Endurance sports and nutrition

What are endurance sports?

Endurance Sports
Fig. 1 – Endurance Sports

In the last years endurance sports, defined in the PASSCLAIM document of the European Commission as those lasting 30 min or more, are increasing in popularity and competitions as half marathons, marathons, even ultramarathons, half Ironmans, or Ironman competitions attract more and more people.
They are competitions which can last hours, or days in the more extreme case of ultramarathons.
Athletes at all levels should take care of training and nutrition to optimize performance and to avoid potential health threats.
In endurance sports the most likely contributors to fatigue are dehydration and carbohydrate depletion (especially liver and muscle glycogen).

Dehydration and endurance sports

Dehydration is due to sweat losses needed to dissipate the heat that is generated during exercise. To prevent the onset of fatigue from this cause, the nutritional target is to reduce sweat losses to less than 2–3% of body weight; it is equally important to avoid drinking in excess of sweating rate, especially low sodium drinks, to prevent hyponatraemia (low serum sodium levels).

Glycogen depletion and endurance sports

Muscle glycogen and blood glucose are the most important substrates from which muscle obtains the energy needed for contraction.
Fatigue during prolonged exercise is often associated with reduced blood glucose levels and muscle glycogen depletion; therefore, it is essential starting exercise/competition with high pre-exercise muscle and liver glycogen concentrations, the last one for the maintaining of normal blood glucose levels.

Other problems which reduce performance and can be an health threat of the athlete, especially in long-distance races, are gastrointestinal problems, hyperthermia and hyponatraemia.
Hyponatraemia has occasionally been reported, especially among slower competitors with very high intakes of low sodium drinks.
Gastrointestinal problems occur frequently, especially in long-distance races; both genetic predisposition and the intake of highly concentrated carbohydrate solutions, hyperosmotic drinks, as well as the intake of fibre, fat, and protein seem to be important in their occurrence.

References

Burke L.M., Hawley J.A., Wong S.H.S., & Jeukendrup A. Carbohydrates for training and competition. J Sport Sci 2011;29:Sup1,S17-S27. doi:10.1080/02640414.2011.585473

Saris W.H., Antoine J.M., Brouns F., Fogelholm M., Gleeson M., Hespel P., Jeukendrup A.E., Maughan R.J., Pannemans D., Stich V. PASSCLAIM – Physical performance and fitness. Eur J Nutr. 2003;42(Suppl 1):i50-i95. doi:10.1007/s00394-003-1104-0

Jeukendrup A.E. Carbohydrate feeding during exercise. Eur J Sport Sci 2008:2;77-86. doi:10.1080/17461390801918971

Jeukendrup A.E. Nutrition for endurance sports: marathon, triathlon, and road cycling. J Sport Sci 2011:29;sup1, S91-S99. doi:10.1080/02640414.2011.610348

Mahan L.K., Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Sawka M.N., Burke L.M., Eichner E.R., Maughan, R.J., Montain S.J., Stachenfeld N.S. American College of Sports Medicine position stand: exercise and fluid replacement. Med Sci Sport Exercise 2007;39:377-390. doi:10.1249/mss.0b013e31802ca597

Shils M.E., Olson J.A., Shike M., Ross A.C.: “Modern nutrition in health and disease” 9th ed. 1999

Shirreffs S., Sawka M.N. Fluid and electrolyte needs for training, competition and recovery. J Sport Sci 2011;29:sup1, S39-S46. doi:10.1080/02640414.2011.614269

Fruits and vegetables in season

Health benefits of seasonal fruits and vegetables

Numerous studies showed that seasonality plays a key role in optimizing the antioxidant properties of fruits and vegetables. For example, a recent Chinese study have investigated the influence of growing season (summer vs winter) on the synthesis and accumulation of phenolic compounds and antioxidant properties in five grape cultivars. The study showed that both phenolic compounds and antioxidant properties in the skin and seed of winter berries were significantly higher than those of summer berries for all of the cultivars investigated. Finally, to choose seasonal vegetables and fruits also ensures considerable saving of money.

List of vegetables and fruits in season

Fruits and Vegetables: Fruits in Season
Fig. 1 – Fruits in Season
Fruits and Vegetables: Vegetables in Season
Fig. 2 – Vegetables in Season
References

Xu C., Zhang Y., Zhu L., Huang Y., and Jiang Lu J. Influence of growing season on phenolic compounds and antioxidant properties of grape berries from vines Grown in Subtropical Climate. J Agric Food Chem 2011:59(4);1078-1086. doi:10.1021/jf104157z

Omega-3 fatty acid supplements in the secondary prevention of CVD

Omega-3 fatty acids and prevention of CVD

Omega-3 Fatty Acid Supplements: DHA-Docosahexaenoic acid
Fig. 1 – DHA

Studies conducted on Greenland Eskimos, which consume large amount of fish or marine mammals rich in omega-3 fatty acids and have a low incidence of cardiovascular disease or CVD, have suggested a protective effects of such fatty acids against these disease. Results of other epidemiological studies, randomized trials and animal investigations, have also suggested that omega-3 fats, and in particular long-chain omega-3 fatty acids, eicosapentaenoic aci or EPA and docosahexaenoic acid or DHA have cardiovascular effects. These studies indicate that they have anti-inflammatory, antiatherogenic, and antiarrhythmic effects, which are considered plausible mechanisms for reducing the risk of cardiovascular disease.

Omega-3 fatty acid supplements and secondary prevention of CVD

In a study published on Archives of Internal Medicine a research team, using a meta-analysis of randomized, double-blind, placebo-controlled trials, has evaluated the preventive effect of omega-3 fatty acid supplements (omega-3 fatty acid supplements for at least 1 year, with a daily dose of EPA or DHA ranged from 0.4 to 4.8 g/d, and a follow-up period ranged from 1.0 to 4.7 years) in the secondary prevention of cardiovascular disease, i.e. among patients with a history of cardiovascular disease (not in healthy individuals).
The study involved 20485 patients, male or female aged ≥18 years, 10259 randomized to a placebo group and 10226 randomized to an intervention group. Placebo groups received vegetable oils (sunflower oil, olive oil, and corn oil), mixed fatty oil, and other “inert” or ill-defined substances (aluminum hydroxide and unspecified placebo).
The meta-analysis showed insufficient evidence of a secondary preventive effect of omega-3 fatty acid supplements against overall cardiovascular events, which include peripheral vascular disease, angina and unstable angina, transient ischemic attack and stroke, fatal and nonfatal myocardial infarction, sudden cardiac death, cardiovascular death, congestive heart failure, and nonscheduled cardiovascular interventions (i.e., coronary artery bypass surgery or angioplasty).
Moreover, no significant preventive effect was observed in subgroup analyses by the following: history of cardiovascular disease, concomitant medication use (lipid lowering agents, no lipid-lowering agents, or antiplatelet agents only), country location (Western Europe, Northern Europe, United States, or Asia), inland or coastal geographic area, methodological quality of the trial, duration of treatment, type of placebo material in the trial (oil vs nonoil), dosage of EPA or DHA, or use of fish oil supplementation only as treatment.

Conclusion

The study showed insufficient evidence of a secondary preventive effect of omega-3 fatty acid supplements against overall cardiovascular events among patients with a history of cardiovascular disease.

References

Kwak S.M., Myung S-K., Lee Y.J., Seo H.G., for the Korean Meta-analysis Study Group. Efficacy of omega-3 fatty acid supplements (eicosapentaenoic acid and docosahexaenoic acid) in the secondary prevention of cardiovascular disease. A meta-analysis of randomized, double-blind, placebo-controlled trials. Arch Intern Med 2012;172(9):686-694. doi:10.1001/archinternmed.2012.262