it is showed that for French fries and chicken nuggets their content varies largely from nation to nation, but also within the same fast food chain in the same country, and even in the same city, because of the cooking oil used. For example, oil used in USA and Peru outlets of a famous fast food chain contained 23-24% of trans fats, whereas oil used in many European countries of the same fast food chain contained about 10%, with some countries, such as Denmark, as low as 5% and 1%.
And, considering a meal of French fries and chicken nuggets, in serving size of 171 and 160 g respectively, purchased at McDonald‘s in New York City, it contained over 10 g of TFA, while if purchased at KFC in Hungary they were almost 25 g.
Below, again from the work of Stender et al. it can see a cross-country comparison of trans fat contents of chicken nuggets and French fries purchased at McDonald ‘s or KFC.

Chicken nuggets and French fries from McDonald’s:

  • less than 1 g only if the meals were purchased in Denmark;
  • 1-5 g in Portugal, the Netherlands, Russia, Czech Republic, or Spain;
  • 5-10 g in the United States, Peru, UK, South Africa, Poland, Finland, France, Italy, Norway, Spain, Sweden, Germany, or Hungary.

Chicken and French fries from KFC:

  • less than 2 g if the meals were purchased UK (Aberdeen), Denmark, Russia, or Germany (Wiesbaden);
  • 2-5 in Germany (Hamburg), France, UK (London or Glasgow), Spain, or Portugal;
  • 5-10 in the Bahamas, South Africa, or USA;
  • 10-25 g in Hungary, Poland, Peru, or Czech Republic.

References

Akoh C.C. and Min D.B. Food lipids: chemistry, nutrition, and biotechnology. 3rd Edition. CRC Press Taylor & Francis Group, 2008

Ascherio A., Katan M.B., Zock P.L., Stampfer M.J., Willett W.C. Trans fatty acids and coronary heart disease. N Engl J Med 1999;340:1994-8. doi:10.1056/NEJM199906243402511

Ascherio A., Rimm E.B., Giovannucci E.L., Spiegelman D., Stampfer M., Willett W.C. Dietary fat and risk of coronary heart disease in men: cohort follow up study in the United States. BMJ 1996; 313:84-90. doi:10.1080/17482970601069094

Asp N-G. Fatty acids in focus – the good and the bad ones. Scand J Food Nutr 2006;50:155-60. doi:10.1080/17482970601069094

Baylin A., Kabagambe E.K., Ascherio A., Spiegelman D., Campos H. High 18:2 trans-fatty acids in adipose tissue are associated with increased risk of nonfatal acute myocardial infarction in Costa Rican adults. J Nutr 2003;133:1186-91 doi:10.1093/jn/133.4.1186

Chow C.K. Fatty acids in foods and their health implication. 3rd Edition. CRC Press Taylor & Francis Group, 2008.

Clifton P.M., Keogh J.B., Noakes M. Trans fatty acids in adipose tissue and the food supply are associated with myocardial infarction. J Nutr 2004;134:874-9 doi:10.1093/jn/134.4.874

Costa N., Cruz R., Graça P., Breda J., and Casal S. Trans fatty acids in the Portuguese food market. Food Control 2016;64:128-34. doi:10.1016/j.foodcont.2015.12.010

Eckel R.H., Borra S., Lichtenstein A.H., Yin-Piazza D.Y. Understanding the Complexity of Trans fatty acid reduction in the American diet. American Heart Association trans fat conference 2006 report of the trans fat conference planning group. Circulation 2007;115:2231-46. doi:10.1161/CIRCULATIONAHA.106.181947

Hu F.B., Manson J.E., Stampfer M.J., Colditz G., Liu S., Solomon C.G., and Willett W.C. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med 2001;345:790-7. doi:10.1056/NEJMoa010492

Hu F.B., Willett W.C. Optimal diet for prevention of coronary heart disease JAMA 2002;288:2569-78. doi:10.1001/jama.288.20.2569

Lemaitre R.N., King I.B., Raghunathan T.E., Pearce R.M., Weinmann S., Knopp R.H., Copass M.K., Cobb L.A., Siscovick D.S. Cell membrane trans-fatty acids and the risk of primary cardiac arrest. Circulation 2002;105:697-01. doi:10.1161/hc0602.103583

Lemaitre R.N, King I.B, Mozaffarian D., Sootodehnia N., Siscovick D.S. Trans-fatty acids and sudden cardiac death. Atheroscler Suppl 2006; 7(2):13-5. doi:10.1016/j.atherosclerosissup.2006.04.003

Lichtenstein A.H. Dietary fat, carbohydrate, and protein: effects on plasma lipoprotein patterns J. Lipid Res. 2006;47:1661-7. doi:10.1194/jlr.R600019-JLR200

Lichtenstein A.H., Ausman L., Jalbert S.M., Schaefer E.J. Effect of different forms of dietary hydrogenated fats on serum lipoprotein cholesterol levels. N Engl J Med 1999;340:1933-40. doi:10.1056/NEJM199906243402501

Lopez-Garcia E., Schulze M.B., Meigs J.B., Manson J.E, Rifai N., Stampfer M.J., Willett W.C. and Hu F.B. Consumption of trans fatty acids is related to plasma biomarkers of inflammation and endothelial dysfunction. J Nutr 2005;135:562-66 doi:10.1093/jn/135.3.562

Masanori S. Trans Fatty Acids: Properties, Benefits and Risks J Health Sci 2002;48(1):7-13. [Abstract]

Mensink R.P., Katan M.B. Effect of dietary trans fatty acids on high-density and low-density lipoprotein cholesterol levels in healthy subjects. N Engl J Med 1990;323:439-45. doi:10.1056/NEJM199008163230703

Mozaffarian D. Commentary: Ruminant trans fatty acids and coronary heart disease-cause for concern? Int J Epidemiol 2008;37(1):182-4. doi:10.1093/ije/dym263

Mozaffarian D., Jacobson M.F., Greenstein J.S. Food Reformulations to reduce trans fatty acids. N Eng J Med 2010;362:2037-39 doi:https://doi.org/10.1056/NEJMc1001841

Mozaffarian D., Katan M.B., Ascherio A., Stampfer M.J., Willett W.C. Trans fatty acids and cardiovascular disease. N Engl J Med 2006;354:1601-13. doi:10.1056/NEJMra054035

Mozaffarian D., Pischon T., Hankinson S.E., Joshipura K., Willett W.C., and Rimm E.B. Dietary intake of trans fatty acids and systemic inflammation in women. Am J Clin Nutr 2004;79:606-12 doi:https://doi.org/10.1093/ajcn/79.4.606

Oh K., Hu F.B., Manson J.E., Stampfer M.J., Willett W.C. Dietary fat intake and risk of coronary heart disease in women: 20 years of follow-up of the Nurses’ Health Study. Am J Epidemiol 2005;161(7):672-9. doi:10.1093/aje/kwi085

Okie S.  New York to Trans Fats: You’re Out! N Engl J Med 2007;356:2017-21. doi:10.1056/NEJMp078058

Oomen C.M., Ocke M.C., Feskens E.J., van Erp-Baart M.A., Kok F.J., Kromhout D. Association between trans fatty acid intake and 10-year risk of coronary heart disease in the Zutphen Elderly Study: a prospective population-based study. Lancet 2001; 357(9258):746-51. doi:10.1016/S0140-6736(00)04166-0

Pietinen P., Ascherio A., Korhonen P., Hartman A.M., Willett W.C., Albanes D., VirtamO J.. Intake of fatty acids and risk of coronary heart disease in a cohort of Finnish men: the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. Am J Epidemiol 1997;145(10):876-87. doi:10.1093/oxfordjournals.aje.a009047

Risérus U. Trans fatty acids, insulin sensitivity and type 2 diabetes. Scand J Food Nutr 2006;50(4):161-5. doi:10.1080/17482970601133114

Salmerón J., Hu F.B., Manson J.E., Stampfer M.J., Colditz G.A., Rimm E.B., and Willett W.C. Dietary fat intake and risk of type 2 diabetes in women. Am J Clin Nutr 2001;73:1019-26 doi:10.1093/ajcn/73.6.1019

Stender S., Astrup A.,and Dyerberg J. A trans European Union difference in the decline in trans fatty acids in popular foods: a market basket investigation. BMJ Open 2012;2(5):e000859. doi:10.1136/bmjopen-2012-000859

Stender S., Astrup A., and Dyerberg J. Artificial trans fat in popular foods in 2012 and in 2014: a market basket investigation in six European countries. BMJ Open 2016;6(3):e010673. doi:10.1136/bmjopen-2015-010673

Stender S., Astrup A.,and Dyerberg J. Tracing artificial trans fat in popular foods in Europe: a market basket investigation. BMJ Open 2014;4(5):e005218. doi:10.1136/bmjopen-2014-005218

Stender S., Astrup A., Dyerberg J. What went in when trans went out?. N Engl J Med 2009;361:314-16. doi:10.1056/NEJMc0903380

Stender S., Dyerberg J. The influence of trans fatty acids on health. Fourth edition. The Danish Nutrition Council; publ. no. 34, 2003.

Stender S., Dyerberg J., Astrup A. Consumer protection through a legislative ban on industrially produced trans fatty acids in Denmark. Scand J Food Nutr 2006;50(4):155-60. doi:10.1080/17482970601069458

Stender S., Dyerberg J., Astrup A. High levels of trans fat in popular fast foods. N Engl J Med 2006;354:1650-2. doi:10.1056/NEJMc052959

Willett W., Mozaffarian D. Ruminant or industrial sources of trans fatty acids: public health issue or food label skirmish? Am J Clin Nutr 2008;87(3): 515-6 doi:10.1093/ajcn/87.3.515


Black tea: definition, processing and polyphenols

What is black tea?

Black tea, like the other types of tea, is an infusion of processed leaves of Camellia sinensis, the tea plant, a shrub that belongs to the Theaceae family.
Black tea, a type of fully fermented tea, is the most consumed tea worldwide, accounting for about 78% of the consumed tea. It is preferred by Western populations, while the favorite tea in Asia, particularly in Japan and China, is green tea.

Processing of black tea

black-teaThe processing of the leaves of Camellia sinensins, that leads to the production of black tea, proceeds through three main steps:

  • withering or drying;
  • rolling;
  • oxidation

The last step, oxidation, gives it the specific organoleptic characteristics and composition in polyphenols, that are extremely different from those of green tea (green tea undergoes very slight oxidative processes during processing).

Withering or drying

The withering or drying step is the first, and most basic process during processing. In this step, water in the leaves is removed (about 75% of the leaf’s weight is made up of water), thus determining the concentration of the sap of the leaf itself. The withering also makes the next step easier.
Withering can be achieved in three different ways:

  • exposing leaves to sunlight, that is, sun withering;
  • heating in an appropriate manner the rooms where the leaves are placed;
  • using machines that artificially ventilate the leaves.

Rolling

The rolling step follows the withering of the leaves. It breaks the leaf tissue, facilitating the outflow of lymph; thus, it promotes the subsequent enzymatic oxidation of polyphenols. This step is essential for the creation of the aroma, color and flavor of black tea.

Oxidation

The oxidation, also improperly called fermentation, is the last stage of its processing, and is crucial in determining the quality of the tea. In this step, the enzymatic oxidation of about 90–95 % of the polyphenols occurs, accompanied by other changes that make the green tea leaves into red color.
Temperature (typically 25°C), pH, relative humidity (95% or more), ventilation, and duration are crucial factors too.

Black tea polyphenols

During the oxidation step, the main compounds that undergo oxidation processes, both enzymatic, by polyphenol oxidase, and chemical, by the action of atmospheric oxygen, are:

  • monomeric catechins and gallate catechins;
  • to a lesser extent, the glycosides of catechins, especially myricetin;
  • but also not flavonoids compounds, such as teogallin (ester of gallic acid).

Therefore, throughout the process, a reduction in the concentration of monomeric catechins, characteristics of fresh leaves of Camellia sinensis and green tea, occurs, with the formation of complex polyphenols, such as:

  • thearubigins, red-brown or dark-brown in color;
  • theaflavins and theaflavic acids, red-orange in color.

Thearubigins, polymers of catechins not yet well characterized, are the major polyphenols in black tea, accounting for about 20% of extracted solids. In addition to the reddish color, thearubigins contribute the richness in taste, the so-called “body” to black tea.
Theaflavins, dimers of catechins much better characterized than thearubigins, account for about 3-5% of the solids in black tea infusion. Theaflavins contribute the astringent and brisk taste, as well as the red-orange color of the beverage.
The main theaflavins are:

  • theaflavin digallate;
  • theaflavin-3-gallate;
  • theaflavin-3′-gallate.

Black tea benefits and oxidized polyphenols

Although this type of tea is still able to improve health, oxidative processes suffered from the leaves during the processing attenuate its health benefits , which are instead reported after intake of green tea (particularly, the benefits of green tea are ascribed to its content of catechins, such as EGCG, epicatechin and epicatechin gallate).

Its caffeine content does not vary significantly.

References

Asil M.H., Rabiei B., Ansari R.H. Optimal fermentation time and temperature to improve biochemical composition and sensory characteristics of black tea. Aust J Crop Sci 2012;6(3):550-8.

Kuhnert N. Unraveling the structure of the black tea thearubigins. Arch Biochem Biophys 2010;501(1):37-51 doi:10.1016/j.abb.2010.04.013

Li S., Lo C-Y., Pan M-H., Lai C-S. and Ho C-T. Black tea: chemical analysis and stability. Food Funct 2013;4:10-18 doi:10.1039/C2FO30093A

Menet M-C., Sang S., Yang C.S., Ho C-T., and Rosen R.T. Analysis of theaflavins and thearubigins from black tea extract by MALDI-TOF mass spectrometry. J Agric Food Chem 2004;52:2455-61 doi:10.1021/jf035427e

Sharma V.K., Bhattacharya A., Kumar A. and Sharma H.K. Health benefits of tea consumption. Trop J Pharm Res 2007;6(3):785-792.

Potassium intake, blood pressure and hypertension

Potassium intake and blood pressure

High dietary potassium (K+) intakes and blood pressure are inversely related: animal studies, observational epidemiological studies, clinical trials, and meta-analyses of these trials support this.
Furthermore, the prevalence of hypertension tends to be lower in populations with high K+ intakes than in those with low intakes.
Finally, an increase in potassium intake (2.5-3.9 g/d) reduces blood pressure in normotensive and hypertensive, and to a greater extent in blacks than in whites.

Dash Diet and K+ intake

Controlled feeding studies (“The Dietary Approaches to Stop Hypertension (DASH) Study” and “OmniHeart Trial”) have highlighted the role of a good potassium intake, along with other minerals and fiber, in blood pressure reduction.
These studies have shown that a dietary pattern rich in fruits, vegetables, and low-fat dairy products, with whole grains, poultry, fish and nuts but poor in fats, red meat, sweets, and sugar-containing beverages reduces blood pressure.
These dietary patterns are rich in foods high in K+, as well as magnesium, calcium and fiber, but poor in total fat, saturated fat and cholesterol.
The best result on lowering blood pressure are with black participants than white participants.

Potassium, sodium and blood pressure

The effects of potassium on blood pressure depend on the concurrent intake of sodium and vice versa:

  • an increased intake of K+ has:

a greater blood pressure-lowering effect when sodium intake is high;

a lesser blood pressure-lowering effect when sodium intake is low;

  • on the other hand, the blood pressure reduction from a lowered sodium intake is greatest when potassium intake is low.

An high K+ intake also increases urinary excretion of sodium, the so-called natriuretic effect.
In the generally healthy population with normal kidney function the recommended potassium intake level is 3.1 g/day. But, in the presence of impaired urinary potassium excretion, a K+ intake less than 3.1 g/day (120 mmol/d) is appropriate, because of adverse cardiac effects (arrhythmias) from hyperkalemia, that is, blood potassium level higher than normal.

Mediterranean Diet and K+ intake

PotassiumAs already pointed out, the best strategy to increase K+ intake is to consume legumes, and fruits and vegetables in season, i.e. foods high in  potassium, that is also accompanied by a variety of other nutrients. No supplements are needed.
Therefore, it is sufficient to follow a  Mediterranean dietary pattern, for:

  • meet the daily requirements of the mineral;
  • consume K+ intake in adequate amounts to ensure its blood pressure-lowering effect.

Potassium content in some foods

High content: >250 mg/100 g of product

  • Dried legumes (chickpeas, beans, lentils, peas and soybeans) and fresh beans;
  • garlic, chard, cauliflower, cabbage, Brussels sprouts, broccoli, artichokes, cardoons, fennel, mushrooms, potatoes, tomatoes, spinach, zucchini;
  • avocados, apricots, bananas, fresh and dried chestnuts, watermelon, kiwi, melon, hazelnuts;
  • sweet dried fruits (apricots, dates, figs, prunes, raisins etc..) and oily dried fruits (peanuts, almonds, walnuts, pine nuts, pistachios, etc.);
  • oat flour, whole wheat flour and spelt;
  • ketchup;
  • roasted coffee;
  • milk powder (also rich sodium);
  • yeast;
  • cocoa powder.

Medium content: 150-250 mg/100 g of product

  • asparagus, beets, carrots, chicory, green beans, fresh broad beans, endive, lettuce, peppers, fresh peas, tomatoes, leeks, radishes, celery, tomato and carrot juice, pumpkin;
  • pineapple, oranges, raspberries, blueberries, loquats, pears, peaches, grapefruit, grapes;
  • meat and fish products, both fresh and preserved (the latter, however, should be avoided because of their high sodium content).

Note: cooking methods tend to reduce the K+ content of the food.
To reduce potassium loss, avoid boiling in plenty of water, for more than an hour, vegetables cut into small pieces (this increases the “exchange area” with water).

References

Appel L.J., Brands M.W., Daniels S.R., Karanja N., Elmer P.J. and Sacks F.M. Dietary approaches to prevent and treat HTN: a scientific statement from the American Heart Association. Hypertension 2006;47:296-08. doi:10.1161/01.HYP.0000202568.01167.B6

Cappuccio F.P. and MacGregor G.A. Does potassium supplementation lower blood pressure? A metaanalysis of published trials. J Hyperten 1991;9:465-73.

Geleijnse J.M., Witteman J.C., den Breeijen J.H., Hofman A., de Jong P., Pols H.A. and Grobbee D.E. Dietary electrolyte intake and blood pressure in older subjects: the Rotterdam Study. J Hyperten 1996;14:73741.

Mahan LK, Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Matlou S.M., Isles C.G. and Higgs A. Potassium supplementation in Blacks with mild to moderate essential hypertension. J Hyperten 1986;4:61-4.

Pickering T.G. New guidelines on diet and blood pressure. Hypertension 2006;47:135-6. doi:10.1161/01.HYP.0000202417.57909.26

Rose G. Desirability of changing potassium intake in the community. In: Whelton P.K., Whelton A.K. and Walker W.G. eds. Potassium in cardiovascular and renal disease. Marcel Dekker, New York 1986;411-16

Shils M.E., Olson J.A., Shike M., Ross A.C. “Modern nutrition in health and disease” 9th ed., by Lippincott, Williams & Wilkins, 1999

Writing Group of the PREMIER Collaborative Research Group. Effects of comprehensive lifestyle modification on blood pressure control: main results of the PREMIER Clinical Trial. JAMA 2003;289:2083-2093. doi:10.1001/jama.289.16.2083

World Health Organization, International Society of Hypertension Writing Group. 2003 World Health Organization (WHO)/ISH statement on management of HTN. Guidelines and recommendations. J Hyperten 2003;21:1983-92.

Green tea: definition, processing, properties, polyphenols

What is green tea?

Green tea is an infusion of processed leaves of tea plant, Camellia sinensis, a member of the Theaceae family.
It is the most consumed beverages in Asia, particularly in China and Japan.
Western populations consume black tea more frequently than green tea. However, in recent years, thanks to its health benefits, it has been gaining their attention.
Currently, it accounts for 20% of the tea consumed worldwide.

Processing and properties of green tea

As all other types of tea, it is produced from fresh leaves of Camellia sinensis.
The peculiar properties of the beverage depend on the type of processing that the leaves undergo. In fact, they are processed in such a way as to minimize both enzymatic and chemical oxidation processes of the substances contained in them, in particular catechins.
Therefore, among the different types of tea, it undergoes the lowest degree of oxidation during processing.
At the end of the processing, tea leaves retain their green color, thanks to the little chemical modifications/oxidations they have undergone. The infusion shows off a yellow-gold color.
Finally, the processing of tea leaves ensures that green tea flavor is more delicate and lighter than black tea.

The three main steps in the processing of tea leaves

After harvesting, tea leaves are exposed to the sun for 2-3 hours and withered/dried; then, the real processing starts.
It consists of three main steps: heat treatment, rolling and drying.

Heat treatment

Heat treatment, short and gentle, is the crucial step for the quality and properties of the beverage.
It occurs with steam (the traditional Japanese method) or by dry cooking in hot pans (a large wok, the traditional Chinese method). Heat treatment has the purpose of:

  • inactivate the enzymes present in the tissues of the leaves, thus stopping enzymatic oxidation processes, particularly of polyphenols;
  • eliminate the grassy smell in order to stand out tea flavor;
  • evaporate part of the water present in the fresh leaf (water constitutes about 75% of the weight of the leaf), making it softer, so as to make the next step easier.

Rolling

The rolling step follows the heat treatment of the leaves; this step has the purpose of:

  • facilitate the next stage of drying;
  • destroy the tissues of the leaves in order to favor, later, the release of aromas, thus improving the quality of the product.

Drying

The drying is the last step, which also leads to the production of new compounds and improves the appearance of the product.

Green tea polyphenols

Gree Tea
EGCG

All types of tea are rich in polyphenols, compounds that are also present in fruits, vegetables, extra virgin olive oil, and red wine.
Fresh tea leaves are rich in water-soluble polyphenols, especially catechins (or flavanols) and glycosylated catechins (both belonging to the class of flavonoids), molecules which are believed to be the responsibles of the benefits of green tea.
The major catechins in green tea are epigallocatechin-3-gallate (EGCG), epigallocatechin, epicatechin-3-gallate, epicatechin, epicatechin, but also catechin, gallocatechin, catechin gallate, and gallocatechin gallate are present, even if in lower amount. These polyphenols account for 30%-42% of the dry leaf weight (but only 3%–10% of the solid content of black tea).
Green tea caffeine accounts for 1,5-4,5% of the dry leaf weight.

How to maximize the absorption of catechins

In vitro studies have shown the high antioxidant power of catechins, greater than that of vitamin C and vitamin E. In vitro, EGCG is generally considered the most biologically active catechin.
In vivo studies and several epidemiologic studies have shown the possible preventive effects of green tea catechins, especially EGCG, in preventing the development of:

  • cardiovascular disease, such as hypertension and stroke;
  • some cancers, such as lung cancer (but not among smokers) and oral and digestive tract cancers.

For these reasons, it is essential to maximize the intestinal absorption of catechins.
Catechins are stable in acidic environment, but not in non-acidic environment, as in the small intestine; also for this reason, after digestion, less than 20% of the total remains.
Studies with models of the digestive tract of rat and man, that simulate digestion in stomach and small intestine, have shown that the addition of citrus juice or vitamin C to green tea significantly increases the absorption of catechins.
Among tested citrus juices, lemon juice is the best, followed by orange, lime and grapefruit juices. Citrus juices seem to have a stabilizing effect on catechins that goes beyond what would be predicted solely based on their ascorbic acid content.

References

Clifford M.N., van der Hooft J.J.J., and Crozier A. Human studies on the absorption, distribution, metabolism, and excretion of tea polyphenols. Am J Clin Nutr 2013;98:1619S-1630S. doi:10.3945/ajcn.113.058958

Dwyer J.T. and Peterson J. Tea and flavonoids: where we are, where to go next. Am J Clin Nutr 2013;98:1611S-1618S. doi:10.3945/ajcn.113.059584

Green R.J., Murphy A.S., Schulz B., Watkins B.A. and Ferruzzi M.G. Common tea formulations modulate in vitro digestive recovery of green tea catechins. Mol Nutr Food Res 2007;51(9):1152-1162. doi:10.1002/mnfr.200700086

Huang W-Y., Lin Y-R., Ho R-F., Liu H-Y., and Lin Y-S. Effects of water solutions on extracting green tea leaves. ScientificWorldJournal 2013;Article ID 368350. doi:10.1155/2013/368350

Sharma V.K., Bhattacharya A., Kumar A. and Sharma H.K. Health benefits of tea consumption. Trop J Pharm Res 2007;6(3):785-792.

Sodium: blood pressure, requirements, intake, sources

Sodium and blood pressure

A high sodium (Na+) intake (the main source is salt or sodium chloride, NaCl) contributes to blood pressure raise, and hypertension development.
Many epidemiologic studies, animal studies, migration studies, clinical trials, and meta-analyses of trials support this, with the final evidence from rigorously controlled, dose-response trials. Furthermore, in primitive society Na+intake is very low and people experience very low hypertension, and the blood pressure increase with age does not occur.
Probably, sodium intake effect sizes are to be underestimated!

Recommended daily intake

Sodium’s physiologic requires are very low; in fact, the minimum recommended Na+ intake for maintain life is 250 mg/day (Note: iodized salt is an important source of dietary iodine in the United States and worldwide).
An Americans consumes the mineral in great excess of physiologic requires: despite the guidelines from the Departments of Agriculture and Health and Human Services, during the period from 2005 through 2006 the average salt intake in USA is of 10.4 g/day for the average man and 7.3 for the average woman, amount in excess regarding preceding years.
A study published on February 2010 on “The New England Journal of Medicine” have shown that “A population-wide reduction in dietary salt of 3 g per day (1200 mg of Na+ per day) is projected to reduce the annual number of new cases of coronary heart disease (CHD) by 60,000 to 120,000, stroke by 32,000 to 66,000, and myocardial infarction by 54,000 to 99,000 and to reduce the annual number of deaths from any cause by 44,000 to 92,000″ (Bibbins-Domingo et all., see References). These benefits are similar in magnitude to those from:

  • a 50% reduction in tobacco use;
  • a 5% reduction in body mass index among obese adults;
  • a reduction in cholesterol levels.

These benefits regard all adult group age, black and nonblack, male and female. The benefits for black are greater than nonblack, in both sex and all age group. It’s estimated an annual savings of $10 billion to 24 $ billion in health care costs.
Clinical trials have also documented that a reduced Na+ intake can lower blood pressure in the setting of antihypertensive medication, and can facilitate hypertension control.
But, in USA dietary salt intake is on the rise!
So, it is recommended, to prevent hypertension development, a reduction in its intake and, in view of the available food supply and the currently daily Na+ intake, a reasonable recommendation is an upper limit of 2.3 g/day (5.8 g/day of salt).
How achieves this level? It can be achieved:

  • cooking with as little salt as possible;
  • refraining from adding salt at the table;
  • avoiding highly salted, processed foods.

Food sources of sodium

Sodium
Salt Shaker

They include:

  • salt used at the table: up to 20% of the daily salt intake;
  • salt or sodium compounds added during preparation or processing foods: between 35 to 80% of the daily sodium intake comes from processed foods.
    Which foods are?
    Processed, smoked or cured meat and fish e.g. sliced salami, sausage, salt pork, tuna fish in oil etc.; meat extracts and sauce, salted snack, soy sauce, barbecue sauce, commercial salad dressing; prepackage frozen foods; canned soup, canned legumes; cheese etc.
    There are also many sodium-containing additives as disodium phosphate (e.g. in cereals, ice cream, cheese), monosodium glutamate (i.e. meat, soup, condiments), sodium alginate (e.g. in ice creams), sodium benzoate (e.g. in fruit juice), sodium hydroxide (e.g. in pretzels, cocoa product), sodium propionate (e.g. in bread), sodium sulfite (e.g. in dried fruit), sodium pectinate (e.g. syrups, ice creams, jam), sodium caseinate (e.g. ice creams and other frozen products) and sodium bicarbonate (e.g. baking powder, tomato soup, confections).
    So pay attention to ingredients!
  • Inherent sodium of foods. Generally low in fresh foods.

The blood pressure response to lower dietary Na+ intake is heterogeneous with individuals having greater or lesser degrees of blood pressure reduction. Usually the effect of reduction tend to be greater in blacks, middle-aged and older persons, and individuals with hypertension, diabetes or chronic kidney disease.
Furthermore genetic and dietary factors influence the response to sodium reduction.

How diet can modify response of blood pressure to sodium?

Some components of the diet may modify response of blood pressure to sodium.

  • A high dietary intake of calcium and potassium rich foods, such as fruit, vegetable, legumes (e.g. Mediterranean diet), and low-fat dairy products (e.g. DASH diet), may prevent or attenuate the rise in blood pressure for a given increase in sodium intake.
  • Some evidences, seen primarily in animal model, suggest that high dietary intake of sucrose may potentiate salt sensitivity of blood pressure.

Note: high Na+ intake can contribute to osteoporosis: they result in an increase in renal calcium excretion, particularly if daily calcium intakes are low.

References

Appel L.J., Brands M.W., Daniels S.R., Karanja N., Elmer P.J. and Sacks F.M. Dietary approaches to prevent and treat HTN: a scientific statement from the American Heart Association. Hypertension 2006;47:296-08. doi:10.1161/01.HYP.0000202568.01167.B6

Bibbins-Domingo K., Chertow G.M., Coxson P.G., Moran A., Lightwood J.M., Pletcher M.J., and Goldman L. Projected effect of dietary salt reductions on future cardiovascular disease. N Engl J Med 2010;362:590-9. doi:10.1056/NEJMoa0907355

Cappuccio FP. Overview and evaluation of national policies, dietary recommendtions and programmes around the world aiming at reducing salt intake in the population. World Health Organization. Reducing salt intake in populations: report of a WHO forum and technical meeting. WHO Geneva 2007;1-60.

Chen J, Gu D., Jaquish C.E., Chen C., Rao D.C., Liu D., Hixson J.E., Lee Hamm L., Gu C.C., Whelton P.K. and He J. for the GenSalt Collaborative Research Group. Association Between Blood Pressure Responses to the Cold Pressor Test and Dietary Sodium Intervention in a Chinese Population. Arch Intern Med. 2008;168:1740-46 doi:10.1001/archinte.168.16.1740

Denton D.,  Weisinger R., Mundy N.I., Wickings E.J., Dixson A., Moisson P., Pingard A.M., Shade R., Carey D., Ardaillou R., Paillard F., Chapman J., Thillet J. & Michel J.B. The effect of increased salt intake on blood pressure of chimpanzees. Nature Med 1995;10:1009-16 doi:10.1038/nm1095-1009

Ford E.S., Ajani U.A., Croft J.B., Critchley J.A., Labarthe D.R., Kottke T.E., Giles W.H, and Capewell S. Explaining the decrease in U.S. deaths from coronary disease, 1980-2000. N Engl J Med 2007;356:2388-98. doi:10.1056/NEJMsa053935

Geleijnse J.M., Witteman J.C., den Breeijen J.H., Hofman A., de Jong P., Pols H.A. and Grobbee D.E. Dietary electrolyte intake and blood pressure in older subjects: the Rotterdam Study. J Hyperten 1996;14:73741.

Harlan W.R. and Harlan L.C. Blood pressure and calcium and magnesium intake. In: Laragh J.H., Brenner B.M., eds. Hypertension: pathophysiology, diagnosis and management. 2end ed. New York: Raven Press 1995;1143-54

Holmes E., Loo R.L., Stamler J., Bictash M., Yap I.K.S., Chan Q., Ebbels T., De Iorio M., Brown I.J., Veselkov K.A., Daviglus M.L., Kesteloot H., Ueshima H., Zhao L., Nicholson J.K. and Elliott P. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 2008;453:396-400. doi:10.1038/nature06882

Mahan LK, Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Pickering T.G. New guidelines on diet and blood pressure. Hypertension 2006;47:135-6. doi:10.1161/01.HYP.0000202417.57909.26

Shils M.E., Olson J.A., Shike M., Ross A.C. “Modern nutrition in health and disease” 9th ed., by Lippincott, Williams & Wilkins, 1999

Simpson F.O. Blood pressure and sodium intake. In: Laragh J.H., Brenner B.M. eds. Hypertension: pathophysiology, diagnosis and management. 2end ed. New York: Raven Press 1995;273-81

Strazzullo P., D’Elia L., Kandala N. and Cappuccio F.P. Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies. BMJ 2009;339:b4567 doi:10.1136/bmj.b4567

Tzoulaki I., Brown I.J., Chan Q., Van Horn L., Ueshima H., Zhao L., Stamler J., Elliott P., for the International Collaborative Research Group on Macro-/Micronutrients and Blood Pressure. Relation of iron and red meat intake to blood pressure: cross sectional epidemiological study. BMJ 2008;337:a258 doi:doi:10.1136/bmj.a258

Weinberger M.H. The effects of sodium on blood pressure in humans. In: Laragh JH, Brenner BM, eds. Hypertension: pathophysiology, diagnosis and management. 2end ed. New York: Raven Press 1995;2703-14.

Writing Group of the PREMIER Collaborative Research Group. Effects of comprehensive lifestyle modification on blood pressure control: main results of the PREMIER Clinical Trial. JAMA 2003;289:2083-2093. doi:10.1001/jama.289.16.2083

World Health Organization, International Society of Hypertension Writing Group. 2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension. Guidelines and recommendations. J Hyperten 2003;21:1983-92.

Anthocyanins: foods, absorption, metabolism

CONTENTS

Anthocyanin rich foods

AnthocyaninTogether with catechins and proanthocyanidins, anthocyanins and their oxidation products are the most abundant flavonoids in the human diet.
They are found in:

  • certain varieties of grains, such as some types of pigmented rice (e.g. black rice) and maize (purple corn);
  • in certain varieties of root and leafy vegetables such as aubergine, red cabbage, red onions and radishes, beans;
  • but especially in red fruits.

They are also present in red wine; as the wine ages, they are transformed into various complex molecules.
Anthocyanin content in vegetables and fruits is generally proportional to their color: it increases during maturation, and it reaches values up to 4 g/kg fresh weight (FW) in cranberries and black currants.
These polyphenols are found primarily in the skin, except for some red fruits, such as cherries and red berries (e.g. strawberries), in which they are present both in the skin and flesh.
Glycosides of cyanidin are the most common anthocyanins in foods.

Anthocyanin rich fruits

  • Berries are the main source of anthocyanins, with values ranging between 67 and 950 mg/100 g FW.
  • Other fruits, such as red grapes, cherries and plums, have content ranging between 2 and 150 mg/100 g FW.
  • Finally, in fruits such as nectarines, peaches, and some types of apples and pears, anthocyanins are poorly present, with a content of less than 10 mg/100 g FW.

Cranberries, besides their very high content of anthocyanins, are one of the rare food that contain glycosides of the six most commonly anthocyanidins present in foods: pelargonidin, delphinidin, cyanidin, petunidin, peonidin, and malvidin. The main anthocyanins are the 3-O-arabinosides and 3-O-galactosides of peonidin and cyanidin. A total of 13 anthocyanins have been detected, mainly 3-O-monoglycosides.

Intestinal absorption of anthocyanins

Until recently, it was believed that anthocyanins, together with proanthocyanidins and gallic acid ester derivatives of catechins, were the least well-absorbed polyphenols, with a time of appearance in the plasma consistent with the absorption in the stomach and small intestine. Indeed, some studies have shown that their bioavailability has been underestimated since, probably, all of their metabolites have not been yet identified.
In this regard, it should be underlined that only a small part of the food anthocyanins is absorbed in their glycated forms or as hydrolysis products in which the sugar moiety has been removed. Therefore, a large amount of these ingested polyphenols enters the colon, where they can also suffer methylation, sulphatation, glucuronidation and oxidation reactions.

Anthocyanins and colonic microbiota

Few studies have examined the metabolism of anthocyanins by the colonic microbiota.
Within two hours, it seems that all the anthocyanins lose their sugar moieties, thus producing anthocyanidins.
Anthocyanidins are chemically unstable in the neutral pH of the colon. They can be metabolized by colonic microbiota or chemically degraded producing a set of new molecules that have not yet fully identified, but which include phenolic acids such as gallic acid, syringic acid, protocatechuic acid, vanillic acid and phloroglucinol (1,3,5-trihydroxybenzene). These molecules, thanks to their higher microbial and chemical stability, might be the main responsible for the antioxidant activities and the other physiological effects that have been observed in vivo and attributed to anthocyanins.

References

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

de Pascual-Teresa S., Moreno D.A. and García-Viguera C. Flavanols and anthocyanins in cardiovascular health: a review of current evidence. Int J Mol Sci 2010;11:1679-1703. doi:10.3390/ijms11041679

Escribano-Bailòn M.T., Santos-Buelga C., Rivas-Gonzalo J.C. Anthocyanins in cereals. J Chromatogr A 2004:1054;129-141. doi:10.1016/j.chroma.2004.08.152

Han X., Shen T. and Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci 2007;9:950-988. doi:10.3390/i8090950

Manach C., Scalbert A., Morand C., Rémésy C., and Jime´nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-47 doi:10.1093/ajcn/79.5.727

Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010;2:1231-1246. doi:10.3390/nu2121231


Tea polyphenols: bioactive compounds from leaves of tea plant

Tea polyphenols: from the leaf to the cup

Tea Polyphenols

The leaves of the tea plant, Camellia sinensis, and tea are rich in bioactive compounds.
More than 4000 molecules have been found in the beverage.
Approximately one third of these compounds are polyphenols, the most important molecules in determining nutritional value and health benefits of the beverage.
Tea polyphenols are mostly flavonoids, such as catechins in green tea (e.g. EGCG), and thearubigins and theaflavins in black tea.
Other bioactive compounds present in tea are:

  • alkaloids, such as caffeine, theophylline and theobromine;
  • amino acids, and among them, theanine (r-glutamylethylamide), that is also a brain neurotransmitter and one of the most important amino acids in green tea;
  • proteins;
  • carbohydrates;
  • chlorophyll;
  • volatile organic molecules, that is, compounds that easily produce vapors and contribute to the odor of the beverage;
  • fluoride, aluminum and trace elements.

These molecules provide the nutritional value of the tea, affecting human health in many ways. Their composition is highly influenced by processing of tea leaves.

Biological activities of polyphenols

Polyphenols, both in vivo and in vitro, have a broad spectrum of biological activities such as:

  • antioxidant properties;
  • reduction of various types of tumors;
  • inhibition of inflammation;
  • protective effects against hyperlipidemia and diabetes.

Therefore, they have a protective role against the development of many diseases.
Thanks to the abundance of tea polyphenols, there has been a growing interest in recent years about the possible preventive effects of beverage against several diseases, particularly cardiovascular disease, for example in the development and progression of atherosclerosis.

Mechanisms of action of tea polyphenols

Currently, there is limited information on how tea polyphenols exert their effects at cellular level.
It seems, at least in vitro, that catechins in green tea, and theaflavins and thearubigins in black tea are the bioactive compounds responsible for the physiological effects and health benefits of tea.
And among the observed mechanisms by which tea polyphenols act at the cellular level, in addition to the antioxidant effect, it has been observed, as a consequence of polyphenol binding to specific receptors on the cell membrane, changes in the activity of various protein kinases, and growth and transcriptional factors.
Moreover, it seems that these molecules, or at least EGCG, may enter the cell and directly interact with their intracellular specific targets.

References

Dwyer J.T. and Peterson J. Tea and flavonoids: where we are, where to go next. Am J Clin Nutr 2013;98:1611S-1618S doi:10.3945/ajcn.113.059584

Grassi D., Desideri G., Di Giosia P., De Feo M., Fellini E., Cheli P., Ferri L., and Ferri C. Tea, flavonoids, and cardiovascular health: endothelial protection. Am J Clin Nutr 2013;98:1660S-1666S doi:10.3945/ajcn.113.058313

Lambert J.D. Does tea prevent cancer? Evidence from laboratory and human intervention studies. Am J Clin Nutr 2013;98:1667S-1675S doi:10.3945/ajcn.113.059352

Lenore Arab L., Khan F., and Lam H. Tea consumption and cardiovascular disease risk. Am J Clin Nutr 2013;98:1651S-1659S doi:10.3945/ajcn.113.059345

Lorenz M. Cellular targets for the beneficial actions of tea polyphenols. Am J Clin Nutr 2013;98:1642S-1650S doi:10.3945/ajcn.113.058230

Sharma V.K., Bhattacharya A., Kumar A. and Sharma H.K. Health benefits of tea consumption. Trop J Pharm Res 2007;6(3):785-792.

Yuan J-M. Cancer prevention by green tea: evidence from epidemiologic studies. Am J Clin Nutr 2013;98:1676S-1681S doi:10.3945/ajcn.113.058271

Scroll Up