Archivi tag: sintesi del glicogeno

Glicogeno: un deposito efficiente di energia in condizioni aerobiche

In condizioni aerobiche, qual è il ricavo energetico netto dall’ossidazione di una molecola di glucosio liberata dal glicogeno?

Condizioni Aerobiche: Struttura del Glicogeno
Fig. 1 – Struttura del Glicogeno

In condizioni aerobiche, l’ossidazione del glucosio libero a CO2 e H2O (glicolisi, ciclo di Krebs e fosforilazione ossidativa) porta alla produzione netta di circa 30 molecole di ATP.

Glucosio dall’azione della glicogeno fosforilasi: rilascio di glucosio-1-fosfato (circa il 90% delle unità rimosse).

La sintesi del glicogeno dal glucosio libero costa due molecole di ATP per ogni molecola immagazzinata; una molecola di glucosio-1-fosfato è rilasciata nella reazione catalizzata dalla glicogeno fosforilasi, con recupero/risparmio di una delle due molecole di ATP precedentemente utilizzate.
Quindi in condizioni aerobiche, l’ossidazione del glucosio a partire da glucosio-6-fosfato e non da glucosio libero produce 31 molecole di ATP e non 30 (un ATP anziché due è speso nella fase di attivazione; 30 ATP sono prodotti durante il ciclo di Krebs e la fosforilazione ossidativa: 31 ATP guadagnati).
Il rapporto netto tra spesa e guadagno è di 1/31 (una conservazione dell’energia di circa il 97%).
La reazione complessiva è:

glicogeno(n residui di glucosio) + 31 ADP + 31 Pi → glicogeno(n-1 residui di glucosio) + 31 ATP + 6 CO2 + 6 H2O

Combinando la sintesi del glicogeno, la sua degradazione ed infine l’ossidazione del glucosio a CO2 e H2O si ottengono 30 molecole di ATP per unità di glucosio immagazzinata, ossia la reazione complessiva è:

Glucosio + 29 ADP + 30 Pi → 29 ATP + 6 CO2 + 6 H2O

Glucosio dall’azione dell’enzima deramificante: rilascio di glucosio libero (circa il 10% delle unità rimosse).

La resa netta in ATP tra la sintesi e la degradazione del glicogeno è di due molecole di ATP spese in quanto viene rilasciato glucosio libero.
In questo caso l’ossidazione del glucosio ha inizio dalla molecola non prefosforilata e quindi si ottengono 30 molecole di ATP.
Il rapporto netto tra spesa e guadagno è 2/30 (una conservazione dell’energia di circa il 93,3%).
Considerando l’ossidazione a CO2 e H2O delle unità di glucosio provenienti dal glicogeno si ha una conservazione dell’energia pari a:

1-(((1/31)*0,9)+((2/30)*0,1))=0,9643

Conclusioni

In condizioni aerobiche, nella molecola del glicogeno c’è la conservazione di circa il 97% dell’energia, una forma estremamente efficiente di deposito dell’energia.

Bibliografia

Arienti G. “Le basi molecolari della nutrizione”. Seconda edizione. Piccin, 2003

Cozzani I. and Dainese E. “Biochimica degli alimenti e della nutrizione”. Piccin Editore, 2006

Giampietro M. “L’alimentazione per l’esercizio fisico e lo sport”. Il Pensiero Scientifico Editore, 2005

Mahan LK, Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Mariani Costantini A., Cannella C., Tomassi G. “Fondamenti di nutrizione umana”. 1th ed. Il Pensiero Scientifico Editore, 1999

Nelson D.L., M. M. Cox M.M. Lehninger. Principles of biochemistry. 4th Edition. W.H. Freeman and Company, 2004

Stipanuk M.H.. “Biochemical and physiological aspects of human nutrition” W.B. Saunders Company-An imprint of Elsevier Science, 2000

Assunzione di carboidrati solidi, liquidi o in forma di gel nei 60 minuti precedenti l’esercizio

Assunzione di Carboidrati Liquidi
Fig. 1 – Assunzione di Carboidrati Liquidi

La forma in cui sono assunti i carboidrati potrebbe avere differenti effetti sia sul metabolismo che la prestazione. Inoltre, l’assunzione di cibi solidi rallenta lo svuotamento gastrico, come la velocità di digestione ed assorbimento rispetto a quanto accade con i cibi liquidi e questo ha un diverso effetto sulla glicemia.
Per queste ragioni, molti studi hanno analizzato quali sono gli effetti delle diverse forme di carboidrati assunti sulla glicemia, la velocità di ossidazione e la prestazione.

  • Studi condotti per confrontare l’effetto sulla glicemia dell’assunzione di carboidrati confrontando quelli solidi e liquidi e in forma di gel non hanno messo in evidenza differenze tra i gruppi.
  • Gli studi che hanno analizzato le differenze nella prestazione non hanno evidenziato alcuna differenza.
  • Inoltre, non sono state viste differenze nella velocità di ossidazione dei carboidrati confrontandone l’assunzione nelle tre forme durante l’esercizio.

Quindi sembra che non sia la forma in cui vengono assunti i carboidrati che possa influenzare in positivo o negativo la prestazione (in aggiunta, non varia neppure la sintesi del glicogeno, studio fatto considerando carboidrati nella forma solida e liquida).

Conclusioni

E’ consigliabile che l’atleta assuma carboidrati nella forma che preferisce, basandosi sulla sua esperienza e sul rapporto costo-efficacia del prodotto.

Il glicogeno: un deposito efficiente di energia in condizioni anaerobiche

In condizioni anaerobiche, qual è il ricavo energetico netto dall’ossidazione  di una molecola di glucosio liberata dal glicogeno ?

In condizioni anaerobiche, l’ossidazione di una molecola libera di glucosio a lattato (glicolisi anaerobica, vedi figura) porta alla produzione netta di due molecole di ATP.

Condizioni Anaerobiche: La Glicolisi Anaerobica
Fig. 1 – La Glicolisi Anaerobica

Glucosio dall’azione della glicogeno fosforilasi: rilascio di glucosio-1-fosfato (circa il 90% delle unità rimosse).

La sintesi del glicogeno dal glucosio libero costa due molecole di ATP per ogni molecola immagazzinata; una molecola di glucosio-1-fosfato è rilasciata nella reazione catalizzata dalla glicogeno fosforilasi, con recupero/risparmio di una delle due molecole di ATP precedentemente utilizzate.
Quindi l’ossidazione del glucosio a lattato a partire dal glucosio-6-fosfato e non dal glucosio libero porta alla produzione di tre molecole di ATP e non due (un ATP anziché due è speso nella fase di attivazione, 4 ATP sono prodotti nel terzo stadio: tre molecole di ATP guadagnate).
Il rapporto netto tra spesa e guadagno è 1/3 (una conservazione dell’energia di circa il 66,7%).
La reazione complessiva è:

glicogeno(n residui di glucosio) + 3 ADP + 3 Pi → glicogeno(n-1 residui di glucosio) + 2 lattato + 3 ATP

Combinando la sintesi del glicogeno, la sua degradazione ed infine la glicolisi a lattato si ha una resa pari ad una sola molecola di ATP per molecola di glucosio immagazzinata, ossia la somma complessiva è:

Glucosio + ADP + Pi → 2 lattato + ATP

Glucosio dall’azione dell’enzima deramificante: rilascio di glucosio libero (circa il 10% delle unità rimosse).

La resa netta in ATP tra sintesi e degradazione del glicogeno è di due molecole di ATP spese in quanto viene rilasciato glucosio libero.
In questo caso l’ossidazione del glucosio ha inizio dalla molecola non prefosforilata e produce due molecole di ATP.
Quindi la resa netta in ATP è pari a zero.
Considerando l’ossidazione sino a lattato delle unità di glucosio provenienti dal glicogeno si ha una conservazione dell’energia pari a:

1-(((1/3)*0,9)+((2/2)*0,1))=0,60

Conclusione

In condizioni anerobiche, nella molecola del glicogeno c’è la conservazione di circa il 60% dell’energia, una buona forma di deposito dell’energia.

Bibliografia

Arienti G. “Le basi molecolari della nutrizione”. Seconda edizione. Piccin, 2003

Cozzani I. and Dainese E. “Biochimica degli alimenti e della nutrizione”. Piccin Editore, 2006

Giampietro M. “L’alimentazione per l’esercizio fisico e lo sport”. Il Pensiero Scientifico Editore, 2005

Mahan LK, Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Mariani Costantini A., Cannella C., Tomassi G. “Fondamenti di nutrizione umana”. 1th ed. Il Pensiero Scientifico Editore, 1999

Nelson D.L., M. M. Cox M.M. Lehninger. Principles of biochemistry. 4th Edition. W.H. Freeman and Company, 2004

Stipanuk M.H.. “Biochemical and physiological aspects of human nutrition” W.B. Saunders Company-An imprint of Elsevier Science, 2000

Strategie per massimizzare le scorte di glicogeno muscolare nel post-esercizio

Sintesi del glicogeno muscolare nel post-esercizio

Una fonte importante di energia per il muscolo che lavora è il glicogeno ivi accumulato, i cui livelli sono correlati anche con l’insorgenza della fatica.
L’atleta maggiormente allenato non solo ha depositi di glicogeno potenzialmente maggiori, ma è anche in grado di sintetizzarlo più velocemente grazie ad enzimi più efficienti.
Per produrre glicogeno è indispensabile assumere carboidrati; ma quanti, quali, quando e con che frequenza?

La bifasicità della sintesi del glicogeno muscolare

Nel tentativo di ripristinare il più velocemente possibile le riserve di glicogeno muscolare è utile conoscere l’andamento bifasico che può assumere la sua velocità di sintesi a seguito di allenamenti o gare che comportino deplezioni delle sue riserve muscolari pari ad almeno il 75% del valore a riposo e non a digiuno.
Conoscere e quindi sfruttare la tale bifasicità è importante per quegli atleti che siano impegnati in più allenamenti giornalieri, o che abbiano poco tempo a disposizione per il recupero tra un allenamento impegnativo ed il successivo (meno di 8 ore), al fine di massimizzarne la sintesi e ottenere la migliore performance nella sessione successiva.
Le due fasi sono caratterizzate da:

  • una diversa sensibilità all’insulina circolante;
  • una diversa velocità di sintesi.

La sintesi del glicogeno muscolare nel post-esercizio: la prima fase

Glicogeno Muscolare
Fig. 1 – Struttura del Glicogeno

La prima fase, immediatamente successiva al termine dell’attività e della durata di 30-60 minuti, è insulino-indipendente, ossia l’uptake del glucosio da parte della cellula muscolare come la sintesi della molecola al suo interno sono indipendenti dall’azione dell’ormone.
Questa fase è caratterizzata da una elevata velocità di sintesi che però si riduce rapidamente se non si assumono carboidrati: la massima velocità si registra nei primi 30 minuti per poi ridursi a circa 1/5 dal 60° minuto, e a circa 1/9 al 120° minuto dal termine dell’esercizio.
Come è possibile sfruttare questa prima fase per ripristinare quanto più possibile le scorte muscolari di glicogeno? Facendo si che al muscolo arrivi la maggior quantità possibile di glucosio nei momenti immediatamente successivi al termine dell’attività, meglio se entro i primi 30 minuti.

  • Cosa assumere?
    Carboidrati ad elevato indice glicemico ma di facile digestione ed assorbimento.
    E’ quindi consigliabile sostituire cibi, magari anche ad alto indice glicemico, che necessitano di un certo tempo per la digestione ed il successivo assorbimento, con soluzioni/gel contenenti ad esempio glucosio e/o saccarosio. Queste soluzioni/gel assicurano la massima velocità possibile di assorbimento e rifornimento di glucosio al muscolo in quanto contengono solo glucosio e sono prive di fibre o altro che rallenterebbero la digestione e il successivo assorbimento del monosaccaride, sono cioè in grado di produrre elevate glicemie in un tempo relativamente breve.
    Da sottolineare ulteriormente che il ricorso nell’immediato post-esercizio a tali soluzioni/gel contenenti carboidrati a rapida disponibilità è consigliabile solo quando il tempo di recupero tra un esercizio che causa una forte deplezione del glicogeno muscolare ed il successivo è breve, meno di 8 ore.
    Sarà possibile giocare anche sulla temperatura e concentrazione della soluzione per accelerarne il transito gastrico.
  • Assumere carboidrati, ma in che quantità?
    Sono stati condotti molti studi per cercare di definire la quantità ideale di carboidrati da assumere.
    Se nel post-esercizio l’atleta non si alimenta la velocità di sintesi del glicogeno è molto bassa, mentre se immediatamente dopo il termine del lavoro assume quantità adeguate di carboidrati la velocità può raggiungere valori oltre 20 volte maggiori.
    Dal confronto della letteratura sembra ragionevole affermare che, a seguito di allenamenti che riducano le scorte di glicogeno muscolare come visto in precedenza (<75% dei valori a riposo e non a digiuno) la massima velocità di sintesi si ottenga con assunzioni di carboidrati, ad alto indice glicemico ed elevata velocità di digestione ed assorbimento, pari a circa 1,2 g/kg di peso corporeo/h per le 4-5 ore successive dal termine dell’esercizio stesso.
    In questo modo si determina la produzione di una quantità di glicogeno maggiore del 150% rispetto all’ingestione di 0,8 g/kg/h.
    Poiché aumenti fino a 1,6 g/kg/h non hanno portato ad ulteriori incrementi, la quantità di carboidrati pari a 1,2 g/kg/h può essere considerata quella ottimale per massimizzare la velocità di risintesi delle scorte di glicogeno muscolare nel post-esercizio.
  • Con che frequenza?
    Riguardo alla frequenza di assunzione è stato osservato che se i carboidrati sono assunti di frequente, ogni 15-30 minuti, sembra ci sia un’ulteriore stimolazione dell’uptake del glucosio da parte del muscolo, come della ricostituzione del glicogeno muscolare rispetto ad assunzioni ad intervalli di due ore. In particolare, le assunzioni nelle prime ore del post-esercizio sembrano ottimizzare livelli di glicogeno.

La sintesi  del glicogeno muscolare nel post-esercizio: la seconda fase

La seconda fase delle sintesi del glicogeno muscolare  ha inizio dalla fine della prima, perdura sino all’inizio del pasto precedente l’impegno successivo (dunque da alcune ore a giorni) ed è insulino-dipendente, ossia l’uptake del glucosio da parte della cellula muscolare come la sintesi del glicogeno al suo interno sono sensibili ai livelli circolanti dell’ormone.
Inoltre si osserva una significativa riduzione della velocità di sintesi del glicogeno muscolare: con un’assunzione adeguata di carboidrati la velocità si attesta su valori inferiori di circa il 10-30% rispetto a quelli della prima fase.
Questa fase può perdurare per diverse ore, ma tende ad essere più breve se:

Come è possibile sfruttare questa fase per ottimizzare la velocità di sintesi del glicogeno muscolare?
Le evidenze sperimentali indicano che pasti con carboidrati ad alto indice glicemico sono più efficaci di quelli con carboidrati a basso indice glicemico. Ma se tra un allenamento ed il successivo passano giorni e non ore, non ci sono evidenze a favore di carboidrati ad alto indice glicemico rispetto a quelli a basso indice purché ne sia assunta una quantità adeguata.

Velocità di sintesi del glicogeno e assunzione di carboidrati e proteine

La contemporanea assunzione di carboidrati e proteine (o aminoacidi insulino-tropici liberi) permette di ottenere velocità di sintesi del glicogeno nel post-esercizio che non differiscono significativamente da quelle raggiunte con quantità maggiori di soli carboidrati. Questo potrebbe essere un vantaggio per l’atleta che ne potrà assumere quantità più contenute, limitando così l’insorgenza di eventuali complicazioni gastrointestinali comuni durante l’allenamento/gara dopo un loro consumo elevato.
Dall’analisi della letteratura sembra ragionevole affermare che, dopo un esercizio che comporti la deplezione di almeno il 75% delle riserve muscolari di glicogeno, si possano ottenere velocità di sintesi del glicogeno analoghe a quelle raggiunte con 1,2 g/kg/h di soli carboidrati (le maggiori ottenibili) con la coingestione di 0,8 g/kg/h di carboidrati e 0,4 g/kg/h di proteine, mantenendo le stesse tempistiche di ingestione (ogni 15-30 minuti per le prime 4-5 ore del post-esercizio).

Bifasicità della sintesi del glicogeno muscolare: meccanismi molecolari

In entrambe le fasi l’aumento della sintesi del glicogeno è conseguenza di un aumento:

  • della velocità di trasporto del glucosio nella cellula;
  • dell’attività della glicogeno sintetasi, l’enzima che catalizza la sintesi del glicogeno.

Tuttavia i meccanismi molecolari che sottostanno a queste modificazioni sono differenti.
Nella prima fase l’aumento della velocità di trasporto del glucosio, indipendente dalla presenza dell’insulina, è mediato dalla traslocazione, indotta dalla contrazione, dei trasportatori del glucosio, detti GLUT4, sulla membrana plasmatica della cellula muscolare.
In aggiunta, anche i bassi livelli di glicogeno agiscono da stimolo al trasporto in quanto si ritiene che gran parte delle vescicole contenenti il trasportatore siano legate al glicogeno, e dunque potrebbero divenire disponibili quando i suoi livelli sono ridotti.
Infine bassi livelli di glicogeno muscolare vanno anche a stimolare l’attività della glicogeno sintetasi: è stato dimostrato che il livello del glicogeno muscolare è un regolatore dell’attività dell’enzima molto più potente di quanto sia l’insulina.
Nella seconda fase l’aumento della sintesi è dovuto all’azione dell’insulina sui trasportatori del glucosio e sull’attività della glicogeno sintetasi della cellula muscolare. Questa sensibilità all’azione dell’insulina circolante, che può persistere per 48 ore a seconda dell’assunzione di carboidrati e della quantità di glicogeno muscolare risintetizzato, ha suscitato grande attenzione: è infatti possibile, tramite opportuni interventi nutrizionali, incrementarne la secrezione al fine di migliorare la sintesi del glicogeno stesso ma anche l’anabolismo proteico, riducendo al contempo la velocità di degradazione delle proteine stesse.

Insulina e velocità di sintesi del glicogeno muscolare

La contemporanea assunzione di carboidrati e proteine (o aminoacidi liberi) aumenta la secrezione di insulina postprandiale rispetto ai soli carboidrati (in alcuni studi sono stati osservati incrementi nella secrezione dell’ormone di 2-3 volte rispetto ai soli carboidrati).
E’ stato supposto che, data la maggior quantità di insulina circolante, si potessero ottenere ulteriori aumenti della velocità di sintesi del glicogeno rispetto a quelli osservati con i soli carboidrati, ma in realtà non sembra essere così. Se infatti la quantità di carboidrati viene portata a 1,2 g/kg/h, più 0,4 g/kg/h di proteine, non si osservano ulteriori aumenti nella velocità di sintesi se paragonati a quelli ottenuti con l’ingestione dei soli carboidrati nella stessa quantità (1,2 g/kg/h, che come detto, al pari della coingestione di 0,8 g/kg/h di carboidrati e 0,4 g/kg/h di proteine, danno la massima velocità raggiungibile nel post-esercizio) o in quantità isoenergetica, quindi 1,6 g/kg (proteinecarboidrati hanno lo stesso contenuto di energia/grammo).

Insulina e accumulo preferenziale dei carboidrati

I livelli più elevati di insulina circolante raggiunti con la coingestione di carboidrati e proteine (o aminoacidi liberi) potrebbero stimolare un accumulo dei carboidrati ingeriti nei tessuti maggiormente sensibili all’azione dell’ormone, quali il fegato e il muscolo che ha precedentemente lavorato.
In questo modo si verificherebbe un loro deposito più efficiente ai fini dell’attività sportiva, in quanto carboidrati verrebbero accumulati preferenzialmente anche nel muscolo, dove saranno in seguito utilizzati.

Bibliografia

Beelen M., Burke L.M., Gibala M.J., van Loon J.C. Nutritional strategies to promote postexercise recovery. Int J Sport Nutr Exerc Metab 2010:20(6);515-32 [Abstract]

Berardi J.M., Noreen E.E., Lemon P.W.R. Recovery from a cycling time trial is enhanced with carbohydrate-protein supplementation vs. isoenergetic carbohydrate supplementation. J Intern Soc Sports Nutrition 2008;5:24 [PDF]

Betts J., Williams C., Duffy K., Gunner F. The influence of carbohydrate and protein ingestion during recovery from prolonged exercise on subsequent endurance performance. J Sports Sciences 2007;25(13):1449-60 [Abstract]

Howarth K.R., Moreau N.A., Phillips S.M., and Gibala M.J. Coingestion of protein with carbohydrate during recovery from endurance exercise stimulates skeletal muscle protein synthesis in humans. J Appl Physiol 2009:106;1394–1402  [Abstract]

Jentjens R., Jeukendrup A. E. Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Medicine 2003:33(2);117-144 [Abstract]

Millard-Stafford M., Childers W.L., Conger S.A., Kampfer A.J., Rahnert J.A. Recovery nutrition: timing and composition after endurance exercise. Curr Sports Med Rep 2008;7(4):193-201 [Abstract]

Price T.B., Rothman D.L., Taylor R., Avison M.J., Shulman G.I., Shulman R.G. Human muscle glycogen resynthesis after exercise: insulin-dependent and –independent phases. J App Physiol 1994:76(1);104–111 [Abstract]

van Loon L.J.C., Saris W.H.M., Kruijshoop M., Wagenmakers A.J.M. Maximizing postexercise muscle glycogen synthesis: carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures. Am J Clin Nutr 2000;72: 106-111 [Abstract]