Relationship between omega-3, omega-6 and omega-9 PUFA

  • Impair uptake of omega-6 polyunsaturated fatty acids (PUFA).
  • Inhibit desaturases, especially Δ6 desaturase.
  • Competitively inhibit cyclooxygenase and lipoxygenase.
  • Compete with omega-6 polyunsaturated fatty acids for acyltransferases.
  • Dilute pools of free arachidonic acid.
  • Displace arachidonic acid from specific phospholipid pools.
  • Form eicosanoid analogs with less activity or competitively bind to eicosanoid sites.
  • Alter membrane properties and associated enzyme and receptor functions.

Source: adapted from Kinsella, J.E. in Omega-3 Fatty Acids in Health and Disease, R.S. Lees and M. Karel, eds, Dekker, New York, 1990.

Relationship between ω-3 , ω-6 and ω-9 fatty acid families

Relationship between ω-3, ω-6 and ω-9 PUFA

The Δ5 and Δ6 desaturases prefer fatty acids with double bonds in the omega-6 or n-6 and, secondarily, the omega-3 or n-3 position of the carbon chain.
Omega-3 polyunsaturated fatty acids competitively suppresses, at enzymatic level, the synthesis of the omega-6 polyunsaturated fatty acids; for these reasons relative and absolute dietary intake is important in the determination of tissue omega-3 and omega-6 polyunsaturated fatty acid levels.
Both omega-3 and omega-6 families suppress the formation of the omega-9 polyunsaturated fatty acids.


Akoh C.C. and Min D.B. “Food lipids: chemistry, nutrition, and biotechnology” 3th ed. 2008

Bender D.A. “Benders’ dictionary of nutrition and food technology”. 2006, 8th Edition. Woodhead Publishing. Oxford

Chow Ching K. “Fatty acids in foods and their health implication” 3th ed. 2008

Mahan L.K., Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Shils M.E., Olson J.A., Shike M., Ross A.C.: “Modern nutrition in health and disease” 9th ed. 1999

Stipanuk M.H., Caudill M.A. Biochemical, physiological, and molecular aspects of human nutrition. 3rd Edition. Elsevier health sciences, 2013 [Google eBooks]