Archivi tag: proteine

Ciclo glucosio-alanina

Ciclo glucosio-alanina: contenuti in breve

Che cos’è il ciclo glucosio-alanina?

Il ciclo glucosio-alanina, anche detto ciclo di Cahill, proposto per la prima volta tra il 1969 ed il 1970 da Mallette, Exton e Park, e Felig e collaboratori, consiste in una serie di reazioni attraverso le quali i tessuti extraepatici, come ad esempio il muscolo scheletrico, esportano al fegato piruvato e gruppi amminici in forma di alanina, e ricevono, attraverso il circolo sanguigno, glucosio prodotto nel fegato.
Di seguito ne sono riassunte le tappe.

  • Quando nei tessuti extraepatici gli amminoacidi sono utilizzati a fini energetici, il piruvato, prodotto dal glucosio attraverso la via glicolitica, funge da accettore del loro gruppo amminico α, formando alanina, un aminoacido non essenziale.
  • L’alanina diffonde nel circolo sanguigno, grazie al quale raggiunge il fegato.
  • Nel fegato, il gruppo amminico dell’alanina viene trasferito all’α-chetoglutarato a dare rispettivamente piruvato e glutammato.
  • Il glutammato cede per la maggior parte il gruppo amminico al ciclo dell’urea, mentre in parte funge da donatore di azoto in molti processi biosintetici.
    Il piruvato entra nella gluconeogenesi e viene utilizzato per la produzione di glucosio.
  • Il glucosio neoformato diffonde dall’epatocita nel circolo sanguigno e raggiunge i tessuti periferici dove, grazie alla glicolisi, può essere convertito in piruvato, di nuovo disponibile per accettare il gruppo amminico α degli amminoacidi liberi, chiudendo così il ciclo.

Il ciclo glucosio-alanina fornisce quindi un collegamento tra il metabolismo dei carboidrati e quello degli amminoacidi.
In breve:

Glucosio → Piruvato → Alanina → Piruvato → Glucosio

Ciclo Glucosio-Alanina
Fig. 1 – Ciclo Glucosio-Alanina

Il ciclo glucosio-alanina esiste non solo tra il muscolo scheletrico, il primo tra i tessuti in cui fu osservato, ed il fegato, ma coinvolge anche altre cellule e tessuti extraepatici tra cui le cellule del sistema immunitario, ad esempio gli organi linfoidi.

⇑ Torna all’inizio ⇑

Tappe del ciclo glucosio-alanina

L’analisi successiva verrà fatta considerando il ciclo tra muscolo scheletrico e fegato.
Le proteine, sia intracellulari che extracellulari, sono continuamente idrolizzate nei loro amminoacidi costituenti e risintetizzate; e la velocità con cui avvengono i due processi è tale da evitare una perdita netta di massa magra dall’organismo.
Tuttavia, in condizioni cataboliche, come nel digiuno o nell’esercizio intenso e prolungato, la velocità con cui avviene l’idrolisi delle proteine muscolari supera quella della loro sintesi de novo. Questo porterà alla liberazione di amminoacidi, alcuni dei quali sono utilizzati a fini energetici, altri a fini glucogenetici. Infatti, l’ossidazione dello scheletro carbonioso degli amminoacidi, in particolare di quelli a catena ramificata (valina, leucina, ed isoleucina), rappresenta una significativa fonte di energia per il muscolo. Ad esempio, dopo circa 90 minuti dall’inizio di un esercizio fisico intenso, l’ossidazione intramuscolare degli amminoacidi fornisce il 10-15% dell’energia necessaria alla contrazione.
L’utilizzazione degli scheletri carboniosi degli amminoacidi a fini energetici implica la rimozione del loro gruppo amminico α, e quindi il successivo smaltimento di tale azoto in una forma non tossica.
La rimozione del gruppo amminico α avviene attraverso reazioni di transaminazione che possono essere schematizzate come segue:

α-Chetoacido + Aminoacido ⇄ Nuovo aminoacido + Nuovo α-chetoacido

Tali reazioni, catalizzate da enzimi detti amminotransferasi o transaminasi (EC 2.6.1) sono liberamente reversibili (vedi sotto).
Gli amminoacidi ramificati, ad esempio, trasferiscono il gruppo amminico α all’α-chetoglutarato o acido 2-ossoglutarico, a dare glutammato e l’α-chetoacido derivato dall’amminoacido stesso, in una reazione catalizzata dalla transaminasi specifica per tale gruppo di amminoacidi o BCAT (EC 2.6.1.42), acronimo dell’inglese branched chain aminotransferases.

⇑ Torna all’inizio ⇑

Il ciclo glucosio-alanina nel muscolo scheletrico

Nel muscolo scheletrico, il glutammato prodotto potrà accettare un altro gruppo amminico a dare glutammina, per molti tessuti ed organi, come ad esempio il cervello, la principale forma di trasporto interorgano dell’azoto. La reazione è catalizzata dall’enzima citosolico glutammina sintetasi (EC 6.3.1.2) e consuma un ATP.

Glutammato + NH4+ + ATP → Glutammina + ADP + Pi

In questo caso tuttavia si uscirebbe dal ciclo glucosio-alanina.
In alternativa, e a differenza  di quanto accade nella maggior parte degli altri tessuti, il glutammato prodotto potrà partecipare ad una reazione di transaminazione catalizzata dalla alanina aminotransferasi o ALT (EC 2.6.1.2), enzima presente nella maggior parte dei tessuti animali e vegetali. In tale reazione il glutammato dona il gruppo amminico α al piruvato, derivante dalla glicolisi, a dare alanina ed α-chetoglutarato:

Piruvato + Glutammato ⇄ Alanina + α-Chetoglutarato

L’alanina prodotta e quella derivante dalla degradazione delle proteine, e le proteine muscolari ne sono piuttosto ricche, può lasciare la cellula ed essere veicolata dal circolo ematico al fegato, trasportandovi quindi il gruppo amminico. La velocità con cui l’alanina formata per transaminazione dal piruvato viene trasferita in circolo è proporzionale alla produzione intracellulare del piruvato.
Nota: alanina e glutammina sono le principali fonti di azoto e carbonio nel metabolismo interorgano degli amminoacidi.

⇑ Torna all’inizio ⇑

Il ciclo glucosio-alanina nel fegato

Una volta nel fegato si verifica una transaminazione catalizzata dalla alanina aminotransferasi epatica, in cui l’alanina, il principale amminoacido gluconeogenico, funge da donatore del gruppo amminico α, e l’α-chetoglutarato da chetoacido accettore. I prodotti della reazione sono il piruvato, ossia lo scheletro carbonioso dell’alanina, ed il glutammato.

Alanina + α-Chetoglutarato ⇄ Piruvato + Glutammato

Il glutammato, nella reazione catalizzata dalla glutammato deidrogenasi (EC 1.4.1.2), enzima presente nella matrice mitocondriale, rilascia ione ammonio, che entra nel ciclo dell’urea, ed una molecola di α-chetoglutarato, che può entrare nel ciclo di Krebs. Questa reazione rappresenta processo anaplerotico che lega il metabolismo degli amminoacidi con il ciclo di Krebs.

Ciclo Glucosio-AlaninaTuttavia il glutammato potrà entrare anche nella reazioni di transaminazione, catalizzata dalla aspartato amminotransferasi (EC 2.6.1.1), con l’ossalacetato a dare aspartato e α-chetoglutarato. L’aspartato è uno degli amminoacidi coinvolti nella produzione di urea attraverso il ciclo dell’urea, ma può essere utilizzato pure nella sintesi delle purine e pirimidine.

Glutammato + Ossalacetato ⇄ Aspartato + α-Chetoglutarato

Anche il piruvato prodotto potrà seguire destini metabolici differenti: essere ossidato per la produzione di ATP, e quindi uscire dal ciclo glucosio-alanina, o entrare nella via gluconeogenetica, e dunque proseguire nel ciclo glucosio-alanina.
Il glucosio prodotto verrà rilasciato dall’epatocita e attraverso il circolo ematico distribuito ai vari tessuti che lo richiedono, tra cui il muscolo scheletrico, dove viene utilizzato per la produzione di piruvato, di nuovo disponibile per accettare il gruppo amminico α del glutammato, chiudendo così il ciclo.

⇑ Torna all’inizio ⇑

Le transaminasi

Come detto in precedenza, la rimozione del gruppo amminico α degli amminoacidi avviene in reazioni di transaminazione (vedi sopra per la reazione generale), catalizzate da enzimi detti amminotransferasi o transaminasi.
Sono enzimi citosolici, presenti in tutte le cellule e particolarmente abbondanti nel fegato, rene, intestino e muscolo, la maggior parte dei quali richiede come coenzima il piridossal fosfato o PLP (acronimo dell’inglese  pyridoxal phosphate), la forma attiva della vitamina B6 o piridossina. Il coenzima è legato strettamente al sito attivo dell’enzima.
Nelle reazioni di transaminazione il gruppo amminico α degli amminoacidi liberi, con l’esclusione della treonina e lisina, è “incanalato” verso un numero ristretto di α-chetoacidi, in particolare piruvato, ossalacetato e α-chetoglutarato.
Le cellule contengono diversi tipi di amminotransferasi: molte sono specifiche per l’α-chetoglutarato come α-chetoacido, ma differiscono nella specificità per l’amminoacido, da cui prendono parte del nome. Esempi sono le già citate alanina aminotransferasi, anche detta alanina transaminasi e glutammico piruvico transferasi (GPT), e l’aspartato aminotransferasi (AST) o glutammico ossalacetico transaminasi (GOT) (EC 2.6.1.1).
Va sottolineato che nelle reazioni di transaminazione non si verifica alcuna deaminazione netta, nessuna perdita di gruppi amminici, in quanto l’α-chetoacido accettore viene amminato e l’amminoacido deaminato.

⇑ Torna all’inizio ⇑

Funzioni del ciclo glucosio-alanina

Tale ciclo ha diversi ruoli.

  • Trasporta azoto in una forma non tossica dai tessuti periferici al fegato.
  • Trasporta al fegato piruvato, un substrato gluconeogenico.
  • Rimuove piruvato dai tessuti periferici nei quali è così possibile ottenere una maggior produzione di ATP dal glucosio. Infatti il NADH prodotto durante la glicolisi può entrare nei mitocondri ed essere ossidato attraverso la fosforilazione ossidativa.
  • Permette di mantenere nell’epatocita una concentrazione relativamente alta di alanina, tale da inibire la degradazione delle proteine.
  • Può avere un ruolo nella difesa dell’ospite nei confronti delle malattie infettive.

Infine è importante sottolineare che nel ciclo glucosio-alanina non c’è sintesi netta di glucosio.

⇑ Torna all’inizio ⇑

Costo energetico del ciclo glucosio-alanina

Al pari del ciclo di Cori, anche il ciclo glucosio-alanina ha un costo energetico netto, che corrisponde a 3-5 molecole di ATP.
La parte del ciclo che si svolge nei tessuti periferici comporta la produzione di 5-7 molecole di ATP per molecola di glucosio:

  • 2  ATP sono prodotti dalla glicolisi;
  • 3-5 ATP derivano dal trasferimento degli elettroni dal NADH/FADH2 (vedi sotto) alla catena di trasporto degli elettroni.

Nel fegato invece la gluconeogenesi e il ciclo dell’urea consumano 10 ATP:

    • 6 ATP sono consumati nel corso della gluconeogenesi;
    • 4 ATP sono necessari per il ciclo dell’urea per ogni molecola di urea prodotta.

Il ciclo glucosio-alanina, al pari del ciclo di Cori, sposta parte del carico metabolico dai tessuti extraepatici al fegato. Tuttavia il prezzo pagato dal fegato è ampiamente giustificato dai vantaggi che il ciclo apporta all’intero organismo in quanto consente, in particolari condizioni, un efficiente catabolismo delle proteine nei tessuti extraepatici, il che a sua volta permette di ottenere substrati per la gluconeogenesi come anche l’utilizzazione a fini energetici degli aminoacidi nei tessuti extraepatici.

⇑ Torna all’inizio ⇑

Analogie e differenze tra ciclo glucosio-alanina e di Cori

Tra i due cicli esistono alcune analogie di seguito elencate.

  • Il ciclo di Cahill in parte si sovrappone al ciclo di Cori quando il piruvato viene convertito in glucosio e lo stesso trasportato ai tessuti extraepatici, dove attraverso la via glicolitica rigenera piruvato.
  • L’ingresso nella gluconeogenesi epatica è simile per i due cicli: sia l’alanina che il lattato sono infatti convertiti in piruvato.
  • Al pari del ciclo di Cori, anche il ciclo glucosio-alanina si “estende” attraverso tipi cellulari differenti, al contrario di quanto accade con vie metaboliche come la glicolisi, il ciclo di Krebs o la gluconeogenesi che  sono confinate all’interno di singole cellule.
Ciclo Glucosio-Alanina
Fig. 2 – Ciclo Glucosio-Alanina e Ciclo di Cori

Di seguito, alcune differenze tra i due cicli.

  • La principale riguarda l’intermedio a tre atomi di carbonio che dai tessuti periferici raggiunge il fegato: il lattato nel il ciclo di Cori e l’alanina nel ciclo glucosio-alanina.
  • Un’altra differenza riguarda il destino del NADH prodotto dalla glicolisi nei tessuti periferici.
    Nel ciclo di Cori il coenzima funge da donatore di agenti riducenti nella riduzione del piruvato a lattato, nella reazione catalizzata dalla lattico deidrogenasi (EC 1.1.1.27).
    Nel ciclo glucosio-alanina tale riduzione non si verifica e gli elettroni del NADH potranno essere trasportati all’interno del mitocondrio dai sistemi navetta del malato-aspartato o del glicerolo-3-fosfato, generando NADH la prima navetta e FADH2 l’altra, da cui si otterranno rispettivamente 2,5 e 1,5 molecole di ATP.
  • Infine, dal punto precedente emerge che, a differenza del ciclo di Cori, per il ciclo glucosio-alanina è richiesta nei tessuti periferici anche la presenza di ossigeno e mitocondri.

⇑ Torna all’inizio ⇑

Bibliografia

Berg J.M., Tymoczko J.L., and Stryer L. Biochemistry. 5th Edition. W. H. Freeman and Company, 2002

Felig P., Pozefsk T., Marlis E., Cahill G.F. Alanine: key role in gluconeogenesis. Science 1970;167(3920):1003-4. doi:10.1126/science.167.3920.1003

Gropper S.S., Smith J.L., Groff J.L. Advanced nutrition and human metabolism. Cengage Learning, 2009 [Google eBooks]

Lecker S.H., Goldberg A.L. and Mitch W.E. Protein degradation by the ubiquitin–proteasome pathway in normal and disease states. J Am Soc Nephrol 2006;17(7):1807-19. doi:10.1681/ASN.2006010083

Mallette L. E., Exton J. H., and Park C. R. Control of gluconeogenesis from amino acids in the perfused  rat liver. J Biol Chem 1969;244(20):5713-23 [PDF]

Nelson D.L., M. M. Cox M.M. Lehninger. Principles of biochemistry. 6th Edition. W.H. Freeman and Company, 2012

Raju S.M., Madala B. Illustrated medical biochemistry. Jaypee Brothers Publishers, 2005 [Google eBooks]

Wu G. Amino acids: biochemistry and nutrition. CRC Press, 2013 [Google eBooks]

Glutine: cos’è, dove si trova, proprietà, cereali gluten free

Glutine: contenuti in breve

Che cos’è il glutine?

Glutine
Fig. 1 – Frumento

Il glutine non è una semplice proteina, ma è una miscela composta da proteine dei cereali, per circa l’80% del suo peso secco (ad es. gliadine e glutenine per il frumento), lipidi, 5-7%, amido, 5-10%, acqua, 5-8%, e sostanze minerali, <2%.
Si forma quando componenti naturalmente presenti nel chicco del cereale, la cariosside, e nella farina derivata, si uniscono tra di loro, in ambiente acquoso e sotto l’azione di sollecitazioni meccaniche, ossia durante la formazione dell’impasto.
Il termine è associato anche alla famiglia di proteine che causa problemi ai soggetti affetti da celiachia (vedi in seguito).
Isolato per la prima volta dal chimico italiano Jacopo Bartolomeo Beccari nel 1745 dalla farina di frumento, può essere estratto dall’impasto lavando lo stesso in modo delicato sotto acqua corrente: una volta allontanato l’amido, le albumine e le globuline, tutti solubili in acqua, rimane una massa appiccicosa ed elastica, appunto il glutine (termine che deriva dal latino gluten, che significa colla).

⇑ Torna all’inizio ⇑

Dove si trova il glutine?

Tra i cereali che lo contengono si ritrovano:

  • frumento o grano, quali:

grano duro (Triticum durum), da cui si ottengono semole e semolati per pasta alimentare secca;
grano tenero (Triticum aestivum), da cui si ottengono farine per pane, paste fresche e prodotti da forno;

  • segale (Secale cereale);
  • orzo (Hordeum vulgare);
  • farro, nelle tre specie:

farro piccolo o monococco (Triticun monococcum);
farro medio (Triticum dicoccum Schrank);
farro grande o granfarro o spelta (Triticum spelta)

  • grano khorasan, di cui il Kamut® ne è una varietà;
  • triticale, che è un ibrido tra la segale ed il grano tenero (× Triticosecale Wittmack);
  • bulgur o grano spezzato(grano duro integrale germogliato e successivamente lavorato);
  • seitan, che non è un cereale ma un derivato del frumento, da alcuni definito anche “bistecca di glutine”.

Dato che la maggior parte del glutine assunto con l’alimentazione proviene dalle farine di frumento, di cui se ne raccoglie circa 700 milioni di tonnellate annue, che rappresentano circa il 30% della produzione mondiale dei cereali, la discussione seguente sarà incentrata sul glutine di frumento, ed in particolare sulle sue proteine.

Nota: il termine glutine viene anche utilizzato per indicare il residuo proteico che rimane dopo aver allontanato l’amido e le proteine solubili dall’impasto ottenuto con farina di mais o granturco: questo “glutine di mais” è tuttavia “funzionalmente” differente rispetto a quello ottenuto dal frumento.

⇑ Torna all’inizio ⇑

Le proteine dei cereali

Glutine
Fig. 3 – Proteine dei Cereali

Lo studio delle proteine dei grani, come visto, ebbe inizio con il lavoro di Beccari.
In seguito, nel 1924, quindi ben 150 anni dopo, l’inglese Osborne T.B., che a ragione può essere considerato il padre della chimica delle proteine vegetali, ne sviluppò una classificazione sulla base della loro solubilità in vari solventi.
La classificazione, ancora in uso, suddivide le proteine vegetali in 4 famiglie.

  • Albumine, solubili in acqua.
  • Globuline, solubili in soluzioni saline, come l’avenalina dell’avena.
  • Prolamine, solubili in soluzione alcolica al 70%, ma non in acqua o alcol assoluto.
    Comprendono:

gliadine del frumento;
zeina del mais;
avenina dell’avena;
ordeina dell’orzo;
secalina della segale.

Sono le responsabili dell’effetto tossico del glutine per il celiaco.

  • Gluteline, insolubili in acqua e soluzioni saline neutre, ma solubili in soluzioni acide e basiche.
    Comprendono le glutenine del frumento.

Albumine e globuline sono proteine citoplasmatiche, spesso di natura enzimatica, ricche di aminoacidi essenziali, quali lisina, triptofano e metionina. Si ritrovano nell’aleurone e nell’embrione della cariosside.
Prolamine e gluteline sono le proteine di riserva dei cereali. Sono ricche in asparagina, glutammina, arginina e prolina, ma molto povere in lisina,triptofano e metionina. Si ritrovano nell’endosperma, e rappresentano la grande maggioranza delle proteine presenti (fare tabella) nel frumento, mais, orzo, avena e segale.
Sebbene la classificazione di Osborne sia ancora ampiamente utilizzata, sarebbe più corretto suddividere le proteine dei grani in tre gruppi: di riserva, strutturali e metaboliche, e con funzioni difensive.

⇑ Torna all’inizio ⇑

Le proteine del glutine di frumento

Nel frumento le proteine rappresentano il 10-14% del peso della cariosside (circa l’80% del peso è costituito da carboidrati).
Seguendo la classificazione di Osborne, il 15-20% delle proteine sono rappresentate dalla albumine e globuline, mentre il restante 80-85%, è costituito da prolamine e gluteline, rispettivamente gliadine, 30-40%, e glutenine, 40-50%. Quindi, e a differenza delle prolamine e gluteline degli altri cereali, gliadine e gluteine sono presenti in quantità simili, circa il 40% (vedi tabella).
Gliadine e glutenine hanno una notevole importanza dal punto di vista tecnologico. Perché?
Le proteine appartenenti alle due classi sono insolubili in acqua, e nell’impasto, dunque in un ambiente ricco d’acqua, si legano tra loro attraverso legami quali:

  • legami covalenti, ossia ponti disolfuro;
  • legami non covalenti, quali interazioni idrofobiche, forze di van der Waals, legami idrogeno e legami ionici.

Grazie alla formazione di questi legami intermolecolari, si crea un reticolo tridimensionale, che intrappola i granuli di amido e le bolle di anidride carbonica che si formano durante la lievitazione, e conferisce resistenza ed elasticità all’impasto di farina ed acqua, due proprietà del glutine ampiamente sfruttate industrialmente.
Nella dieta abituale della popolazione europea adulta, ed in particolare di quella italiana che è molto ricca di derivati del frumento, gliadine e glutenine sono le proteine maggiormente rappresentate, circa 15 g al giorno. Che significa? Che la dieta gluten-free è una dieta che impegna sia sotto l’aspetto psicologico che sociale la persona affetta da celiachia.

Nota: i lipidi componenti il glutine sono strettamente legati alle zone idrofobiche di gliadine e glutenine e, rispetto a quanto è possibile fare con la farina originale, sono rimossi con maggiore difficoltà (il contenuto in lipidi del glutine dipende dal contenuto in lipidi della farina da cui è stato ottenuto).

⇑ Torna all’inizio ⇑

Gliadine: estensibilità e viscosità

Glutine
Fig. 2 – Proteine del grano

Le gliadine sono prolamine idrofobiche monomeriche, cioè formate da una sola subunità, di natura globulare e con basso peso molecolare. Sulla base della mobilità elettroforetica in condizioni di basso pH, sono state suddivise nei seguenti gruppi:

  • alfa/beta, e gamma, ricche di zolfo, contenendo residui di cisteina, coinvolti nella formazione di ponti disolfuro intramolecolari, e di metionina;
  • omega, povere di zolfo, data l’assenza o quasi di cisteina e metionina.

Hanno uno scarso valore nutrizionale ed un’altissima tossicità per il celiaco per la presenza di particolari sequenza aminoacidiche nella struttura primaria, in particolare prolina-serina-glutammina-glutammina e glutammina-glutammina-glutammina-prolina.
Le gliadine si associano tra di loro e con le glutenine attraverso legami non covalenti; grazie a ciò, nella formazione dell’impasto agiscono come “plasticizzanti”. Infatti, a loro si deve la viscosità e l’estensibilità proprie del glutine, il cui reticolo tridimensionale proteico si può deformare permettendo l’aumento di volume della massa a seguito della produzione di gas con la lievitazione. Questa proprietà è importante nella panificazione.
Un loro eccesso comporta la formazione di un impasto assai estensibile.

⇑ Torna all’inizio ⇑

Glutenine: elasticità e tenacità

Le glutenine sono proteine polimeriche, ossia formate da più subunità, di natura filamentosa legate insieme da ponti disolfuro intermolecolari. Dopo riduzione dei suddetti legami, tramite SDS-PAGE possono essere suddivise in due gruppi.

  • Glutenine ad elevato peso molecolare o HMW, acronimo dell’inglese high molecolar weight.
    Povere di zolfo, rappresentano circa il 12% del totale delle proteine del glutine. I legami non covalenti che si stabiliscono tra le subunità di questo gruppo sono responsabili dell’elasticità e tenacità delle network di proteine del glutine, ossia delle proprietà viscoelastiche del glutine stesso e quindi anche dell’impasto che lo contiene.
  • Glutenine a basso peso molecolare o LMW, acronimo dell’inglese low molecolar weight.
    Ricche di zolfo (cisteina), formano ponti disolfuro tra di loro e con le subunità HMW, formando così un macropolimero di glutenina.

Le glutenine fanno si che l’impasto mantenga la sua forma durante gli stress meccanici (impastamento) e non meccanici (aumento di volume dovuto alla lievitazione e all’aumento di volume dei gas che intrappola a seguito del riscaldamento dovuto alla cottura) cui è sottoposto. Questa proprietà è importante nella pastificazione.
Se in eccesso, le glutenine portano alla formazione di un impasto forte e rigido.

⇑ Torna all’inizio ⇑

Proprietà del glutine di frumento

Dal punto di vista nutrizionale le proteine che compongono il glutine non hanno un elevato valore biologico, essendo povere di lisina, un aminoacido essenziale. Dunque una dieta senza glutine non comporta alcuna carenza significativa di nutrienti importanti.
Di contro, il glutine ha un grande valore per l’industria alimentare: la matrice proteica tridimensionale derivante dalla combinazione in soluzione acquosa di gliadine e glutenine, conferisce proprietà viscoelastiche, ossia di estensibilità-viscosità ed elasticità-tenacità, all’impasto di cui fa parte, e quindi una struttura ben definita al pane, alla pasta, e in generale a tutti gli alimenti che si fanno con la farina di frumento.
Ha un alto grado di palatabilità.
Ha un elevato potere fermentante a livello dell’intestino tenue.
E’ un’esorfina: alcuni peptidi derivati dalla digestione delle proteine del glutine possono andare ad agire a livello del sistema nervoso centrale.

⇑ Torna all’inizio ⇑

Cereali senza glutine

Di seguito una lista di cereali, cereali minori, e pseudocereali gluten-free utilizzati a fini alimentari.

  • Cereali

Mais o granturco (Zea mais)
Riso (Oryza sativa)

  • Cereali minori
    Definiti “minori” non perché di scarsa importanza nutrizionale, quanto perché coltivati in piccole aree ed in quantità inferiori rispetto a frumento, riso e mais.

Fonio (Digitaria exilis)
Miglio (Panicum miliaceum)
Panico (Panicum italicum)
Sorgo (Sorghum vulgare)
Teff (Eragrostis tef)
Teosinte; gruppo composto da 4 specie appartenenti al genere Zea. Sono piante che crescono in Messico (Sierra Madre), Guatemala e Venezuela.

  • Pseudocereali
    Così definiti perché associano nella loro botanica e nei loro aspetti nutrizionali caratteristiche peculiari dei cereali e dei legumi, quindi di un’altra famiglia di piante.

Amaranto, nelle specie più diffuse:

Amaranthus caudatus;
Amaranthus cruentus;
Amarantus hypochondriacus.

Grano saraceno (Fagopyrum esculentum)
Quinoa (Chenopodium quinoa), uno pseudocereale con ottime proprietà nutritive, contenendo fibre, ferro, zinco e magnesio, che fa parte della famiglia delle Chenopodiaceee, come le barbabietole.

  • Manioca, anche nota come tapioca, yuca e cassava (Manihot utilissima). Coltivata principalmente nel sud del Sahara e nell’America del Sud, è una radice tubero commestibile da cui si origina la fecola di tapioca.

Nota: non sempre i prodotti naturalmente privi di glutine al momento della commercializzazione sono effettivamente gluten-free. Infatti per gli alimenti preparati a livello industriale ci può essere o l’utilizzo di derivati contenenti gliadina o una contaminazione nella filiera produttiva, e questo è ovviamente importante in quanto anche tracce di glutine nella dieta possono causare problemi al celiaco.

⇑ Torna all’inizio ⇑

Avena e glutine

Discorso a parte merita l’avena (Avena sativa), che è tra i cereali concessi ai celiaci. Studi condotti negli ultimi anni hanno evidenziato che è tollerata dal celiaco, adulto e bambino, anche nel soggetto con dermatite erpetiforme. Ovviamente, deve essere certificata per l’assenza di glutine (da contaminazione).

⇑ Torna all’inizio ⇑

Bibliografia

Beccari J.B. De Frumento. De bononiensi scientiarum et artium instituto atque Academia Commentarii, II. 1745:Part I.,122-127

Bender D.A. “Benders’ dictionary of nutrition and food technology”. 8th Edition. Woodhead Publishing. Oxford, 2006

Berdanier C.D., Dwyer J., Feldman E.B. Handbook of nutrition and food. 2th Edition. CRC Press. Taylor & Francis Group, 2007

Phillips G.O., Williams P.A. Handbook of food proteins. 1th Edition. Woodhead Publishing, 2011

Shewry P.R. and Halford N.G. Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 2002:53(370);947-958. doi:10.1093/jexbot/53.370.947

Yildiz F. Advances in food biochemistry. CRC Press, 2009

Massa grassa: come perderla e dimagrire bene

Come perdere massa grassa: contenuti in breve

Perdere massa grassa e bilancio calorico giornaliero

La letteratura scientifica internazionale è concorde nello stabilire come limite inferiore per l’apporto calorico giornaliero 1200 kcal per la donna e 1500 kcal per l’uomo (adulti).

Massa grassa
Fig. 1 – Bilancio Calorico Giornaliero

Per rendere il bilancio calorico giornaliero negativo, perdere peso, ma soprattutto perdere massa grassa, alla valutazione delle reali necessità caloriche del soggetto sarà da affiancarsi:

  • la corretta suddivisione dei pasti nella giornata;
  • un’aumentata attività fisica, grazie alla quale il bilancio negativo potrà essere ottenuto senza particolari sacrifici a tavola.

Questo renderà il dimagrimento più facile e proteggerà dai successivi aumenti di peso (massa grassa).
In definitiva ci deve essere un cambio nello stile di vita.

⇑ Torna all’inizio ⇑

Perdere massa grassa e le diete miracolose

Dunque, la strategia migliore per perdere massa grassa non è una drastica riduzione dell’apporto calorico e neppure seguire regimi alimentari costrittivi, ad es. diete che promettono miracoli come la “dieta del minestrone”, la dieta Plank, la dieta Master Cleanse (che è quella fatta da Beyonce) e molte altre che obbligano ad eliminare o ridurre fortemente l’apporto di determinati macronutrienti, quasi sempre i carboidrati, con apporti spesso esagerati di proteine. Condotte simili possono essere:

  • molto stressanti dal punto di vista psicologico;
  • non percorribili per lunghi periodi;
  • rischiose per la salute a causa di inevitabili carenze di nutrienti.

Infine non assicurano affatto che i chili persi siano solo o quasi solo massa grassa, e spesso sono seguite da aumenti del peso corporeo sostanziali (effetto yo-yo o weight cycling).
Perché?

⇑ Torna all’inizio ⇑

Massa grassa e riduzione eccessiva delle calorie

Una riduzione eccessiva dell’apporto calorico vuol dire mangiare molto poco e questo determina il rischio, elevato, di non assumere in quantità adeguate i diversi nutrienti essenziali, quelli cioè che non possiamo sintetizzare, come le vitamine, alcuni aminoacidi, alcuni acidi grassi e i minerali, tra cui ad es. il calcio, indispensabile per il metabolismo osseo in ogni fase della vita, o il ferro che è utilizzato in molte funzioni del nostro organismo come il trasporto di ossigeno ai tessuti. Tutto ciò si traduce anche in una depressione del metabolismo e quindi una riduzione dei consumi.
Se poi la riduzione dell’apporto calorico è eccessiva o addirittura ci sono periodi di digiuno al danno si aggiunge la beffa in quanto si perderà una quota di massa magra. In che modo?

⇑ Torna all’inizio ⇑

Massa grassa, riduzione delle calorie e ruolo dei carboidrati

Il glucosio rappresenta l’unica fonte di energia per i globuli rossi ed alcune zone del cervello, mentre altre zone possono ricavare energia anche dai corpi chetonici, un prodotto del metabolismo degli acidi grassi.
A riposo il cervello estrae il 10% del glucosio dal circolo, una quantità non trascurabile, circa 75 mg/min., se si considera che il suo peso è di circa 1,5 kg. Per mantenere costante la glicemia, e quindi assicurare un costante rifornimento di glucosio ai vari tessuti, è necessario assumere carboidrati, o in alternativa aminoacidi, entrambe facilmente ottenibili dagli alimenti.
In caso di un apporto dietetico di carboidrati scarso o assente, considerando che dopo circa 18 ore si esaurisce il glicogeno epatico che rilascia in circolo glucosio, l’organismo sintetizza de novo glucosio a partire da alcuni aminoacidi attraverso un processo detto gluconeogenesi (in realtà questa via metabolica è attiva anche dopo un pasto normale ma in caso di digiuno la sua importanza aumenta).
Ma qual è la principale fonte di aminoacidi nell’organismo nel caso in cui anche il loro apporto dietetico sia scarso o assente? Le proteine endogene, ed esiste una sorta di gerarchia nella loro utilizzazione cioè prima si consumano quelle che servono di meno e solo in seguito quelle più importanti. Per primi saranno utilizzati gli enzimi della digestione, pepsina, chimotripsina, elastasi, carbossipeptidasi e aminopeptidasi (in tutto 35-40 g); in seguito fegato e pancreas rallentano la loro attività di sintesi di proteine da esportare e gli aminoacidi inutilizzati sono avviati verso la gluconeogenesi. E’ evidente che queste riserve di aminoacidi sono abbastanza modeste, e sarà il muscolo a farsi carico di fornirne le quantità necessarie,  cioè ha inizio la proteolisi delle proteine del muscolo.
Da notare che comunque non esiste una sequenzialità assoluta nella degradazione delle diverse proteine, c’è invece un intreccio in cui, procedendo, certe vie perdono di importanza ed altre ne acquistano. Quindi per mantenere la glicemia costante viene ridotta la componente proteica del muscolo, compreso quello scheletrico, un tessuto che rappresenta una discreta quota del valore del metabolismo basale e che con l’attività fisica è in grado di aumentare considerevolmente il suo dispendio energetico: dunque fondamentale ai fini della perdita di peso, cioè di massa grassa, e del successivo mantenimento. E’ come se si riducesse la cilindrata del motore.
Una cosa a cui non si pensa è che anche il cuore è un muscolo per cui potrà essere soggetto agli stessi processi visti per il muscolo scheletrico.
In definitiva produrre glucosio a partire dalle proteine, anche di origine alimentare, è come scaldarsi al camino bruciando il mobilio del settecento, gli aminoacidi, avendo a disposizione legna da ardere, i carboidrati alimentari.
Pertanto un adeguato apporto di carboidrati con l’alimentazione previene la perdita eccessiva delle proteine ossia c’è un effetto di risparmio delle proteine svolto dai carboidrati.
Nota: i mammiferi, e quindi gli esseri umani, non hanno la capacità di sintetizzare glucosio a partire dai grassi.

⇑ Torna all’inizio ⇑

Carboidrati: cosa entra quando loro escono

L’eliminazione o la forte riduzione dell’apporto di carboidrati con la dieta si traduce in un aumentato apporto di proteine, grassi e colesterolo in quanto sarà aumentata l’assunzione di prodotti di origine animale, uno dei principali difetti delle diete iperproteiche.
Infatti, nell’organismo non esistono riserve di aminoacidi per cui questi vengono metabolizzati e, come sottoprodotto della loro utilizzazione, si forma ammoniaca che dovrà essere eliminata in quanto tossica. Per questo motivo le diete iperproteiche comportano un lavoro extra per fegato e reni, e anche per questo non sono esenti da potenziali rischi per la salute.
Un aumentato apporto di grassi molto spesso si traduce in un aumento dell’assunzione di grassi saturi, grassi trans e colesterolo, con tutte le conseguenze che ciò può avere a livello cardiovascolare.
Quanto detto sino ad ora non deve incitare ad assumere quantità elevate di carboidrati; questa classe di macronutrienti dovrebbero rappresentare il 55-60% della quota calorica giornaliera, i grassi il 25-30% (olio extravergine di oliva in primis) e la restante quota alle proteine: dunque una composizione in macronutrienti che si rifà alla dieta prudente o all’alimentazione di tipo Mediterraneo.

⇑ Torna all’inizio ⇑

Massa grassa ed ingresso nella fase di carestia/malattia

Una riduzione eccessiva dell’apporto calorico viene registrata a livello dei nostri meccanismi di difesa come un “ingresso” in una fase di carestia/malattia.
L’abbondanza di cibo è una caratteristica della nostra epoca, almeno nei paesi industrializzati, mentre il nostro organismo si è evoluto nel corso di centinaia di migliaia di anni durante i quali non c’era l’attuale abbondanza: dunque è stato programmato per cercare di superare con il minimo dei danni periodi di carestia. Se l’apporto calorico viene ridotto drasticamente si mima una carestia: quello che l’organismo fa è di abbassare i consumi, ridurre il metabolismo basale ossia consuma di meno e quindi anche mangiando poco non si otterranno grandi perdite di massa grassa. E’ come se ad una macchina si abbassasse la cilindrata, consumerà meno, e nel nostro caso brucerà meno massa grassa.

Riassumendo, il modo consigliabile per perdere massa grassa, quello che protegge anche nei confronti degli aumenti successivi, è rendere il bilancio calorico giornaliero negativo aumentando l’attività fisica e controllando l’apporto di cibo, ossia modificare il proprio stile di vita.

⇑ Torna all’inizio ⇑

Bibliografia

Cereda E., Malavazos A.E., Caccialanza R., Rondanelli M., Fatati G. and Barichella M. Weight cycling is associated with body weight excess and abdominal fat accumulation: a cross-sectional study. Clin Nutr 2011;30(6):718-23. doi:10.1016/j.clnu.2011.06.009

Giampietro M. L’alimentazione per l’esercizio fisico e lo sport. Il Pensiero Scientifico Editore. Prima edizione 2005

Ravussin E., Lillioja S., Knowler W.C., Christin L., Freymond D., Abbott W.G.H., Boyce V., Howard B.V., and Bogardus C. Reduced rate of energy expenditure as a risk factor for body-weight gain. N Engl J Med 1988;318:467-72. doi:10.1056/NEJM198802253180802

Sachiko T. St. Jeor S.T. St., Howard B.V., Prewitt T.E., Bovee V., Bazzarre T., Eckel T.H., for the AHA Nutrition Committee. Dietary Protein and Weight Reduction. A Statement for Healthcare Professionals From the Nutrition Committee of the Council on Nutrition, Physical Activity, and Metabolism of the American Heart Association. Circulation 2001;104:1869-74. doi:10.1161/hc4001.096152

Come ottenere un bilancio proteico muscolare positivo nel post-esercizio

Dall’analisi della bibliografia scientifica sembra che l’assunzione di 20 grammi di proteine intatte o circa 9 grammi di aminoacidi essenziali siano sufficienti a stimolare la sintesi proteica muscolare durante l’esercizio e le prime due ore del recupero.
Per ottimizzare la sintesi proteica muscolare potrebbero essere necessarie quantità maggiori o assunzioni più frequenti (5-6 volte al giorno).
La coingestione di carboidrati con le proteine non sembra agire sulla sintesi proteica muscolare ma, tramite l’aumento dei livelli di insulina plasmatica, sembra ridurre la proteolisi muscolare stimolando in questo modo l’aumento delle proteine muscolari nel post-esercizio.
Quindi il risultato della coingestione di proteine e carboidrati permette un aumento netto delle proteine muscolari che è ritenuto essenziale per ottimizzare i processi di riparazione del muscolo e per permettere la risposta adattativa del muscolo stesso all’esercizio.

Il periodo di recupero post-esercizio è importante non solo per ripristinare le riserve di glicogeno muscolare ma anche per la riparazione delle lesioni muscolari provocate dall’esercizio stesso e per permettere il verificarsi della risposta adattativa del muscolo scheletrico all’allenamento. Affinché si verifichino queste ultime due condizioni è necessario avere un bilancio proteico muscolare positivo.
Nel muscolo la sintesi e la degradazione delle proteine sono processi che avvengono di continuo.
A riposo e digiuno i processi degradativi sono maggiori rispetto a quelli di sintesi per cui il bilancio proteico muscolare netto è negativo.
L’attività muscolare stimola, nel periodo di recupero immediatamente successivo al termine dell’esercizio stesso, sia la sintesi che la degradazione delle proteine muscolari, la prima in misura maggiore rispetto alla seconda per cui il bilancio proteico muscolare netto diviene meno negativo rispetto alla situazione di riposo e digiuno. Inoltre l’assunzione di proteine/aminoacidi stimola la velocità della sintesi proteica muscolare, oltre che a riposo, anche dopo un esercizio sia di endurance che resistance (lavoro contro pesi): quindi la nutrizione post-esercizio è necessaria per ottenere un bilancio proteico muscolare positivo e così facilitare la riparazione delle lesioni muscolari come il ricondizionamento muscolo-scheletrico.
Nel post-esercizio l’assunzione combinata di carboidrati e proteine/aminoacidi stimola ulteriormente il bilancio proteico netto in positivo grazie, oltre che alla fornitura di aminoacidi come precursori per la sintesi proteica, alla notevole risposta insulinotropica successiva alla coingestione di carboidrati e proteine, con l’insulina che riduce la velocità della degradazione delle proteine muscolari incrementando così il bilancio proteico netto post-esercizio (non sembra invece modulare la sintesi proteica muscolare).

Ma quali sono l’esatta quantità e il tipo di proteine come anche la migliore distribuzione nel tempo perché la loro assunzione si traduca in una massimizzazione della sintesi proteica muscolare post-esercizio?

Dalla bibliografia disponibile sembra che la velocità aumenti a valori massimi per apporti proteici pari a 20 grammi di proteine intatte di uovo, che contengono a circa 8,6 grammi di aminoacidi essenziali. Alcuni autori suggeriscono che questa quantità dovrebbe essere assunta 5-6 volte al giorno per ottenere la massima velocità di sintesi proteica muscolare.
Nella promozione dell’ipertrofia sembra che le proteine del latte e le loro forme isolate, caseine e proteine del siero, siano tra le più efficaci, sicuramente più efficaci di quelle ottenute dalla soia.
In aggiunta alla quantità e tipo di proteine assunte anche la distribuzione nel tempo sembra essere molto importante per la stimolazione dell’anabolismo proteico muscolare nel post-esercizio. Alcuni studi suggeriscono che i migliori risultati con l’esercizio di resistance (contro pesi) si possano ottenere con la coingestione di proteine e carboidrati prima e durante l’esercizio. Una possibile spiegazione degli effetti dell’assunzione pre-esercizio sul metabolismo proteico post-esercizio può essere dovuta ad una più rapida fornitura di aminoacidi al muscolo durante la fase acuta del post-esercizio. Secondo alcuni l’ingestione di proteine prima/durante l’esercizio (e si parla di esercizi di resistance) stimola la sintesi proteica già durante l’esercizio, facendo così si che si venga a creare un più lungo intervallo di tempo in cui la sintesi proteica è elevata.
Dati preliminari sembrano indicare che anche per l’esercizio di endurance la sintesi proteica muscolare possa essere stimolata dalla ingestione di proteine prima e durante l’esercizio.
Resta invece da approfondire la questione riguardante la distribuzione nel tempo di diversi tipi di proteine assunte, che avranno diverse velocità di digestione ed assorbimento, in funzione dell’ottenimento della migliore velocità di sintesi proteica muscolare.

Bibliografia

Strategie per massimizzare le scorte di glicogeno muscolare nel post-esercizio

Sintesi del glicogeno muscolare nel post-esercizio

Una fonte importante di energia per il muscolo che lavora è il glicogeno ivi accumulato, i cui livelli sono correlati anche con l’insorgenza della fatica.
L’atleta maggiormente allenato non solo ha depositi di glicogeno potenzialmente maggiori, ma è anche in grado di sintetizzarlo più velocemente grazie ad enzimi più efficienti.
Per produrre glicogeno è indispensabile assumere carboidrati; ma quanti, quali, quando e con che frequenza?

La bifasicità della sintesi del glicogeno muscolare

Nel tentativo di ripristinare il più velocemente possibile le riserve di glicogeno muscolare è utile conoscere l’andamento bifasico che può assumere la sua velocità di sintesi a seguito di allenamenti o gare che comportino deplezioni delle sue riserve muscolari pari ad almeno il 75% del valore a riposo e non a digiuno.
Conoscere e quindi sfruttare la tale bifasicità è importante per quegli atleti che siano impegnati in più allenamenti giornalieri, o che abbiano poco tempo a disposizione per il recupero tra un allenamento impegnativo ed il successivo (meno di 8 ore), al fine di massimizzarne la sintesi e ottenere la migliore performance nella sessione successiva.
Le due fasi sono caratterizzate da:

  • una diversa sensibilità all’insulina circolante;
  • una diversa velocità di sintesi.

La sintesi del glicogeno muscolare nel post-esercizio: la prima fase

Glicogeno Muscolare
Fig. 1 – Struttura del Glicogeno

La prima fase, immediatamente successiva al termine dell’attività e della durata di 30-60 minuti, è insulino-indipendente, ossia l’uptake del glucosio da parte della cellula muscolare come la sintesi della molecola al suo interno sono indipendenti dall’azione dell’ormone.
Questa fase è caratterizzata da una elevata velocità di sintesi che però si riduce rapidamente se non si assumono carboidrati: la massima velocità si registra nei primi 30 minuti per poi ridursi a circa 1/5 dal 60° minuto, e a circa 1/9 al 120° minuto dal termine dell’esercizio.
Come è possibile sfruttare questa prima fase per ripristinare quanto più possibile le scorte muscolari di glicogeno? Facendo si che al muscolo arrivi la maggior quantità possibile di glucosio nei momenti immediatamente successivi al termine dell’attività, meglio se entro i primi 30 minuti.

  • Cosa assumere?
    Carboidrati ad elevato indice glicemico ma di facile digestione ed assorbimento.
    E’ quindi consigliabile sostituire cibi, magari anche ad alto indice glicemico, che necessitano di un certo tempo per la digestione ed il successivo assorbimento, con soluzioni/gel contenenti ad esempio glucosio e/o saccarosio. Queste soluzioni/gel assicurano la massima velocità possibile di assorbimento e rifornimento di glucosio al muscolo in quanto contengono solo glucosio e sono prive di fibre o altro che rallenterebbero la digestione e il successivo assorbimento del monosaccaride, sono cioè in grado di produrre elevate glicemie in un tempo relativamente breve.
    Da sottolineare ulteriormente che il ricorso nell’immediato post-esercizio a tali soluzioni/gel contenenti carboidrati a rapida disponibilità è consigliabile solo quando il tempo di recupero tra un esercizio che causa una forte deplezione del glicogeno muscolare ed il successivo è breve, meno di 8 ore.
    Sarà possibile giocare anche sulla temperatura e concentrazione della soluzione per accelerarne il transito gastrico.
  • Assumere carboidrati, ma in che quantità?
    Sono stati condotti molti studi per cercare di definire la quantità ideale di carboidrati da assumere.
    Se nel post-esercizio l’atleta non si alimenta la velocità di sintesi del glicogeno è molto bassa, mentre se immediatamente dopo il termine del lavoro assume quantità adeguate di carboidrati la velocità può raggiungere valori oltre 20 volte maggiori.
    Dal confronto della letteratura sembra ragionevole affermare che, a seguito di allenamenti che riducano le scorte di glicogeno muscolare come visto in precedenza (<75% dei valori a riposo e non a digiuno) la massima velocità di sintesi si ottenga con assunzioni di carboidrati, ad alto indice glicemico ed elevata velocità di digestione ed assorbimento, pari a circa 1,2 g/kg di peso corporeo/h per le 4-5 ore successive dal termine dell’esercizio stesso.
    In questo modo si determina la produzione di una quantità di glicogeno maggiore del 150% rispetto all’ingestione di 0,8 g/kg/h.
    Poiché aumenti fino a 1,6 g/kg/h non hanno portato ad ulteriori incrementi, la quantità di carboidrati pari a 1,2 g/kg/h può essere considerata quella ottimale per massimizzare la velocità di risintesi delle scorte di glicogeno muscolare nel post-esercizio.
  • Con che frequenza?
    Riguardo alla frequenza di assunzione è stato osservato che se i carboidrati sono assunti di frequente, ogni 15-30 minuti, sembra ci sia un’ulteriore stimolazione dell’uptake del glucosio da parte del muscolo, come della ricostituzione del glicogeno muscolare rispetto ad assunzioni ad intervalli di due ore. In particolare, le assunzioni nelle prime ore del post-esercizio sembrano ottimizzare livelli di glicogeno.

La sintesi  del glicogeno muscolare nel post-esercizio: la seconda fase

La seconda fase delle sintesi del glicogeno muscolare  ha inizio dalla fine della prima, perdura sino all’inizio del pasto precedente l’impegno successivo (dunque da alcune ore a giorni) ed è insulino-dipendente, ossia l’uptake del glucosio da parte della cellula muscolare come la sintesi del glicogeno al suo interno sono sensibili ai livelli circolanti dell’ormone.
Inoltre si osserva una significativa riduzione della velocità di sintesi del glicogeno muscolare: con un’assunzione adeguata di carboidrati la velocità si attesta su valori inferiori di circa il 10-30% rispetto a quelli della prima fase.
Questa fase può perdurare per diverse ore, ma tende ad essere più breve se:

Come è possibile sfruttare questa fase per ottimizzare la velocità di sintesi del glicogeno muscolare?
Le evidenze sperimentali indicano che pasti con carboidrati ad alto indice glicemico sono più efficaci di quelli con carboidrati a basso indice glicemico. Ma se tra un allenamento ed il successivo passano giorni e non ore, non ci sono evidenze a favore di carboidrati ad alto indice glicemico rispetto a quelli a basso indice purché ne sia assunta una quantità adeguata.

Velocità di sintesi del glicogeno e assunzione di carboidrati e proteine

La contemporanea assunzione di carboidrati e proteine (o aminoacidi insulino-tropici liberi) permette di ottenere velocità di sintesi del glicogeno nel post-esercizio che non differiscono significativamente da quelle raggiunte con quantità maggiori di soli carboidrati. Questo potrebbe essere un vantaggio per l’atleta che ne potrà assumere quantità più contenute, limitando così l’insorgenza di eventuali complicazioni gastrointestinali comuni durante l’allenamento/gara dopo un loro consumo elevato.
Dall’analisi della letteratura sembra ragionevole affermare che, dopo un esercizio che comporti la deplezione di almeno il 75% delle riserve muscolari di glicogeno, si possano ottenere velocità di sintesi del glicogeno analoghe a quelle raggiunte con 1,2 g/kg/h di soli carboidrati (le maggiori ottenibili) con la coingestione di 0,8 g/kg/h di carboidrati e 0,4 g/kg/h di proteine, mantenendo le stesse tempistiche di ingestione (ogni 15-30 minuti per le prime 4-5 ore del post-esercizio).

Bifasicità della sintesi del glicogeno muscolare: meccanismi molecolari

In entrambe le fasi l’aumento della sintesi del glicogeno è conseguenza di un aumento:

  • della velocità di trasporto del glucosio nella cellula;
  • dell’attività della glicogeno sintetasi, l’enzima che catalizza la sintesi del glicogeno.

Tuttavia i meccanismi molecolari che sottostanno a queste modificazioni sono differenti.
Nella prima fase l’aumento della velocità di trasporto del glucosio, indipendente dalla presenza dell’insulina, è mediato dalla traslocazione, indotta dalla contrazione, dei trasportatori del glucosio, detti GLUT4, sulla membrana plasmatica della cellula muscolare.
In aggiunta, anche i bassi livelli di glicogeno agiscono da stimolo al trasporto in quanto si ritiene che gran parte delle vescicole contenenti il trasportatore siano legate al glicogeno, e dunque potrebbero divenire disponibili quando i suoi livelli sono ridotti.
Infine bassi livelli di glicogeno muscolare vanno anche a stimolare l’attività della glicogeno sintetasi: è stato dimostrato che il livello del glicogeno muscolare è un regolatore dell’attività dell’enzima molto più potente di quanto sia l’insulina.
Nella seconda fase l’aumento della sintesi è dovuto all’azione dell’insulina sui trasportatori del glucosio e sull’attività della glicogeno sintetasi della cellula muscolare. Questa sensibilità all’azione dell’insulina circolante, che può persistere per 48 ore a seconda dell’assunzione di carboidrati e della quantità di glicogeno muscolare risintetizzato, ha suscitato grande attenzione: è infatti possibile, tramite opportuni interventi nutrizionali, incrementarne la secrezione al fine di migliorare la sintesi del glicogeno stesso ma anche l’anabolismo proteico, riducendo al contempo la velocità di degradazione delle proteine stesse.

Insulina e velocità di sintesi del glicogeno muscolare

La contemporanea assunzione di carboidrati e proteine (o aminoacidi liberi) aumenta la secrezione di insulina postprandiale rispetto ai soli carboidrati (in alcuni studi sono stati osservati incrementi nella secrezione dell’ormone di 2-3 volte rispetto ai soli carboidrati).
E’ stato supposto che, data la maggior quantità di insulina circolante, si potessero ottenere ulteriori aumenti della velocità di sintesi del glicogeno rispetto a quelli osservati con i soli carboidrati, ma in realtà non sembra essere così. Se infatti la quantità di carboidrati viene portata a 1,2 g/kg/h, più 0,4 g/kg/h di proteine, non si osservano ulteriori aumenti nella velocità di sintesi se paragonati a quelli ottenuti con l’ingestione dei soli carboidrati nella stessa quantità (1,2 g/kg/h, che come detto, al pari della coingestione di 0,8 g/kg/h di carboidrati e 0,4 g/kg/h di proteine, danno la massima velocità raggiungibile nel post-esercizio) o in quantità isoenergetica, quindi 1,6 g/kg (proteinecarboidrati hanno lo stesso contenuto di energia/grammo).

Insulina e accumulo preferenziale dei carboidrati

I livelli più elevati di insulina circolante raggiunti con la coingestione di carboidrati e proteine (o aminoacidi liberi) potrebbero stimolare un accumulo dei carboidrati ingeriti nei tessuti maggiormente sensibili all’azione dell’ormone, quali il fegato e il muscolo che ha precedentemente lavorato.
In questo modo si verificherebbe un loro deposito più efficiente ai fini dell’attività sportiva, in quanto carboidrati verrebbero accumulati preferenzialmente anche nel muscolo, dove saranno in seguito utilizzati.

Bibliografia

Beelen M., Burke L.M., Gibala M.J., van Loon J.C. Nutritional strategies to promote postexercise recovery. Int J Sport Nutr Exerc Metab 2010:20(6);515-32 [Abstract]

Berardi J.M., Noreen E.E., Lemon P.W.R. Recovery from a cycling time trial is enhanced with carbohydrate-protein supplementation vs. isoenergetic carbohydrate supplementation. J Intern Soc Sports Nutrition 2008;5:24 [PDF]

Betts J., Williams C., Duffy K., Gunner F. The influence of carbohydrate and protein ingestion during recovery from prolonged exercise on subsequent endurance performance. J Sports Sciences 2007;25(13):1449-60 [Abstract]

Howarth K.R., Moreau N.A., Phillips S.M., and Gibala M.J. Coingestion of protein with carbohydrate during recovery from endurance exercise stimulates skeletal muscle protein synthesis in humans. J Appl Physiol 2009:106;1394–1402  [Abstract]

Jentjens R., Jeukendrup A. E. Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Medicine 2003:33(2);117-144 [Abstract]

Millard-Stafford M., Childers W.L., Conger S.A., Kampfer A.J., Rahnert J.A. Recovery nutrition: timing and composition after endurance exercise. Curr Sports Med Rep 2008;7(4):193-201 [Abstract]

Price T.B., Rothman D.L., Taylor R., Avison M.J., Shulman G.I., Shulman R.G. Human muscle glycogen resynthesis after exercise: insulin-dependent and –independent phases. J App Physiol 1994:76(1);104–111 [Abstract]

van Loon L.J.C., Saris W.H.M., Kruijshoop M., Wagenmakers A.J.M. Maximizing postexercise muscle glycogen synthesis: carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures. Am J Clin Nutr 2000;72: 106-111 [Abstract]

Fabbisogno proteico giornaliero dello sportivo

Fabbisogno proteico quotidiano e sport

Fabbisogno Proteico
Fig. 1 – Cibi Ricchi di Proteine

E’ oramai accettato da atleti, allenatori e preparatori che la corretta alimentazione è uno dei cardini fondamentali per il raggiungimento della migliore prestazione sportiva.
Nonostante questo assunto comune molti, anche ai livelli più alti, ritengono che nella dieta dell’atleta sia basilare un elevato apporto di proteine. Questa idea non è recente ed è ampiamente radicata quasi come se, nutrendosi di carne, magari di animali grandi e forti, si riuscisse ad acquisirne anche la forza e la vitalità.
La funzione energetica delle proteine per il muscolo che lavora venne ipotizzata per la prima volta da Von Liebig nel ‘800, ed è proprio ai suoi studi che si deve molta dell’importanza a fini energetici che ancor oggi le proteine animali, e quindi le carni, hanno nell’alimentazione dell’atleta, nonostante siano trascorsi quasi due secoli nei quali la biochimica e la medicina sportiva hanno fatto enormi progressi.
In realtà già alla fine dell‘800 von Pettenkofer e Voit, e agli inizi del ‘900 Christensen e Hansen, ridimensionarono la loro importanza per scopi energetici, anche per il muscolo sottoposto a prestazione sportiva, facendo invece emergere il ruolo predominante svolto da carboidrati e lipidi.
Quanto detto ovviamente non deve far pensare che le proteine non siano utili per l’atleta, o per le persone sedentarie. La domanda cui invece è necessario cercare di rispondere è quale sia il fabbisogno proteico quotidiano di un atleta agonista, dunque impegnato in allenamenti intensi, spesso in due sedute giornaliere (per 3-6 ore), anche 7 giorni su 7 per più di 10 mesi all’anno. Possiamo da subito affermare che, rispetto alla popolazione generale (con l’esclusione di alcuni tipi di sport, vedi sotto), è maggiore.

Destino metabolico delle proteine a riposo e durante l’attività

Nel soggetto adulto che svolga un’attività fisica normale e sia in salute il fabbisogno proteico giornaliero è di circa 0,9 g/kg di peso corporeo desiderabile, come indicato nei LARN 2014 e dal WHO.
Il turnover proteico, che si attesta sui 3-4 g/Kg peso corporeo al giorno (circa 210-280 g considerando un soggetto di 70 kg di peso corporeo), è più lento per il muscolo rispetto agli altri tessuti, in calo con l’età, ed è legato alla quantità di aminoacidi assunti con la dieta ed al catabolismo proteico.
A riposo i processi anabolici, ossia di sintesi, impiegano circa il 75% degli aminoacidi mentre il restante 25% è soggetto a processi ossidativi che porteranno alla liberazione di CO2 e urea (per la rimozione dell’ammoniaca).
Durante l’attività fisica, a seguito della minore disponibilità di zuccheriglicogeno muscolare e glucosio ematico utilizzati a scopi energetici, nonché dell’intervento del cortisolo, si riduce la percentuale di aminoacidi destinati ai processi anabolici, mentre aumenta quella degli aminoacidi deviati verso i processi catabolici, ossia si verifica un aumento della distruzione delle proteine tessutali.
Al termine dell’attività fisica, per circa due ore, i processi anabolici rimangono bassi dopo di che si verifica un loro deciso incremento che li porta a valori superiori rispetto a quelli basali, ossia l’allenamento induce un incremento della sintesi proteica anche in assenza di un incremento dell’apporto proteico.

Cosa influenza il fabbisogno proteico quotidiano?

I fattori da tenere in considerazione nel calcolo del fabbisogno proteico giornaliero sono molteplici.

  • L’età del soggetto (se ad esempio si trova nella fase di sviluppo).
  • Il sesso: le atlete possono aver bisogno di valori più alti in quanto il loro apporto energetico è più basso.
  • L’apporto di carboidrati con la dieta, che se adeguato ne riduce il consumo.
    Nel corso dell’esercizio gli aminoacidi possono essere utilizzati come fonte di energia direttamente nel muscolo, dopo essere stati convertiti in glucosio nel fegato. Un adeguato apporto di carboidrati prima e durante il lavoro di endurance riduce gli usi a scopo energetico delle proteine.
  • La quantità di riserve muscolari ed epatiche di carboidrati, ossia di glicogeno (vedi sopra).
  • L’apporto energetico della dieta.
    Un ridotto apporto energetico fa aumentare il fabbisogno proteico, mentre maggiore è l’apporto energetico e minore sarà la quantità di proteine richieste per raggiungere l’equilibrio azotato; in genere si parla di una ritenzione di azoto pari a 1-2 mg per ogni chilocaloria introdotta.
    Se l’atleta è impegnato in allenamenti/prestazioni molto duri, o se necessita di un incremento delle masse muscolari (come per gli sport di potenza), il bilancio azotato deve essere positivo.
    Un bilancio azotato negativo indica una perdita di massa muscolare.
    Il bilancio azotato si calcola come differenza tra l’azoto assunto con le proteine (pari a: grammi di proteine/6,25) e quello eliminato (pari a: urea urinaria nelle 24 ore, in grammi, x0,56]; in formula:

Nb (bilancio di azoto)=(g. proteine/6,25)–[g. urea urinaria nelle 24 ore x0,56)].

  • Il tipo di prestazione che l’atleta sta svolgendo, ossia di forza o resistenza, come anche la sua durata e l’intensità.
    A livello muscolare, l’esercizio di forza determina un aumento del turn over proteico stimolando sia la sintesi, in misura maggiore, che la degradazione delle proteine. Entrambe i processi sono influenzati dal recupero tra un allenamento ed il successivo, come anche dal grado di allenamento (maggiore l’allenamento, minore la perdita).
    Nella prestazioni di forza e resistenza il fabbisogno proteico ottimale nei più giovani, come in quelli che si allenano da minor tempo, è stimato in 1,3-1,5 g proteine/Kg di peso corporeo, mentre negli atleti adulti che si allenano da più tempo è poco inferiore, circa 1-1,2 g/Kg di peso corporeo.
    Perché?
    Nell’atleta impegnato in un’attività fisica importante le proteine sono utilizzate non solo per fini plastici, che sono incrementati, ma anche a scopi energetici, potendo soddisfare in alcuni casi fino al 10-15% della richiesta energetica totale.
    Infatti prestazioni aerobiche intense, quindi di durata, che superino i 60 minuti, ricavano circa un 3-5% dell’energia utilizzata dall’ossidazione di substrati proteici; se a questo si aggiungono le proteine necessarie per la riparazione delle strutture proteiche dei tessuti danneggiate se ne ricava un fabbisogno proteico quotidiano di circa 1,2-1,4 g/Kg di peso corporeo.
    Se lo sforzo è intenso e supera i 90 minuti (come può accadere nel ciclismo su strada, corsa, nuoto, o sci di fondo), in relazione anche alla quantità di glicogeno disponibile nel muscolo e nel fegato (vedi sopra), la quota proteica utilizzata a fini energetici può arrivare, nelle fasi finali del lavoro, a soddisfare il 15% del fabbisogno energetico dell’atleta.
  • La condizione atletica.
  • Nel caso in cui ce ne sia bisogno, il peso desiderato.
    Gli atleti che stanno perdendo peso o debbano mantenere un peso basso possono aver bisogno di più proteine.

Da quanto detto il fabbisogno proteico anche dell’atleta adulto impegnato in allenamenti/competizioni che comportino sforzi intensi e protratti non supera gli 1,5 g/Kg di peso corporeo, mentre se si considera la quota di proteine utilizzata a scopi energetici, di solito non si va oltre il 15% del fabbisogno energetico del soggetto.
E’ pertanto evidente che diete che forniscano quantità superiori (a volte molto superiori) di proteine rispetto al fabbisogno proteico consigliato non servono a nulla, stimolano la perdita di calcio dalle ossa e vanno a sovraccaricare di lavoro fegato e reni. Inoltre, le proteine in eccesso non si accumulano ma sono utilizzate anche per la produzione di grasso.

Come soddisfare l’aumentato fabbisogno proteico dell’atleta

Fabbisogno Proteico
Fig. 2 – Ciclismo su Strada

Una dieta che fornisca il 12-15% delle calorie giornaliere in forma di proteine sarà più che sufficiente a soddisfare le necessità della quasi totalità degli atleti, anche di quelli impegnati in allenamenti faticosi.
Con l’eccezione di alcune discipline sportive dove l’apporto energetico è modesto, vicino a quello del soggetto non sportivo (il tiro a segno, o la ginnastica artistica e ritmica), nella restante maggioranza dei casi l’atleta necessita di una quantità di calorie elevata e, per alcune discipline come il ciclismo, il nuoto o lo sci di fondo, anche doppia/tripla rispetto a quella del soggetto sedentario.
L’aumento della razione alimentare è accompagnato da un parallelo incremento dell’apporto proteico poiché solo pochi alimenti quali miele, maltodestrine, fruttosio, zucchero da cucina ed l’olio di oliva sono privi o quasi di proteine.

Calcolo del fabbisogno proteico dell’atleta

Consideriamo una richiesta energetica non particolarmente elevata, 3500 kcal/die: con un apporto proteico che soddisfi il 15% dell’apporto calorico totale si ottiene:

3500 x 0,15 = 525 kcal

poiché un grammo di proteine apporta circa 4 kcal avremo:

525/4 = 131 g di proteine

Se dividiamo il numero trovato per il fabbisogno proteico più alto visto in precedenza (1,5 g/Kg di peso corporeo/die) saranno soddisfatte le necessità di un atleta di alto livello impegnato in allenamenti intensi e del peso di:

131/1,5 = 87 Kg

Ripetendo gli stessi calcoli per un apporto calorico di 5000 kcal si ottiene un dato pari a 187 g/die di proteine, che diviso per 1,5 fa 125 Kg, ossia riusciremmo a soddisfare il fabbisogno proteico di un atleta di 125 Kg.

Questi apporti proteici possono essere ottenuti con una normale alimentazione di tipo mediterraneo, senza ricorrere ad una supplementazione con integratori proteici o aminoacidici.

Bibliografia

Giampietro M. L’alimentazione per l’esercizio fisico e lo sport. Il Pensiero Scientifico Editore. Prima edizione 2005

Protein and amino acid requirements in human nutrition. Report of a joint FAO/WHO/UNU expert consultation. 2002 (WHO technical report series ; no. 935) [PDF]