Tag Archives: polyunsaturated fatty acids

Skin, blood pressure, rheumatoid arthritis and gamma-linolenic acid

Healthy skin and gamma-linolenic acid

gamma-Linolenic acid (GLA), an omega-6 essential fatty acid, like its precursor linoleic acid (the most abundant polyunsaturated fatty acid in human skin epidermis, where it’s involved in the maintenance of the epidermal water barrier), plays important roles in the physiology and pathophysiology of the skin.
Studies conducted on humans revealed that gamma-linolenic acid:

  • improves skin moisture, firmness, roughness;
  • decreases transepidermal water loss (one of the abnormalities of the skin in essential fatty acid deficiency animals).
Skin and gamma-Linolenic Acid
Fig. 1 – GLA

Using guinea pig skin epidermis as a model of human epidermis (they are functionally similar), it was demonstrated that supplementation of animals with gamma-linolenic acid-rich foods results in a major production of PGE1 and 15-HETrE in the skin (as previously demonstrated in in vitro experiments).
Because these molecules have both anti-inflammatory/anti-proliferative properties supplementation of diet with gamma-linolenic acid acid-rich foods may be an adjuncts to standard therapy for inflammatory/proliferative skin disorders.

Supplemental sources of GLA

The main supplemental sources of gamma-linolenic acid are oils of the seeds of:

  • borage (20%-27% of the total fatty acids);
  • black currant (from 15% to 19% of the total fatty acids);
  • evening primrose (from 7% to 14% of the total fatty acids), and

Role of gamma-linolenic acid in lowering blood pressure

The relationship between dietary fatty acid intake and blood pressure mainly comes from studies conducted on genetically modified rats that spontaneously develops hypertension (a commonly used animal model for human hypertension).
In these studies many membrane abnormalities were seen so hypertension in rat model may be related to change in polyunsaturated fatty acid metabolism at cell membrane level.
About polyunsaturated fatty acids, several research teams have reported that gamma-linolenic acid reduces blood pressure in normal and genetically modified rats (greater effect) and it was purported by interfering with Renin-Angiotensin System (that promote vascular resistance and renal retention) altering the properties of the vascular smooth muscle cell membrane and so interfering with the action of angiotensin II.
Another possible mechanism of action of gamma-linolenic acid to lower blood pressure could be by its metabolite dihomo-gamma-linolenic acid: it may be incorporated in vascular smooth muscle cell membrane phospholipids, then released by the action of phospholipase A2 and transformed by COX-1 in PGE1 that induces vascular smooth muscle relaxation.

Role gamma-linolenic acid in treatment of rheumatoid arthritis

Borago officinalis
Fig. 2 – Borage

In a study conducted by Leventhal et al. on 1993 it was demonstrated the dietary intake of higher concentration of borage oil (about 1400 mg of gamma-linolenic acid/day) for 24 weeks resulted in clinically significant reductions in signs and symptoms of rheumatoid arthritis activity.
In a subsequent study by Zurier et al. on 1996 the dietary intake of an higher dose (about 2.8 g/day gamma-linolenic acid) for 6 months reduced, in a clinically relevant manner, signs and symptoms of the disease activity; patients who remained for 1 year on the 2.8 g/day dietary gamma-linolenic acid exhibited continued improvement in symptoms (the use of gamma-linolenic acid also at the above higher dose is well tolerated, with minimal deleterious effects). These data underscore that the daily amount and the duration of gamma-linolenic acid dietary intake do correlate with the clinical efficacy.

References

Akoh C.C. and Min D.B. “Food lipids: chemistry, nutrition, and biotechnology” 3th ed. 2008

Chow Ching K. “Fatty acids in foods and their health implication” 3th ed. 2008

Fan Y.Y. and Chapkin R.S. Importance of dietary gamma-linolenic acid in human health and nutrition. J Nutr 1998;128:1411-14 [Abstract]

Leventhal L.J., Boyce E.G. and Zurier R.B. Treatment of rheumatoid arthritis with gammalinolenic acid. Ann Intern Med 1993 119:867-73 [Abstract]

Miller C.C. and Ziboh V.A. Gammalinolenic acid-enriched diet alters cutaneous eicosanoids. Biochem Biophys Res Commun 1988 154:967-74 [Abstract]

Zurier R.B., Rossetti R.G., Jacobson E.W., DeMarco D.M., Liu N.Y., Temming J.E., White B.M. and Laposata M. Gamma-linolenic acid treatment of rheumatoid arthritis. A randomized, placebocontrolled trial. Arthritis Rheum 1996 39:1808-17 [Abstract]

Trans fatty acids: definition and chemistry

What are trans fatty acids?

Trans fatty acids (TFA) or partially hydrogenated fatty acids are unsaturated fatty acids, a class of lipids, with at least one a double bond in the trans configuration.
They may result from:

In industrialized countries, the greater part of the consumed trans fatty acids are produced industrially, in varying amounts, during partial hydrogenation of edible oils containing monounsaturated and polyunsaturated fatty acids.
Note: partially hydrogenated vegetable oils were developed in the United States in 1903 as a cheaper alternative to animal fats.

While ruminant trans fatty acids, in amounts actually consumed in diets, are not harmful for human health, consumption of industrial partially hydrogenated fatty acids has neither apparent benefit nor intrinsic value, above their caloric contribution: from human health standpoint they are only harmful.

Chemical structure of trans fatty acids

Fatty acids

Fatty acids are made up by carbon (from the “smallest”, formic acid, containing only one carbon atom, up to fatty acids with over 30 carbon atoms), hydrogen and oxygen atoms linked to form a carboxylic group (the “hydrophilic head” of the molecule) that continues in a more or less long chain of carbon atoms linked each other by chemical bonds that may be single or double (the “hydrophobic tail”). Hydrogen atoms are linked to carbon and oxygen atoms.
Fatty acids are defined:

  • saturated, if chemical bonds between carbon atoms of the chain are all simple;
  • monounsaturated, if a double bond is present in the chain;
  • polyunsaturated, if two or more double bonds are present between single bonds of the chain.

Monounsaturated fatty acids and polyunsaturated fatty acids can be defined as unsaturated.

Cis and trans isomers

Trans Fatty Acids
Fig. 1 – Cis and Trans Isomers

Carbon-carbon double bonds show planar conformation and so they can be considered as plans whose opposite sides carbon chain attaches and continues.
“The entry” and “the exit” of the carbon chain from the plain may occur on the same side of the plan, and in this case double bond is defined in cis configuration, or on opposite side, and in that case it is defined in trans configuration.
Unsaturated fatty acids most commonly have their double bonds in cis configuration; the other, less common, configuration is trans.
Unsaturated fatty acids with at least one double bond in trans configuration are called trans fatty acids.
Cis bond causes a bend in the fatty acids chain, whereas the geometry of trans bond straightens the fatty acid chain, imparting a structure more similar to that of saturated fatty acids.
Bent molecules can’t pack together easily but linear ones can do it and this gives the fats in which they are a higher melting point. Heightening the melting point of fats means that it is possible to convert them from liquid form to semi-solids and solids; for this reason fats containing a greater part of saturated fatty acids, or the geometrically similar partially hydrogenated fatty acids, are solid at room temperature (partially hydrogenated fatty acids tend to be less solid than saturated fats).

In industrially trans fatty acids-containing fats, cyclic monomers as well as intramolecular linear dimmers are also present.

References

Akoh C.C. and Min D.B. “Food lipids: chemistry, nutrition, and biotechnology” 3th ed. 2008

Ascherio A., Katan M.B., Zock P.L., Stampfer M.J., Willett W.C. Trans fatty acids and coronary heart disease. N Engl J Med 1999;340:1994-8 [Abstract]

 Chow Ching K. “Fatty acids in foods and their health implication” 3th ed. 2008

Mozaffarian D. Commentary: Ruminant trans fatty acids and coronary heart disease-cause for concern? Int J Epidemiol 2008;37:182-84 [Extract]

Mozaffarian D., Katan M.B., Ascherio A., Stampfer M.J., Willett W.C. Trans fatty acids and cardiovascular disease. N Engl J Med 2006;354:1601-13 [Abstract]

Stender S., Dyerberg J. The influence of trans fatty acids on health. Fourth edition 2003 (from Danish Nutrition Council; publ. no. 34)

Willett W. and Mozaffarian D. Ruminant or industrial sources of trans fatty acids: public health issue or food label skirmish? Am J Clin Nutr 2008;87:515-6 [PDF]

Long chain fatty acid synthesis

Fatty acid synthesis

Fatty Acid Synthesis
Fig. 1 – Long Chain Fatty Acids

When excess calories are consumed from carbohydrates or proteins, such surplus is used to synthesize fatty acids and then triacylglycerols, while it doesn’t occur if the excess come from fats.

De novo fatty acid synthesis in plants and animals

De novo fatty acid synthesis is largely similar among plants and animals.
It occurs in chloroplasts of photosynthetic cells of higher plants, and in cytosol of animal cells by the concerted action of two enzymes: acetyl CoA carboxylase and fatty acid synthase.
Fatty acid synthase is a multienzyme complex that catalyzes a repeating four-step sequence by which the fatty acyl chain is extended by two carbons, at the carboxyl end, every each passage through the cycle; this four-step process is the same in all organisms.
In animals, the primary site for lipid metabolism is liver, not the adipose tissue.  However, adipose tissue is  a major organ system in which fatty acid synthesis occurs, though in humans it is less active than in many other animal species.

Fatty Acid Synthesis
Fig. 2 – Palmitic Acid Synthesis

Although myristic, lauric and a trace of stearic acids may also be produced, in animals and plants the main product of these reactions is palmitic acid.
It should be noted that in certain plants, such as palm and coconut, chain termination occurs earlier than palmitic acid release: up to 90% of the fatty acids produced and then present in the oils of these plants are between 8 (caprylic acid) and 14 (myristic acid) carbons long (palmitic acid: 16 carbon atoms).

Synthesis of long chain saturated and unsaturated fatty acids

Fatty Acid Synthesis
Fig. 3 – Palmitic Acid Metabolism

Palmitic acid is the commonest saturated fatty acid in plant and animal lipids, but generally it is not present in very large proportions because it may be undergo into several metabolic pathways.
In fact:

  • it is the precursor of stearic acid;
  • it may be desaturated (insertion of a double bond into fatty acid chain) to palmitoleic acid, the precursor of all fatty acids of omega-7 or n-7 family, in a reaction catalyzed by Δ9-desaturase, an ubiquitous enzyme in both plant and animal kingdoms and the most active lipid enzyme in mammalian tissues, the same enzyme that catalyzes the desaturation of stearic acid to oleic acid (see below).
    Note: Δ9- desaturase inserts double bounds in the 9-10 position of the fatty acid carbon chain, position numbered from the carboxyl end of the molecule, and:

if the substrate is palmitic acid, the double bond will appear between n-7 and n-8 position of the chain (in this case numbered from the methyl end of the molecule), so producing palmitoleic acid, the founder of omega-7 series;
numbering-atoms-palmitic-acid

if the substrate is stearic acid, the double bond will appear between n-9 and n-10 position of the chain and oleic acid will be produced.
numbering-atoms-stearic-acid

  • It may be esterified into complex lipids.

Of course, in plants and animals there are fatty acids longer and/or more unsaturated than these just seen thanks to modification systems (again desaturation and elongation) that catalyze reactions of fatty acid synthesis that are organism- tissue- and cell- specific.

Fatty Acid Synthesis
Fig. 4 – Stearic Acid Metabolism

For example, stearic acid may be:

  • elongated to arachidic, behenic and lignoceric acids, all saturated fatty acids, in reactions catalyzed by elongases.
    Again, chain elongation occurs, both in mitochondria and in the smooth endoplasmic reticulum, by the addition of two carbon atom units at a time at the carboxylic end of the fatty acid through the action of fatty acid elongation systems (particularly long and very long saturated fatty acids, from 18 to 24 carbon atoms, are synthesized only on cytosolic face of the smooth endoplasmic reticulum);
  • desaturated, as seen, to oleic acid, an omega-9 or n-9 fatty acid, in a reaction catalyzed by Δ9-desaturase. Several researchers have postulated that the reason for which stearic acid is not hypercholesterolemic is its rapid conversion to oleic acid.
Fatty Acid Synthesis
Fig. 5 – Oleic Acid Metabolism

Oleic acid is the start point for the synthesis of many other unsaturated fatty acids by reactions of elongation and/or desaturation.

In fact:

Omega-3 and omega-6 PUFA synthesis

Fatty Acid Synthesis
Fig. 6 – Omega-3 and Omega-6 Synthesis

Animal tissues can desaturate fatty acids in the 9-10 position of the chain, thanks to the presence of Δ9 desaturase; as previously seen, if the substrate of the reaction is palmitic acid, the double bond will appear between n-7 and n-8 position, with stearic acid between n-9 and n-10 position, so leading to formation respectively of palmitoleic acid and oleic acid.
Animals lack Δ12- and Δ15-desaturases, enzymes able to desaturate carbon carbon bonds beyond the 9-10 position of the chain. For these reason, they can’t produce de novo omega-3 and omega-6 PUFA (which have double bonds also beyond the 9-10 position), that are so essential fatty acids.
Δ12- and Δ15-desaturases are present in plants; though many land plants lack Δ15-desaturase, also called omega-3 desaturase, planktons and aquatic plants in colder water possess it and produce abundant amounts of the omega-3 fatty acids.

References

Akoh C.C. and Min D.B. “Food lipids: chemistry, nutrition, and biotechnology” 3th ed. 2008

Bender D.A. “Benders’ dictionary of nutrition and food technology”. 2006, 8th Edition. Woodhead Publishing. Oxford

Burr G. and Burr M. A new deficiency disease produced by the rigid exclusion of fat from the diet. J Biol Chem 1929;82:345-67 [Full Text]

Chow Ching K. “Fatty acids in foods and their health implication” 3th ed. 2008

Cozzani I. e Dainese E. “Biochimica degli alimenti e della nutrizione”. Piccin Editore, 2006

Rosenthal M.D., Glew R.H. Mediacal biochemistry. Human metabolism in health and disease. John Wiley & Sons, Inc. 2009

Stipanuk M.H.. Biochemical and physiological aspects of human nutrition. W.B. Saunders Company-An imprint of Elsevier Science, 2000

Omega-6 polyunsaturated fatty acids

The synthesis of omega-6 polyunsaturated fatty acids

Omega-6 polyunsaturated fatty acids are the major polyunsaturated fatty acids (PUFA) in the Western diet (about 90% of all of them in the diet), being components of most animal and vegetable fats.

Omega-6 polyunsaturated fatty acids and linoleic acid

Metabolism of Omega-6 Polyunsaturated Fatty Acids
Fig. 1 – Metabolism of Omega-6 Polyunsaturated Fatty Acids

Within the omega-6 (ω-6) family, linoleic acid is one of the most important and widespread fatty acids and the precursor of all omega-6 polyunsaturated fatty acids. It is produced de novo from oleic acid (an omega-9 fatty acid) only by plant in a reaction catalyzed by Δ12-desaturase, i.e. the enzyme that forms the omega-6 polyunsaturated fatty acid family from omega-9 one.
Δ12-desaturase catalyzes the insertion of the double bond between carbon atoms 6 and 7, numbered from the methyl end of the molecule.
Linoleic acid, together with alpha-linolenic acid, is a primary product of plant polyunsaturated fatty acids synthesis.
Animals, lacking Δ12-desaturase, can’t synthesize it, and all the omega-6 polyunsaturated fatty acid family de novo, and they are obliged to obtain it from plant foodstuff and/or from animals that eat them; for this reason omega-6 polyunsaturated fatty acid are considered essential fatty acids, so called EFA (the essentiality of omega-6 polyunsaturated fatty acids, in particular just the essentiality of linoleic acid, was first reported in 1929 by Burr and Burr).

Omega-6 polyunsaturated fatty acids: from linoleic acid to arachidonic acid

Animals are able to elongate and desaturase dietary linoleic acid in a cascade of reactions to form very omega-6 polyunsaturated fatty acids.
Linoleic acid is first desaturated to gamma-linolenic acid, another important ω-6 fatty acid with significant physiologic effects, in the reaction catalyzed by Δ6-desaturase. It is thought that the rate of this reaction is limiting in certain conditions like in the elderly, under certain disease states and in premature infants; for this reason, and because it is found in relatively small amounts in the diet, few oils containing it (black currant, evening primrose, and borage oils) have attracted attention.
In turn gamma-linolenic acid may be elongated to dihomo-gamma-linolenic acid by an elongase (it catalyzes the addition of two carbon atoms from glucose metabolism to lengthen the fatty acid chain) that may be further desaturated in a very limited amount to arachidonic acid, in a reaction catalyzed by another rate limiting enzyme, Δ5-desaturase.
Arachidonic acid can be elongated and desaturated to adrenic acid.

It should be noted that polyunsaturated fatty acids in the omega-6 family, and in any other n-families, can be interconverted by enzymatic processes only within the same family, not among families.

C-20 polyunsaturated fatty acids belonging to omega-6 and omega-3 families are the precursors of eicosanoids (prostaglandins, prostacyclin, thromboxanes, and leukotrienes), powerful, short-acting, local hormones.

While the deprivation of omega-3 polyunsaturated fatty acids causes dysfunction in a wide range of behavioral and physiological modalities, the omission in the diet of omega-6 polyunsaturated fatty acids results in manifest systemic dysfunction.

In plant seed oils omega-6 fatty acids with chain length longer than 18 carbons are present only in trace while arachidonic acid is found in all animal tissues and animal-based food products.

References

Akoh C.C. and Min D.B. “Food lipids: chemistry, nutrition, and biotechnology” 3th ed. 2008

Aron H. Uber den Nahvert (On the nutritional value). Biochem Z. 1918;92:211–233 (German)

Bender D.A. “Benders’ dictionary of nutrition and food technology”. 2006, 8th Edition. Woodhead Publishing. Oxford

Bergstroem S., Danielsson H., Klenberg D. and Samuelsson B. The enzymatic conversion of essential fatty acids into prostaglandins. J Biol Chem 1964;239:PC4006-PC4008 [Full Text]

Burr G. and Burr M. A new deficiency disease produced by the rigid exclusion of fat from the diet. J Biol Chem 1929;82:345-67 [Full Text]

Chow Ching K. “Fatty acids in foods and their health implication” 3th ed. 2008

Cozzani I. e Dainese E. “Biochimica degli alimenti e della nutrizione”. Piccin Editore, 2006

Mahan L.K., Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Rosenthal M.D., Glew R.H. Mediacal biochemistry. Human metabolism in health and disease. John Wiley & Sons, Inc. 2009

Shils M.E., Olson J.A., Shike M., Ross A.C.: “Modern nutrition in health and disease” 9th ed. 1999

Stipanuk M.H.. Biochemical and physiological aspects of human nutrition. W.B. Saunders Company-An imprint of Elsevier Science, 2000

Van D., Beerthuis R.K., Nugteren D.H. and Vonkeman H. Enzymatic conversion of all-cis-polyunsaturated fatty acids into prostaglandins. Nature 1964;203:839-41

Relationship between omega-3, omega-6 and omega-9 PUFA

Relationship between omega-3 fatty acids on functions mediated by omega-6 fatty acids

  • Impair uptake of omega-6 polyunsaturated fatty acids (PUFA).
  • Inhibit desaturases, especially Δ6 desaturase.
  • Competitively inhibit cyclooxygenase and lipoxygenase.
  • Compete with omega-6 polyunsaturated fatty acids for acyltransferases.
  • Dilute pools of free arachidonic acid.
  • Displace arachidonic acid from specific phospholipid pools.
  • Form eicosanoid analogs with less activity or competitively bind to eicosanoid sites.
  • Alter membrane properties and associated enzyme and receptor functions.

Source: adapted from Kinsella, J.E. in Omega-3 Fatty Acids in Health and Disease, R.S. Lees and M. Karel, eds, Dekker, New York, 1990.

Relationship between ω-3 , ω-6 and ω-9 fatty acid families

Relationship between ω-3, ω-6 and ω-9 PUFA
Fig. 1 – Mackerel

The Δ5 and Δ6 desaturases prefer fatty acids with double bonds in the omega-6 or n-6 and, secondarily, the omega-3 or n-3 position of the carbon chain.
Omega-3 polyunsaturated fatty acids family competitively suppresses, at enzymatic level, the synthesis of the omega-6  polyunsaturated fatty acids; for these reasons relative and absolute dietary intake is important in the determination of tissue omega-3 and omega-6 polyunsaturated fatty acid levels.
Both omega-3 and omega-6 families suppress the formation of the omega-9 polyunsaturated fatty acids.

References

Akoh C.C. and Min D.B. “Food lipids: chemistry, nutrition, and biotechnology” 3th ed. 2008

Bender D.A. “Benders’ dictionary of nutrition and food technology”. 2006, 8th Edition. Woodhead Publishing. Oxford

Chow Ching K. “Fatty acids in foods and their health implication” 3th ed. 2008

Mahan L.K., Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Shils M.E., Olson J.A., Shike M., Ross A.C.: “Modern nutrition in health and disease” 9th ed. 1999

Omega-3 polyunsaturated fatty acids

The synthesis of omega-3 polyunsaturated fatty acids

Within omega-3 (ω-3) polyunsaturated fatty acid family:

are important fatty acids.

Omega-3 polyunsaturated fatty acids and α-linolenic acid

Omega-3 Polyunsaturated Fatty Acids: Omega-3 Fatty Acid Metabolism
Fig. 1 – Omega-3 Fatty Acid Metabolism

Like linoleic acid (omega-6 fatty acid), alpha-linolenic acid or ALA is a primary product of plant polyunsaturated fatty acid or PUFA synthesis and is the precursor of all the omega-3 polyunsaturated fatty acids.
It is produced de novo from linoleic acid only by plants (by the chloroplasts of marine phytoplankton and land plants) in a reaction catalyzed by Δ15-desaturase, i.e. the enzyme that forms the omega-3 polyunsaturated fatty acid family from omega-6 one catalyzing the insertion of the double bond between carbon atoms 3 and 4, numbered from methyl end of the molecule.
Note: while many land plants lack the ability to synthesize omega-3 polyunsaturated fatty acids, aquatic ones and planktons in colder water produce abundant amounts of them.
Animals, lacking Δ15-desaturase, can’t synthesize alpha-linolenic acid, and all the omega-3 polyunsaturated fatty acid family de novo, and they are obliged to obtain it from plant foodstuff and/or from animals that eat them; for this reason omega-3 polyunsaturated fatty acids are considered essential fatty acids, so called EFA.

Omega-3 polyunsaturated fatty acids: from α-linolenic acid to EPA and DHA

Omega-3 Polyunsaturated Fatty Acids: Foods Rich in Omega-3 Fatty Acids
Fig. 2 – Foods Rich in Omega-3 Fatty Acids

Animals are able to elongate and desaturase dietary alpha-linolenic acid in a cascade of reactions to form very long polyunsaturated omega-3 fatty acids but terrestrial animals have limited ability to do it. The efficiency of synthesis decreases down the cascade: conversion of alpha-linolenic acid to EPA is limited (the activity of Δ6-desaturase is the rate limiting in humans) and to DHA is even more restricted than that of EPA. This metabolic pathway occurs mainly in the liver and cerebral microvasculature of the blood brain barrier, but also in the cerebral endothelium and astrocytes.

Fish and shellfish, unlike terrestrial animals, are able to convert efficiently alpha-linolenic acid, obtained from chloroplast of marine phytoplankton, in EPA and DHA (the last one is present in high concentration in many fish oils but pay attention: many fish oils are also rich in saturated fatty acids).
It should be noted that polyunsaturated fatty acids of the ω-3 family, and of any other n-families, can be interconverted by enzymatic processed only within the same family, not among families.

EPA and DHA are primarily found in marine algae (in genetically engineered algae DHA represents approximately 50% of the total fatty acids), fish, shellfish, and marine products (particularly oil from cold-water marine fish).

Some functions of omega-3 polyunsaturated fatty acids

  • Omega-3 polyunsaturated fatty acid are capable of increasing high-density lipoprotein (HDL), “good cholesterol”, and of interleukin-2 levels. On the other hand, they decrease the levels of low-density lipoprotein (LDL), “bad cholesterol“, and very low density lipoprotein cholesterol (VLDL) and of interleukin-1 levels.
  • They are essential for the normal functioning of the brain and retina, especially in premature borns.
  • They are essential for growth and development throughout the life; for example if in children diet there is not enough omega-3 polyunsaturated fatty acids they may suffer dermatitis, growth retardation, neurological and visual disturbances.
  • C-20 polyunsaturated fatty acids, belonging to omega-3 and also omega-6 polyunsaturated fatty acid families, are the precursors eicosanoids (prostaglandins, prostacyclin, thromboxanes, and leukotrienes), potent, short-acting, local hormones.
  • While the omission in the diet of omega-6 polyunsaturated fatty acids results in a manifest systemic dysfunction, the deprivation of omega-3 polyunsaturated fatty acids causes dysfunction in a wide range of behavioral and physiological modalities.
References

Akoh C.C. and Min D.B. “Food lipids: chemistry, nutrition, and biotechnology” 3th ed. 2008

Aron H. Uber den Nahvert (On the nutritional value). Biochem Z. 1918;92:211–233 (German)

Bender D.A. “Benders’ dictionary of nutrition and food technology”. 2006, 8th Edition. Woodhead Publishing. Oxford

Bergstroem S., Danielsson H., Klenberg D. and Samuelsson B. The enzymatic conversion of essential fatty acids into prostaglandins. J Biol Chem 1964;239:PC4006-PC4008 [Full Text]

Burr G. and Burr M. A new deficiency disease produced by the rigid exclusion of fat from the diet. J Biol Chem 1929;82:345-67 [Full Text]

Chow Ching K. “Fatty acids in foods and their health implication” 3th ed. 2008

Cozzani I. e Dainese E. “Biochimica degli alimenti e della nutrizione”. Piccin Editore, 2006

Mahan L.K., Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Rosenthal M.D., Glew R.H. Mediacal biochemistry. Human metabolism in health and disease. John Wiley & Sons, Inc. 2009

Shils M.E., Olson J.A., Shike M., Ross A.C.: “Modern nutrition in health and disease” 9th ed. 1999

Stipanuk M.H.. Biochemical and physiological aspects of human nutrition. W.B. Saunders Company-An imprint of Elsevier Science, 2000

Van D., Beerthuis R.K., Nugteren D.H. and Vonkeman H. Enzymatic conversion of all-cis-polyunsaturated fatty acids into prostaglandins. Nature 1964;203:839-41

Essential fatty acids

Essential fatty acids: contents in brief

What are essential fatty acids?

Essential Fatty Acids
Fig. 1 – EFA

Essential fatty acids or EFA are fatty acids which cannot be synthesized de novo by animals, but by plants and microorganisms, such as bacteria, fungi and molds, and whose deficiency can be reversed by dietary addition.
There are two essential fatty acids: linoleic acid or LA (18:2n-6) and α-linolenic acid or ALA (18:3n-3), polyunsaturated fatty acids (PUFAs) with 18 carbon atoms, belonging to omega-6 and omega-3 families, respectively.
Animals cannot synthesize these two fatty acids because they lack desaturases that introduce double bonds beyond the Δ9 position (carbon atoms numbered from the methyl end), namely:

  • Δ12-desaturase (E.C. 1.14.19.6), which catalyzes the synthesis of LA from oleic acid;
  • Δ15-desaturase (EC 1.14.19.25), present also in phytoplankton, which catalyzes the synthesis of ALA from linoleic acid.

Essential Fatty AcidsInstead, animals have the enzymes needed to elongate and desaturate, though with low efficiency, the two EFA to form PUFAs with 20, 22, or 24 carbon atoms and up to 6 double bonds, such as for example  dihomo-gamma-linolenic acid or DGLA (20:3n6), arachidonic acid or AA (20:4n6), eicosapentaenoic acid (EPA, 20:5n3), and docosahexaenoic acid or DHA (22:6n3).
If diet is deficient in EFA, also fatty acids synthesized from them become essential. For this reason they may be termed conditionally essential fatty acids.
It should be noted that all essential fatty acids are polyunsaturated molecules but not all polyunsaturated fatty acids are essential, such as those belonging to the omega-7 and omega-9 families.

⇑ Back to the top ⇑

Functions of essential fatty acids and their PUFA derivatives

Essential Fatty Acids
Fig. 2 – Docosahexaenoic Acid

The first evidence of their existence dates back to 1918, when Hans Aron suggested that dietary fat could be essential for the healthy growth of animals and that, besides its caloric contribution, there was a inherent nutritive value deriving from the presence of certain lipid molecules
In 1927, Herbert M. Evans and George Oswald Burr demonstrated that, despite the addition of vitamins A, D, and E to the diet, a deficiency of fat severely affected both growth and reproduction of experimental animals. Therefore, they suggested the presence in the fat of an essential substance they called vitamin F.
Eleven years after Aron work, in 1929, George Burr and his wife Mildred developed the hypothesis that warm-blooded animals were not able to synthesize appreciable amounts of certain fatty acids. One year later, they discovered that linoleic acid was essential for animals, and it was they who coined the term essential fatty acid.
However, EFA deficiency in humans was first described only in 1958, in infants fed a milk-based formula lacking them.
And in 1964, thanks to the research by Van Dorp et al. and Bergstroem et al., one of their biological functions, that is, being precursor for the synthesis of prostaglandins, was discovered.
Now, it is clear that EFA and derived PUFAs play many important roles, some of which are listed below.

  • They are fundamental components of biological membranes, modulating, for example, their fluidity, particularly DHA.
  • They are essential for the proper development and functioning of the nervous system, particularly AA and DHA.
  • They are involved in membrane signal transduction, particularly omega-6 fatty acids, such as membrane phospholipid arachidonic acid.
  • They are involved in the regulation of genes encoding lipolytic and lipogenic enzymes. In fact they are strong inducers of  fatty acid oxidation, as well as inhibitors of their synthesis and that of triglycerides, at least in animal models, by acting, for example, as:

activators of the peroxisome proliferator-activated receptor α or PPAR-α, which stimulates, among other things, the transcription of genes encoding lipolytic enzymes as well as mitochondrial and peroxisomal β-oxidation enzymes, and inhibits the transcription of genes encoding for enzymes involved in lipogenesis;

inhibitors of sterol responsive element binding protein-1c (SREBP-1c) gene transcription, a hepatic transcription factor required for liver fatty acid and triglyceride synthesis induced by insulin.
Note: PUFA also increase SREBP 1c mRNA degradation as well as SREBP-1 protein degradation.

  • They are precursors of signaling molecules, with autocrine and paracrine action, which act as mediators in many cellular processes. Eicosanoids, a group of oxygenated, 20 carbon fatty acids, are probably the most studied. They derive from linoleic acid, dihomo-gamma-linolenic acid, arachidonic acid, and EPA, and include prostaglandins, thromboxanes, leukotrienes, lipoxins, and  epoxyeicosatrienoic acids.
  • They are essential, especially LA present in sphingolipids of the stratum corneum of the skin, for the formation of the barrier against water loss from the skin itself.
  • They have a crucial role in the prevention of many diseases, particularly coronary heart disease or CHD, acting as antihypertensive, antithrombotic, and triglyceridelowering agents (increasing in the latter case mitochondrial β-oxidation).
  • Finally, energy storage function is marginal.

⇑ Back to the top ⇑

Foods rich in essential fatty acids and derived PUFAs

Linoleic acid, produced mainly by terrestrial plants, is the most abundant polyunsaturated fatty acid in the Western diet, and accounts for 85-90% of dietary omega-6 fatty acids.
In the human diet, the richest sources are vegetable oils and seeds of many plants, such as:

  • safflower oil, ~ 740 mg/g
  • sunflower oil, ~ 600 mg/g
  • soybean oil, ~ 530 mg/g
  • corn oil, ~ 500 mg/g
  • cotton seed oil, ~ 480 mg/g
  • walnuts, ~ 340 mg/g
  • brazil nuts, ~ 250 mg/g
  • peanut oil, ~ 240 mg/100 g
  • canola oil, ~ 190 mg/g
  • peanuts, ~140 mg/g
  • flaxseed oil, ~ 135 mg/g

Linoleic acid is present in fair amount also in animal products such as chicken eggs or lard, but only because it is present in their feed.
It should be noted that some of the major sources of LA such as walnuts, flax seed oil, soybean oil, and canola oil are also rich sources of α-linolenic acid (see below).
In seed oils, omega-6 fatty acids with a chain length longer than 18 carbon atoms, such as DGLA and arachidonic acid, are present only in traces. Instead, AA is found in all animal tissues and animal-based foods.

α-Linolenic acid is produced by plants, also cold water vegetation such as algae and phytoplankton.
In the human diet, some of the richest sources are:

  • flax seed oil, ~ 550 mg/g
  • rapeseed oil, ~ 85 mg/g
  • soybean oil, ~ 75 mg/g

Other foods rich in ALA are nuts, ~ 70 mg/g, and soybeans, ~ 10 mg/g.
EPA and DHA are mainly found in marine algae, and in engineered algae DHA can represent about 50% of the total fatty acids. In the human diet, EPA and DHA derive from fish, shellfish and fish oil, particularly that derived from cold-water fatty fish.

⇑ Back to the top ⇑

Essential fatty acids in Western diets

Over the past 50 years, Western diet has been enriched in saturated fatty acids and omega-6 fatty acids, whereas has become poor  in omega-3 fatty acids, with an omega-6/omega-3 ratio between 10/1 and 20/1, and hence, far from the recommended ratio of 5:1.
This high ratio is due to several factors, some of which are listed below.

  • While wild plant foods are typically high in omega-3 fatty acids, in industrial agriculture crops rich in omega-6 fatty acids have had greater success than those rich in omega-3 fatty acids.
  • The low consumption of seafood and fish oil.
  • The high consumption of animal products derived from animals, such as chickens, cattle and pigs, raised on corn-based feed. In addition to this, omega-3 fatty acid content, of some species of farmed fish is lower than their wild counterparts, again because of the feed used.
  • The high consumption of vegetable oils low in omega-3 fatty acids and high in omega-6 fatty acids, such as safflower oil, sunflower oil, soybean oil and corn oil.
  • The increased shelf life of those foods in which omega-6 fatty acids predominate over omega-3-fatty acids.

So, although it is desirable to increase consumption of omega-3 fatty acids, this will not occur easily.

⇑ Back to the top ⇑

Omega-6/omega-3 ratio

Many evidences, like lower rates of incidence of cancer, autoimmunity and coronary heart disease in populations whose diet has a high ratio of omega-3 to omega-6 fatty acids, such as Eskimos, Japanese and others who consume a large amount of seafood, suggest that the change of this ratio has affected human physiology adversely, promoting, together with other factors such as smoking and a sedentary lifestyle, the development of the main classes of diseases.
Note: Japanese are the only people with an omega-3/omega-6 ratio of 1/2-4.

⇑ Back to the top ⇑

Recommended dietary intake of essential fatty acids

Hereinafter, the recommended dietary intake for omega-3 and omega-6 fatty acids for healthy adults, according to the recommendation of some of the major scientific societies and international organizations, and, as you will see, there is no common position.

  • Omega-3 fatty acids
    WHO recommends a dietary intake of omega-3-fatty acids between 0.5 and 2% of energy/day, with 300-500 mg of EPA/DHA per day, and 0.8-1.1 g per day of α-linolenic acid.
    Academy of Nutrition and Dietetics recommends a dietary intake of 500 mg of EPA/DHA per day.
    European Food Safety recommends a dietary intake of 250 mg of EPA/DHA per day.
    American Heart Association and American Diabetes Association recommend to eat fish at least twice a week, particularly fatty fish.
    American Heart Association recommends to include oils and foods rich in α-linolenic acid.
  • Omega-6 fatty acids
    In the past, dietary recommendations for omega-6 fatty acid intakes, and so especially linoleic acid, were focused on the prevention of their deficiency, while currently they are focused on the determination of the optimal intake to reduce the risk of chronic diseases, with special attention to CHD.
    Currently, most scientific societies recommend a daily intake of linoleic acid between 5 and 10% of energy/day. This daily intake seems able to reduce the risk of CHD and coronary heart disease deaths compared to lower intakes.

⇑ Back to the top ⇑

References

Akoh C.C. and Min D.B. “Food lipids: chemistry, nutrition, and biotechnology” 3th ed. 2008

Bergstroem S., Danielsson H., Klenberg D. and Samuelsson B. The enzymatic conversion of essential fatty acids into prostaglandins. J Biol Chem 1964;239:PC4006-PC4008 [Full Text]

Burr G. O., Burr M. M. and Miller E. S. On the fatty acids essential in nutrition. III. J Biol Chem 1932;97:1-9 [PDF]

Chow Ching K. “Fatty acids in foods and their health implication” 3th ed. 2008

De Meester F., Watson R.R.,Zibadi S. Omega-6/3 fatty acids: functions, sustainability strategies and perspectives. Springer Science & Business Media, 2012 [Google eBook]

Evans H. M. and G. O. Burr. A new dietary deficiency with highly purified diets. III. The beneficial effect of fat in the diet. Proc Soc Exp Biol Med 1928;25:390-7. doi:10.3181/00379727-25-3867

FAO. Global Recommendations for EPA and DHA Intake (As of 30 June 2014) [PDF]

Harris W.S., Mozaffarian D., Rimm E.B., Kris-Etherton P.M., Rudel L.L., Appel L.J., Engler M.M., Engler M.B., Sacks F.M. Omega-6 fatty acids and risk for cardiovascular disease. Circulation 2009;119:902-7. doi:10.1161/CIRCULATIONAHA.108.191627

Rosenthal M.D., Glew R.H. Mediacal biochemistry. Human metabolism in health and disease. John Wiley & Sons, Inc. 2009

Shils M.E., Olson J.A., Shike M., Ross A.C.: “Modern nutrition in health and disease” 9th ed. 1999

Simopoulos A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med 2008;233(6):674-88. doi:10.1016/S0753-3322(02)00253-6

Van Dorp. D.A., Beerthuis R.K., Nugteren D.H. and Vonkeman H. Enzymatic conversion of all-cis-polyunsaturated fatty acids into prostaglandins. Nature 1964;203:839-41. doi:10.1038/203839a0

Vannice G., Rasmussen H. Position of the academy of nutrition and dietetics: dietary fatty acids for healthy adults. J Acad Nutr Diet. 2014;114(1):136-53. doi:10.1016/j.jand.2013.11.001