Tag Archives: gut microbiota

Bile salts: definition, functions, enterohepatic circulation, synthesis

Bile salts: contents in brief

What are bile salts

Bile salts and bile acids are polar cholesterol derivatives, and represent the major route for the elimination of the steroid from the body.
They are molecules with similar but not identical structures, and diverse physical and biological characteristics.
They are synthesized in the liver, stored in the gallbladder, secreted into the duodenum, and finally, for the most part, reabsorbed in the ileum.
Because at physiological pH these molecules are present as anions, the terms bile acid and bile salts are used herein as synonyms.

⇑ Back to the top ⇑

Chemical structure of bile salts

Bile Salts
Fig. 1 – Chemical Structures of the Most Abundant Bile Acids

Bile salts have similarities and differences with cholesterol molecule.
Like the steroid, they have a nucleus composed of four fused rings: three cyclohexane rings, labeled A, B and C, and a cyclopentane ring, labeled D. This structure is the perhydrocyclopentanophenanthrene, more commonly known as steroid nucleus.
In higher vertebrates, they have 24 carbon atoms, as the side chain is three carbons shorter than the original. In lower vertebrates, bile acids have 25, 26, or 27 carbon atoms. The side chain ends with a carboxyl group, ionized at pH 7, that can be linked to the amino acid glycine or taurine (see below).
In addition to the hydroxyl group at position 3, they have hydroxyl groups at positions 7 and/or 12.
All this makes them much more polar than cholesterol.

Bile Salts
Fig. 2 – Cholic Acid Structure

Since A and B rings are fused in cis configuration, the planar structure of the steroid nucleus is curved, and it is possible to identify:

  • a concave side, which is hydrophilic because the hydroxyl groups and the carboxyl group of the side chain, with or without the linked amino acid, are oriented towards it;
  • a convex side, which is hydrophobic because the methyl groups present at position 18 and 19 are orientated towards it.

Therefore, having both polar and nonpolar groups, they are amphiphilic molecules and excellent surfactants. However, their chemical structure makes them different from many other surfactants, often composed of a polar head region and a nonpolar tail.

⇑ Back to the top ⇑

Primary, conjugated and secondary bile salts

Bile Salts
Fig. 3 – Conjugated Bile Acids

Primary bile acids are those synthesized directly from cholesterol in the hepatocytes. In humans, the most important are cholic acid and chenodeoxycholic acid, which make up 80% of all bile acids. Before being secreted into the biliary tree, they are almost completely conjugated, up to 98%, with the glycine or taurine, to form glycoconjugates and tauroconjugates, respectively. In particular, approximately 75% of cholic acid and chenodeoxycholic acid are conjugated with glycine, to form glycocholic acid  and glycochenodeoxycholic acid, the remaining 25% with taurine, to form taurocholic acid and taurochenodeoxycholic.
Conjugated bile acids are molecules with more hydrophilic groups than unconjugated bile acids, therefore with a increased emulsifying capacity. In fact, conjugation decreases the pKa of bile acids, from about 6, a value typical of non-conjugated molecules, to about 4 for glycocholic acid, and about 2 for taurocholic acid. This makes that conjugated bile acids are ionized in a broader range of pH to form the corresponding salts.
The hydrophilicity of the common acid and bile salts decreases in the following order: glycine-conjugated < taurine-conjugated < lithocholic acid  < deoxycholic acid  < chenodeoxycholic acid < cholic acid <ursodeoxycholic acid.
Finally, conjugation also decreases the cytotoxicity of primary bile acids.

Secondary bile acids  are formed from primary bile acids which have not been reabsorbed from the small intestine. Once they reach the colon, they can undergo several modifications by colonic microbiota to form secondary bile acids (see below). They make up the remaining 20% of the body’s bile acid pool.

Another way of categorizing bile salts is based on their conjugation with glycine and taurine and their degree of hydroxylation. On this basis, three categories are identified.

  • Trihydroxy conjugates, such as taurocholic acid and glycocholic acid.
  • Dihydroxy conjugates, such as glycodeoxycholic acid, glycochenodeoxycholic acid, taurochenodeoxycholic acid, and taurodeoxycholic acid. They account for about 60% of bile salts present in the bile.
  • Unconjugated forms, such as cholic acid, deoxycholic acid, chenodeoxycholic acid, and lithocholic acid.

⇑ Back to the top ⇑

Function of bile acids

All their physiological functions are performed in the conjugated form.

  • They are the major route for the elimination of cholesterol from human body.
    Indeed, humans do not have the enzymes to break open the cyclohexane rings or  the cyclopentane ring of the steroid nucleus, nor to oxidize cholesterol to CO2 and water.
    The other mechanism to eliminate the steroid from the body is as cholesterol per se in the bile.
  • Bile salts are strong surfactants. And in particular, di- and trihydroxy conjugates are the best surfactants among bile acids, much more effective than unconjugated counterparts, since they have more polar groups.
    Once in contact with apolar lipids in the lumen of the small intestine, the convex apolar surface interacts with the apolar lipids, such as triglycerides, cholesterol esters, and ester of fat-soluble vitamins, whereas the concave polar surface interacts with the surrounding aqueous medium. This increases the dispersion of apolar lipids in the aqueous medium, as it allows the formation of tiny lipid droplets, increasing the surface area for:

lipase activity, mainly pancreatic lipase, (bile salts also play a direct role in the activation of this enzyme);

intestinal esterase activity.

Subsequently, they facilitate the absorption of lipid digestion products, as well as of fat soluble vitamins by the intestinal mucosa thanks to the formation of mixed micelles.
Bile acids perform a similar function in the gallbladder where, forming mixed micelles with phospholipids, they prevent the precipitation of cholesterol.
Note: as a consequence of the arrangement of polar and nonpolar groups, bile acids form micelles in aqueous solution, usually made up of less than 10 monomers, as long as their concentration is above the so-called critical micellar concentration or CMC.

  • At the intestinal level, they modulate the secretion of pancreatic enzymes and cholecystokinin.
  • In the small and large intestine, they have a potent antimicrobial activity, mainly deoxycholic acid, in particular against Gram-positive bacteria. This activity may be due to oxidative DNA damage, and/or to the damage of the cell membrane. Therefore, they play an important role in the prevention of bacterial overgrowth, but also in the regulation of gut microbiota composition.
  • In the last few years, it becomes apparent their regulatory role in the control of energy metabolism, and in particular for the hepatic glucose handling.

⇑ Back to the top ⇑

Enterohepatic circulation of bile salts

After fat intake, enteroendocrine cells of the duodenum secrete cholecystokinin into the blood stream. Hormone binding to receptors on smooth muscle cells of the gallbladder promotes their contraction; the hormone also causes the relaxation of the sphincter of Oddi. All this results in the secretion of the bile, and therefore of bile acids into the duodenum.
Under physiological conditions, human bile salt pool is constant, and equal to about 3-5 g. This is made possible by two processes:

  • their intestinal reabsorption;
  • their de novo synthesis (see below).

Up to 95% of the secreted bile salts is reabsorbed from the gut, not together with the products of lipid digestion, but through a process called enterohepatic circulation.
It is an extremely efficient recycling system, which seems to occur at least two times for each meal, and includes the liver, the biliary tree, the small intestine, the colon, and the portal circulation through which reabsorbed molecules return to the liver. Such recirculation is necessary since liver’s capacity to synthesize bile acids is limited and insufficient to satisfy intestinal needs if the bile salts were excreted in the feces in high amounts.
Most of the bile salts are reabsorbed into the distal ileum, the lower part of the small intestine, by a sodium-dependent transporter within the brush border of the enterocytes, called sodium-dependent bile acid transporter or ASBT, which carries out the cotransport of a molecule of bile acid and two sodium ions.
Within the enterocyte, it is thought that bile acids are transported across the cytosol to the basolateral membrane by the ileal bile acid-binding protein or IBABP. They cross the basolateral membrane by the organic solute transporter alpha-beta or OSTα/OSTβ, pass into the portal circulation, and, bound to albumin, reach the liver.
It should be noted that a small percentage of bile acids reach the liver through the hepatic artery.
A hepatic level, their extraction is very efficient, with a first-pass extraction fraction ranging from 50 to 90%, a percentage that depends on bile acid structure. The uptake of conjugated bile acids is mainly mediated by a Na+-dependent active transport system, that is, the sodium-dependent taurocholate cotransporting polypeptide or NTCP. However, a sodium-independent uptake can also occur, carried out by proteins of the family of organic anion transporting polypeptides or OATP, mainly OATP1B1 and OATP1B3.
The rate limiting step in the enterohepatic circulation is their canalicular secretion, largely mediated by the bile salt export pump or BSEP, in an ATP-dependent process. This pump carries monoanionic bile salts, which are the most abundant. Bile acids conjugated with glucuronic acid or sulfate, which are dianionic, are transported by different carriers, such as MRP2 and BCRP.

Note: serum levels of bile acids vary on the basis of the rate of their reabsorption, and therefore they are higher during meals, when the enterohepatic circulation is more active.

⇑ Back to the top ⇑

Intestinal metabolism of bile acids

Bile Salts
Fig. 4 – Intestinal Bile Acid Metabolism

Bile acids which escape ileal absorption pass into the colon where they partly undergo modifications by intestinal microbiota and are converted to secondary bile acids.
The main reactions are listed below.

  • Deconjugation
    On the side chain, hydrolysis of the C24 N-acyl amide bond can occur, with release of unconjugated bile acids and glycine or taurine. This reaction is catalyzed by bacterial hydrolases present both in the small intestine and in the colon.
  • 7α-Dehydroxylation
    Quantitatively, it is the most important reaction, carried out by colonic bacterial dehydratases that remove the hydroxyl group at position 7 to form 7-deoxy bile acids. In particular, deoxycholic acid is formed from cholic acid, and lithocholic acid, a toxic secondary bile acid, from chenodeoxycholic acid.
    It should be noted that 7α-dehydroxylation, unlike oxidation and epimerization (see below), can only occur on unconjugated bile acids, and therefore, deconjugation is an essential prerequisite.
  • Oxidation and epimerization
    They are reactions involving the hydroxyl groups at positions 3, 7 and 12, catalyzed by bacterial hydroxysteroid dehydrogenases. For example, ursodeoxycholic acid derives from the epimerization of chenodeoxycholic acid.

Some of the secondary bile acids are then reabsorbed from the colon and return to the liver. In the hepatocytes, they are reconjugated, if necessary, and resecreted. Those that are not reabsorbed, are excreted in the feces.
Whereas oxidations and deconjugations are carried out by a broad spectrum of anaerobic bacteria, 7α-dehydroxylations is carried out by a limited number of colonic anaerobes.
7α-Dehydroxylations and deconjugations increase the pKa of the bile acids, and therefore their hydrophobicity, allowing a certain degree of passive absorption across the colonic wall.
The increase of hydrophobicity is also associated with an increased toxicity of these molecules. And a high concentration of secondary bile acids in the bile, blood, and feces has been associated to the pathogenesis of colon cancer.

⇑ Back to the top ⇑

Soluble fibers and reabsorption of bile salts

The reabsorption of bile salts can be reduced by chelating action of soluble fibers, such as those found in fresh fruits, legumes, oats and oat bran, which bind them, decreasing their uptake. In turn, this increases bile acid de novo synthesis, up-regulating the expression of the 7α-hydroxylase and sterol 12α-hydroxylase (see below), and thereby reduces hepatocyte cholesterol concentration.
The depletion of hepatic cholesterol increases the expression of the LDL receptor, and thus reduces plasma concentration of LDL cholesterol. On the other hand, it also stimulates the synthesis of HMG-CoA reductase, the key enzyme in cholesterol biosynthesis.
Note: some anti-cholesterol drugs act by binding bile acids in the intestine, thereby preventing their reabsorption.

⇑ Back to the top ⇑

Synthesis of primary bile acids

Bile Salts
Fig. 5 – Primary Bile Acid Biosynthesis

Quantitatively, bile acids are the major product of cholesterol metabolism.
As previously said, enterohepatic circulation and their de novo synthesis maintain a constant bile acid pool size. In particular, de novo synthesis allows the replacement of bile salts excreted in the faces, about 5-10% of the body pool, namely ~ 0.5 g/day.
Below, the synthesis of cholic acid and chenodeoxycholic acid, and their conjugation with the amino acids taurine and glycine, is described.
There are two main pathways for bile acid synthesis: the classical pathway and the alternative pathway. In addition, some other minor pathways will also be described.

⇑ Back to the top ⇑

The classical or neutral pathway

In humans, up to 90% of bile salts are produced via the classical pathway (see fig. 5), also referred to as “neutral” pathway since intermediates are neutral molecules.
It is a metabolic pathway present only in the liver, that consists of reactions catalyzed by enzymes localized in the cytosol, endoplasmic reticulum, peroxisomes, and mitochondria, and whose end products are the conjugates of cholic acid and chenodeoxycholic acid.

  • The first reaction is the hydroxylation at position 7 of cholesterol, to form 7α-hydroxycholesterol. The reaction is catalyzed by cholesterol 7α-hydroxylase or CYP7A1 (E.C. 1.14.14.23). It is an enzyme localized in the endoplasmic reticulum, and catalyzes the rate-limiting step of the pathway.

Cholesterol + NADPH + H+ + O2 → 7α-Hydroxycholesterol + NADP+ + H2O

  • 7α-Hydroxycholesterol undergoes oxidation of the 3β-hydroxyl group and the shift of the double bond from the 5,6 position to the 4,5 position, to form 7α-hydroxy-4-cholesten-3-one. The reaction is catalyzed by 3β-hydroxy-Δ5-C27-steroid oxidoreductase or HSD3B7 (E.C. 1.1.1.181), an enzyme localized in the endoplasmic reticulum.
  • 7α-Hydroxy-4-cholesten-3-one can follow two routes:

to enter the pathway that leads to the synthesis of cholic acid, through the reaction catalyzed by 7α-hydroxy-4-cholesten-3-one 12α-monooxygenase or sterol 12α-hydroxylase or CYP8B1 (E.C. 1.14.18.8), an enzyme localized in the endoplasmic reticulum;

to enter the pathway that leads the synthesis of chenodeoxycholic acid, through the reaction catalyzed by 3-oxo-Δ4-steroid 5β-reductase or AKR1D1 (E.C. 1.3.1.3), a cytosolic enzyme.

It should be underlined that the activity of sterol 12α-hydroxylase determines the ratio of cholic acid to chenodeoxycholic acid, and, ultimately, the detergent capacity of bile acid pool. And in fact, the regulation of sterol 12α-hydroxylase gene transcription is one of the main regulatory step of the classical pathway.

Therefore, if 7α-hydroxy-4-cholesten-3-one proceeds via the reaction catalyzed by sterol 12α-hydroxylase, the following reactions will occur.

  • 7α-Hydroxy-4-cholesten-3-one is hydroxylated at position 12 by sterol 12α-hydroxylase, to form 7α,12α-dihydroxy-4-cholesten-3-one.
  • 7α,12α-Dihydroxy-4-cholesten-3-one undergoes reduction of the double bond at 4,5 position, in the reaction catalyzed by 3-oxo-Δ4-steroid 5β-reductase, to form 5β-cholestan-7α,12α-diol-3-one.
  • 5β-Cholestan-7α,12α-diol-3-one undergoes reduction of the hydroxyl group at position 4, in the reaction catalyzed by 3α-hydroxysteroid dehydrogenase or AKR1C4 (EC 1.1.1.213), a cytosolic enzyme, to form 5β-cholestan-3α,7α,12α-triol.
  • 5β-Cholestan-3α,7α,12α-triol undergoes oxidation of the side chain via three reactions catalyzed by sterol 27-hydroxylase or CYP27A1 (EC 1.14.15.15). It is a mitochondrial enzyme also present in extrahepatic tissues and macrophages, which introduces a hydroxyl group at position 27. The hydroxyl group is oxidized to aldehyde, and then to carboxylic acid, to form 3α,7α,12α-trihydroxy-5β-cholestanoic acid.
  • 3α,7α,12α-Trihydroxy-5β-cholestanoic  acid is activated to its coenzyme A ester, 3α,7α,12α-trihydroxy-5β-cholestanoyl-CoA, in the reaction catalyzed by either very long chain acyl-CoA synthetase or VLCS (EC 6.2.1.-), or bile acid CoA synthetase or BACS (EC 6.2.1.7), both localized in the endoplasmic reticulum.
  • 3α,7α,12α-Trihydroxy-5β-cholestanoyl-CoA is transported to peroxisomes where it undergoes five successive reactions, each catalyzed by a different enzyme. In the last two reactions, the side chain is shortened to four carbon atoms, and finally cholylCoA is formed.
  • In the last step, the conjugation, via amide bond, of the carboxylic acid group of the side chain with the amino acid glycine or taurine occurs. The reaction is catalyzed by bile acid-CoA:amino acid N-acyltransferase or the BAAT (EC 2.3.1.65), which is predominantly localized in peroxisomes.
    The reaction products are thus the conjugated bile acids: glycocholic acid and taurocholic acid.

If 7α-hydroxy-4-cholesten-3-one does not proceed via the reaction catalyzed by sterol 12α-hydroxylase, it enters the pathway that leads to the synthesis of chenodeoxycholic acid conjugates, through the reactions described below.

  • 7α-Hydroxy-4-cholesten-3-one is converted to 7α-hydroxy-5β-cholestan-3-one in the reaction catalyzed by 3-oxo-Δ4-steroid 5β-reductase.
  • 7α-Hydroxy-5β-cholestan-3-one is converted to 5β-cholestan-3α,7α-diol in the reaction catalyzed by 3α-hydroxysteroid dehydrogenase.

Then, the conjugated bile acids glycochenodeoxycholic acid and taurochenodeoxycholic acid are formed by modifications similar to those seen for the conjugation of cholic acid, and catalyzed mostly by the same enzymes.

Note: unconjugated bile acids formed in the intestine must reach the liver to be reconjugated.

⇑ Back to the top ⇑

The alternative or acidic pathway

It is prevalent in the fetus and neonate, whereas in adults it leads to the synthesis of less than 10% of the bile salts.
This pathway  (see fig. 5) differs from the classical pathway in that:

  • the intermediate products are acidic molecules, from which the alternative name “acidic pathway”;
  • the oxidation of the side chain is followed by modifications of the steroid nucleus, and not vice versa;
  • the final products are conjugates of chenodeoxycholic acid.

The first step involves the conversion of cholesterol into 27-hydroxycholesterol in the reaction catalyzed by sterol 27-hydroxylase.
27-Hydroxycholesterol can follow two routes.

Route A

  • 27-hydroxycholesterol is converted to 3β-hydroxy-5-cholestenoic acid in a reaction catalyzed by sterol 27-hydroxylase.
  • 3β-Hydroxy-5-cholestenoic acid is hydroxylated at position 7 in the reaction catalyzed by oxysterol 7α-hydroxylase or CYP7B1 (EC 1.14.13.100), an enzyme localized in the endoplasmic reticulum, to form 3β-7α-dihydroxy-5-colestenoic acid.
  • 3β-7α-Dihydroxy-5-cholestenoic acid is converted to 3-oxo-7α-hydroxy-4-cholestenoic acid, in the reaction catalyzed by 3β-hydroxy-Δ5-C27-steroid oxidoreductase.
  • 3-Oxo-7α-hydroxy-4-cholestenoic acid, as a result of side chain modifications, forms chenodeoxycholic acid, and then its conjugates.

Route B

  • 27-Hydroxycholesterol is converted to 7α,27-dihydroxycholesterol in the reaction catalyzed by oxysterol 7α-hydroxylase and cholesterol 7α-hydroxylase.
  • 7α,27-Dihydroxycholesterol is converted to 7α,26-dihydroxy-4-cholesten-3-one in the reaction catalyzed by 3β-hydroxy-Δ5-C27-steroid oxidoreductase;

7α, 26-Dihydroxy-4-cholesten-3-one can be transformed directly to conjugates of chenodeoxycholic acid, or can be converted to 3-oxo-7α-hydroxy-4-colestenoic acid,  and then undergo side chain modifications and other reactions that lead to the synthesis of the conjugates of chenodeoxycholic acid.

⇑ Back to the top ⇑

Minor pathways

There are also minor pathways (see fig. 5) that contribute to bile salt synthesis, although to a lesser extent than classical and alternative pathways.

For example:

  • A cholesterol 25-hydroxylase (EC 1.14.99.38) is expressed in the liver.
  • A cholesterol 24-hydroxylase or CYP46A1 (EC 1.14.14.25) is expressed in the brain, and therefore, although the organ cannot export cholesterol, it exports oxysterols.
  • A nonspecific 7α-hydroxylase has also been discovered. It is  expressed in all tissues and appears to be involved in the generation of oxysterols, which may be transported to hepatocytes to be converted to chenodeoxycholic acid.

Additionally, sterol 27-hydroxylase is expressed in various tissues, and therefore its reaction products must be transported to the liver to be converted to bile salts.

⇑ Back to the top ⇑

Bile salts: regulation of synthesis

Regulation of bile acid synthesis occurs via a negative feedback mechanism, particularly on the expression of cholesterol 7α-hydroxylase and sterol 12α-hydroxylase.
When an excess of bile acids, both free and conjugated, occurs, these molecules bind to the nuclear receptor farnesoid X receptor or FRX, activating it: the most efficacious bile acid is chenodeoxycholic acid, while others, such as ursodeoxycholic acid, do not activate it.
FRX induces the expression of the transcriptional repressor small heterodimer partner or SHP, which in turn interacts with other transcription factors, such as liver receptor homolog-1 or LRH-1, and hepatocyte nuclear factor-4α or HNF-4α. These transcription factors bind to a sequence in the promoter region of 7α-hydroxylase and 12α-hydroxylase genes, region called bile acid response elements or BAREs, inhibiting their transcription.
One of the reasons why bile salt synthesis is tightly regulated is because many of their metabolites are toxic.

⇑ Back to the top ⇑

References

Chiang J.Y.L. Bile acids: regulation of synthesis. J Lipid Res 2009;50(10):1955-66. doi:10.1194/jlr.R900010-JLR200

Gropper S.S., Smith J.L. Advanced nutrition and human metabolism. 6h Edition. Cengage Learning, 2012 [Google eBook]

Moghimipour E., Ameri A., and Handali S. Absorption-enhancing effects of bile salts. Molecules 2015;20(8); 14451-73. doi:10.3390/molecules200814451

Monte M.J., Marin J.J.G., Antelo A., Vazquez-Tato J. Bile acids: Chemistry, physiology, and pathophysiology. World J Gastroenterol 2009;15(7):804-16. doi:10.3748/wjg.15.804

Rawn J.D. Biochimica. Mc Graw-Hill, Neil Patterson Publishers, 1990

Rosenthal M.D., Glew R.H. Medical biochemistry – Human metabolism in health and disease. John Wiley J. & Sons, Inc., Publication, 2009

Sundaram S.S., Bove K.E., Lovell M.A. and Sokol R.J. Mechanisms of Disease: inborn errors of bile acid synthesis. Nat Clin Pract Gastroenterol Hepatol 2008;5(8):456-68. doi:10.1038/ncpgasthep1179

Human gut microbiota: definition, composition, and the effect of diet

Human gut microbiota: contents in brief

Definition and composition of the human gut microbiota

Gut Microbiota
Fig. 1 – Lactobacillus acidophilus

The human gastrointestinal tract is one of the most fierce and competitive ecological niches. It harbors viruses, eukaryotes, bacteria, and one member of Archaebacteria, Methanobrevibacter smithii.
Bacteria vary in proportion and amount all along the gastrointestinal tract; the greatest amount is found in the colon, which contains over 400 different species belonging to 9 phyla or divisions (of the 30 recognized phyla), and hereafter you refer to them as gut microbiota.
These are the phyla and some of their most represented genera.

  • Actinobacteria (Gram-positive bacteria); Bifidobacterium, Collinsella, Eggerthella, and Propionibacterium.
  • Bacteroidetes (Gram-negative bacteria); more than 20 genera including Bacteroides, Prevotella and Corynebacterium.
  • Cyanobacteria (Gram-negative bacteria).
  • Firmicutes (Gram-positive bacteria); at least 250 genera, including Mycoplasma, Bacillus, Clostridium, Dorea, Faecalibacterium, Ruminococcus, Eubacterium, Staphylococcus, Streptococcus, Lactobacillus, Lactococcus, Enterococcus, Sporobacter, and Roseburia.
  • Fusobacteria (Gram-negative bacteria);
  • Lentisphaerae (Gram-negative bacteria).
  • Proteobacteria (Gram-negative bacteria); Escherichia, Klebsiella, Shigella, Salmonella, Citrobacter, Helicobacter, and Serratia.
  • Spirochaeates (Gram-negative bacteria).
  • Verrucomicrobia (Gram-negative bacteria).

The presence of a small subset of the bacterial world in the colon is the result of a strong selective pressure which acted, during evolution, on both the microbial colonizers, selecting organisms very well adapted to this environment, and the intestinal niche. And nevertheless, each individual harbors an unique bacterial community in his gut.
Despite the high variability existing both with regard to taxa and between individuals, it has been proposed, but not accepted by all researchers, that in most adults the bacterial gut microbiota can be classified into variants or “enterotypes”, on the basis of the ratio of the abundance of the genera Bacteroides and Prevotella. This seems to indicate that there is a limited number of well balanced symbiotic states, which could respond differently to factors such as diet, age, genetics, and drug intake (see below).

Adult’s gut harbors a large and diverse community of DNA and RNA viruses made up of about 2,000 different genotypes, none of which is dominant. Indeed, the most abundant virus accounts for only about 6% of the community, whereas in infants the most abundant virus accounts over 40% of the community. The majority of DNA viruses are bacteriophages or phages, that is, viruses that infect bacteria (they are the most abundant biological entity on earth, with an estimated population of about 1031 units), whereas the majority of RNA viruses are plant viruses.

⇑ Back to the top ⇑

Factors affecting gut microbiota composition and development

The intestinal bacterial community is regulated by several factors, most of which are listed below.

  • The diet of the host.
    It seems to be the most important factor.
    Traditionally considered sterile, mother’s milk harbors a rich microbiota consisting of more than 700 species, dominated by staphylococci, streptococci, bifidobacteria and lactic acid bacteria. Therefore, it is a major source for the colonization of the breastfed infant gut, and it was suggested that this mode of colonization is closely correlated with infant’s health status, because, among other functions, it could protect against infections and contribute to the maturation of the immune system. Breast milk affects intestinal microbiota also indirectly, through the presence of oligosaccharides with prebiotic activity that stimulate the growth of specific bacterial groups including staphylococci and bifidobacteria.
    A recent study has compared the intestinal microbiota of European and African children (respectively from Florence and a rural village in Burkina Faso) between the ages of 1 and 6 years old. It has highlighted the dominant role of diet over variables such as climate, geography, hygiene and health services (it was also observed the absence of significant differences in the expression of key genes regulating the immune function, which suggests a functional similarity between the two groups). Indeed infants, as long as they are breastfed, have a very similar gut microbiota, rich in Actinobacteria, mainly Bifidobacterium (see below). The subsequent introduction of solid foods in the two groups, a Western diet rich in animal fat and protein in European children, and low in animal protein but rich in complex carbohydrates in African children, leads to a differentiation in the Firmicutes/Bacteroidetes ratio between the two groups. Gram-positive bacteria, mainly Firmicutes, were more abundant than Gram-negative bacteria in European children, whereas Gram-negative bacteria, mainly Bacteroidetes, prevailed over Gram-positive bacteria in African children.
    And the long-term diets are strongly associated to the enterotype partitioning. Indeed, it has been observed that:

a diet high in animal fat and protein, i.e. a Western-type diet, leads to a gut microbiota dominated by the Bacteroides enterotype;
a diet high in complex carbohydrates, typical of agrarian societies, leads to the prevalence of the Prevotella enterotype.

Similar results emerged from the aforementioned study on children. In the Europeans, gut microbiota was dominated by taxa typical of Bacteroides enterotype, whereas in the Burkina Faso children, Prevotella enterotype dominates.
With short-term changes in the diet (10 days), such as the switch from a low-fat and high-fiber diet to a high-fat and low-fiber diet and vice versa, changes were observed in the composition of the microbiome (within 24 hours), but no stable change in the enterotype partitioning. And this underlines as a long-term diet is needed for a change in the enterotypes of the gut microbiota.
Dietary interventions can also result in changes in the gut virome, which moves to a new state, that is, changes occur in the proportions of the pre-existing viral populations, towards which subjects on the same diet converge.

  • pH, bile salts and digestive enzymes.
    The stomach, due to its low pH, is a hostile environment for bacteria, which are not present in high numbers, about 102-103 bacterial cells/gram of tissue. In addition to Helicobacter pylori, able to cause gastritis and gastric ulcers, microorganisms of the genus Lactobacillus are also present.
    Reached the duodenum, an increase in bacterial cell number occurs, 104-105 bacterial cells/gram of tissue; and similar bacterial concentrations are present in the jejunum and proximal ileum. The low number of microorganisms present in the small intestine is due to the inhospitable environment, consequent to the fact that there is the opening of the ampulla of Vater in the descending part of the duodenum, which pours pancreatic juice and bile into the duodenum, that is, pancreatic enzymes and bile salts, which damage microorganisms.
    In the terminal portion of the ileum, where the activities of pancreatic enzymes and bile salts are lower, there are about 107 bacterial cells/gram of tissue, and up to 1012-1014 bacterial cells/gram of tissue in the colon, so that bacteria represent a large proportion, about 40%, of the fecal mass.
    The distribution of bacteria along the intestine is strategic. In the duodenum and jejunum, the amount of available nutrients is much higher than that found in the terminal portion of the ileum, where just water, fiber, and electrolytes remain. Therefore, the presence of large number of bacteria in the terminal portion of the ileum, and even more in the colon, is not a problem. The problem would be to find a high bacterial concentration in the duodenum, jejunum, and proximal parts of the ileum; and there is a disease condition, called small intestinal bacterial overgrowth or SIBO, in which the number of bacteria in the small intestine increases by about 10-15 times. This puts them in a position to compete with the host for nutrients and give rise to gastrointestinal disturbances such as diarrhea.
  • The geographical position and the resulting differences in lifestyle, diet, religion etc.
    For example, a kind of geographical gradient occurs in the microbiota of European infants, with a higher number of Bifidobacterium species and some of Clostridium in Northern infants, whereas Southern infants have higher levels of Bacteroides, Lactobacillus and Eubacterium.
  • The mode of delivery (see below).
  • The genetics of the host.
  • The health status of the infant and mother.
    For example, in mothers with inflammatory bowel disease or IBD, Faecalibacterium prausnitzii, a bacterium that produces butyrate (an important source of energy for intestinal cells), and with anti-inflammatory activity is depleted, whereas there is an increase in the number of adherent Escherichia coli.
  • The treatment with antibiotics.
  • Bacterial infections and predators.
    Bacteriocins, i.e. proteins with antibacterial activity, and bacteriophages.
    Phages play an important role in controlling the abundance and composition of the gut microbiota. In particular, they could play a major role in the colonization of the newborn, infecting the dominant bacteria thus allowing to another bacterial strain to become abundant.
    This model of predator-prey dynamics, called “kill the winner”, suggests that the blooms of a specific bacterial species would lead to blooms of their corresponding bacteriophages, followed by a decline in their abundance. Therefore, the most abundant bacteriophage genotype will not be the same at different times. And although some the gene sequences present in the infant gut virome are stable over the first three months of life, dramatic changes occur in the overall composition of the viral community between the first and second week of life. During this time period also the bacterial community is extremely dynamic (see below).
  • The competition for space and nutrients.

⇑ Back to the top ⇑

The composition of the gut microbiota throughout life

Gut Microbiota
Fig. 2 – Development of Intestinal Microflora

The development of the intestinal microbial ecosystem is a complex and crucial event in human life, highly variable from individual to individual, and influenced by the factors outlined above.
In utero, the gut is considered sterile, but is rapidly colonized by microbes at birth, as the infant is born with an immunological tolerance instructed by the mother.
However, recent studies show the presence of bacteria in the placental tissue, umbilical cord blood, fetal membranes and amniotic fluid from healthy newborns without signs of infection or inflammation. And for example, the meconium of premature infants, born to healthy mothers, contains a specific microbiota, with Firmicutes as the main phylum, and predominance of staphylococci, whereas Proteobacteria, in particular species such as Escherichia coli, Klebsiella pneumoniae, Serratia marcescens, but also enterococci are more abundant in the faeces.
Note: the meconium is free of detectable viruses.
It seems that both vaginal and gut bacteria may gain access to the fetus, although via different route of entry: by ascending entry the vaginal ones, by dendritic cells of the immune system the gut ones. Therefore, there could exist a fetal microbiota.

Colonization occurs during delivery by a maternal inoculum, generally composed of aerobic and facultative bacteria (the newborn’s gut initially contains oxygen), then replaced by obligate anaerobes,  bacteria typically present in adulthood, to which they have created a hospitable environment.
Furthermore, there is a small number of different taxa, with a relative dominance of the phyla Actinobacteria and Proteobacteria, that remains unchanged during the first month of life, but not in the subsequent ones as there is a large increase in variability and new genetic variants. Many studies underline that the initial exposure is important in defining the “trajectories” which will lead to the adult ecosystems. Additionally, these initial communities may act as a source of protective or pathogenic microorganisms.

Mother’s vaginal and fecal microbiotas are the main sources of inoculum in vaginally delivered infants. Indeed, infants harbor microbial communities dominated by species of the genera Lactobacillus (the most abundant genus in the vaginal microbiota and early gut microbiota) Bifidobacterium, Prevotella, or Sneathia. And it seems likely that anaerobes, such as members of the phyla Firmicutes and Bacteroidetes, not growing outside of their host, rely on the close contact between mother and offspring for transmission. Finally, due to the presence of oxygen in infant gut, the transmission of strict anaerobes could occur not directly at birth but at a later stage by means of spores.
The first bacteria encountered by infants born by caesarean section are those of the skin and hospital environment, and gut microbiota is dominated by species of the genera Corynebacterium, Staphylococcus and Propionibacterium, with a lower bacterial count and diversity in first weeks of life than infants born vaginally.
Further evidence supporting the hypothesis of vertical transmission is the similarity between the microbiota of meconium and samples obtained from possible sites of contamination.
These “maternal bacteria” do not persist indefinitely, and are replaced by other populations within the first year of life.
Objects, animals, mouths and skin of relatives, and breast milk are secondary sources of inoculum; and breast milk (see below) seems to have a primary role in determining the microbial succession in the gut.
The variation and diversity among children reflect instead the individuality of these microbial exposures.
Note: the delivery mode seems also to influence the immune system during the first year of life, perhaps via the influence on the development of gut microbiota. Infants born by cesarean section have:

  • a lower bacterial count in stool samples at one month of age, mainly due to the higher number of bifidobacteria in infants born vaginally;
  • a higher number of antibody secreting cells, which could reflect an excessive antigen exposure (the intestinal barrier would be more vulnerable to the passage of antigens).

Within a days after birth, a thriving community is established. This community is less stable over time and more variable in composition than that of adults. Very soon, it will be more numerous than that of the child’s cells, evolving according to a temporal pattern highly variable from individual to individual.
Viruses, absent at birth, reach about 108 units/gram wet weight of faeces by the end of the first week of life, therefore representing a dynamic and abundant component of the developing gut microbiota. However, viral community has an extremely low diversity, like bacteria, and is dominated by phages, which probably influence the abundance and diversity of co-occurring bacteria, as seen above. The initial source of the viruses is unknown; of course, maternal and/or environmental inocula are among the possibilities. Notably, the earliest viruses could be the result of induction of prophages from the “newborn” gut bacterial flora, hypothesis supported by the observation that more than 25% of the phage sequences seem to be very similar to those of phages infecting bacteria such as Lactococcus, Lactobacillus, Enterococcus, and Streptococcus, which are abundant in breast milk.

By the end of the first month of life it is thought that the initial phase of rapid acquisition of microorganism is over.
In 1-month-old-infants, the most abundant bacteria belong to the genera Bacteroides and Escherichia, whereas Bifidobacterium, along with Ruminococcus, appear and grow to become dominant in the gastrointestinal tract of the breastfed infants between 1 and 11 months. Bifidobacteria such as Bifidobacterium longum subspecies infantis:

  • are known to be closely related to breastfeeding;
  • are among the best characterized commensal bacteria;
  • are considered probiotics, that is, microorganisms which can confer health benefits to the host.

Their abundance confers also benefits through competitive exclusion, that is, they are an obstacle to colonization by pathogens. And indeed, Escherichia and Bacteroides can become preponderant if Bifidobacterium is not adequately present in the gut.
In contrast, bacteria of the genera Escherichia (e.g. E. coli), Clostridium (e.g. C. difficile), Bacteroides (e.g. B. fragilis) and Lactobacillus are present in higher levels in formula-fed infants than in breastfed infants.
Although breast-fed infants receive only breast milk until weaning, their microbiota can show a large variability in the abundances of bacterial taxa, with differences between individuals also with regard to the temporal patterns of variation. These variations may be due to diseases, treatments with antibiotics, changes in host lifestyle, random colonization events, as well as differences in immune responses to the gut colonizing microbes. However, it is not yet clear how these factors contribute to shape infant gut microbiota.
It seems that also the virome changes rapidly after birth, as the majority of the viral sequences present in the first week of life are not found after the second week. Moreover, the repertoire expands rapidly in number and diversity during the first three months. This is in contrast with the stability observed in the adult virome, where 95% of the sequences are conserved over time.

In normal condition, towards the end of the first year of life, babies have consumed an adult-like diet for a significant time period and should have developed a microbial community with characteristics similar to those found in the adult gut, such as:

  • a more stable composition, phylogenetically more complex, and progressively more similar among different subjects;
  • a preponderance of Firmicutes and Bacteroidetes, followed by Verrucomicrobia and a very low abundance of Proteobacteria;
  • an increase in short-chain fatty acid (SCFA) levels and bacterial load in the feces;
  • an increase of genes associated with xenobiotic degradation, vitamin biosynthesis, and carbohydrate

Interestingly, the significant turnover of taxa occurring from birth to the end of the first year is accompanied by a remarkable constancy in the overall functional capabilities.
Towards the end of the first year of life also the early viral colonizers were replaced by a community specific to the child.

The gut microbiota reaches maturity at about 2.5 years of age, fully resembling the adult gut microbiota.
The selection of the most adapted bacteria is the result of various factors.

  • The transition to an adult diet.
  • An increased fitness to the intestinal environment of the taxa that typically dominate the adult gut microbiota than the early colonizers.
  • The significant changes in the intestinal environment, result of the developmental changes in the intestinal mucosa.
  • The effects of the microbiota itself.

Therefore, the first 2-3 years of life are the most critical period in which you can intervene to shape the microbiota as best as possible, and so optimize child growth and development.

From a chaotic beginning, all this leads to the establishment of the gut ecosystem typical of the young adult, which is relatively stable over time until old age (viral, archaeal and eukaryotic components included), and dominated, at least in the western population, by members of the phyla Firmicutes, about 60% of the bacterial communities, Bacteroidetes and Actinobacteria (mainly belonging to the Bifidobacterium genus), each comprising about 10% of the bacterial community, followed by Proteobacteria and Verrucomicrobia. The genera Bacteroides, Clostridium, Faecalibacterium, Ruminococcus and Eubacterium make up, together with Methanobrevibacter smithii, the large majority of the adult gut microbial community.
It should be noted that different data were obtained from analysis of populations of African rural areas, as seen above.
And the gut microbiota is sufficiently similar among subjects to allow the identification of a shared core microbiome.
Stability and resilience, however, are subject to numerous variables among which, as previously said, diet seems to be one of the most important. Therefore, in order to maintain the stability of the gut microbiota, the variables have to be kept constant, or in the case of diseases prevented (also through vaccinations). However, the stability and resilience could be harmful if the dominant community is pathogenic.

The gut microbiota undergoes substantial changes in the elderly. In a study conducted in Ireland on 161 healthy people aged 65 years and over, the gut microbiota is distinct from that of younger adults in the majority of subjects, with a composition that seems to be dominated by the phyla Bacteroidetes, the main ones, and Firmicutes, with almost inverted percentages than those found in younger adults (although large variations across subjects were observed). And there are Faecalibacterium, about 6% of the main genera, followed by species of the genera Ruminococcus, Roseburia and Bifidobacterium (the latter about 0.4%) among the most abundant genera.
Also the variability in the composition of the community is greater than in younger adults; this could be due to the increase in morbidities associated with aging and the subsequent increased intake of medications, as well as to changes in the diet.

⇑ Back to the top ⇑

References

Breitbart M., Haynes M., Kelley S., Angly F., Edwards R.A., Felts B., Mahaffy J.M., Mueller J., Nulton J., Rayhawk S., Rodriguez-Brito B., Salamon P., Rohwer F. Viral diversity and dynamics in an infant gut. Res Microbiol 2008;159:367-73. doi:10.1016/j.resmic.2008.04.006

Claesson M.J., Cusack S., O’Sullivan O., Greene-Diniz R., de Weerd H., Flannery E., Marchesi J.R., Falush D., Dinan T., Fitzgerald G., et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA 2011;108(Suppl 1);4586-91. doi:10.1073/pnas.1000097107

Clemente J.C., Ursell L.K., Wegener Parfrey L., and Knight R. The impact of the gut microbiota on human health: an integrative view. Cell 2012;148:1258-70. doi:10.1016/j.cell.2012.01.035

De Filippo c., Cavalieri D., Di Paola M., Ramazzotti M., Poullet J.B., Massart S., Collini S., Pieraccini G., and Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci 2010;107(33):14691-6. doi:10.1073/pnas.1005963107

Dominguez-Bello M.G., Costello E.K., Contreras M., Magris M., Hidalgo G., Fierer N., and Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci 2010;107:11971-5. doi:10.1073/pnas.1002601107

Fernández L., Langa S., Martín V., Maldonado A., Jiménez E., Martín R., Rodríguez J.M. The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res 2013;69(1):1-10. doi:10.1073/pnas.1002601107

Huurre A., Kalliomäki M., Rautava S., Rinne M., Salminen S., and Isolauri E. Mode of delivery-effects on gut microbiota and humoral immunity. Neonatology 2008;93:236-40. doi:10.1159/000111102

Koenig J.E., Spor A., Scalfone N., Fricker A.D., Stombaugh J., Knight R., Angenent L.T., and Ley R.E. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci 2011;108(1):4578-85. doi:10.1073/pnas.1000081107

Ley R.E., Peterson D.A., and Gordon J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006;124(4):837-48. doi:10.1016/j.cell.2006.02.017

Minot S., Sinha R., Chen J., Li H., Keilbaugh S.A., Wu G.D., Lewis J.D., and Bushman F.D. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res 2011;21:1616-1625. doi:10.1101/gr.122705.111

Moreno-Indias I.M., Cardona F., Tinahones F.J. and Queipo-Ortuño M.I. Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front Microbiol 2014;5(190):1-10 . doi:10.3389/fmicb.2014.00190

Newburg D.S. & Morelli L. Human milk and infant intestinal mucosal glycans guide succession of the neonatal intestinal microbiota. Pediatr Res 2015;77:115-120. doi:10.1038/pr.2014.178

Palmer C., Bik E.M., DiGiulio D.B., Relman D.A., and Brown P.O. Development of the human infant intestinal microbiota. PLoS Biol 2007;5(7):e177. doi:10.1371/journal.pbio.0050177

Rodrıguez J.M., Murphy K., Stanton C., Ross R.P., I. Kober O.I., Juge N., Avershina E., Rudi K., Narbad A., Jenmalm M.C., Marchesi J.R. and Collado M.C. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis 2015;26:26050. doi:10.3402/mehd.v26.26050

Wu G.D., Chen J., Hoffmann C., Bittinger K., Chen Y.Y., Keilbaugh S.A., Bewtra M., Knights D., Walters W.A., Knight R., et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011;334:105-8. doi:10.1126/science.1208344

Lignans: definition, chemical structure, biosynthesis, metabolism, foods

Lignans: contents in brief

What are lignans?

Lignans are a subgroup of non-flavonoid polyphenols.
They are widely distributed in the plant kingdom, being present in more than 55 plant families, where they act as antioxidants and defense molecules against pathogenic fungi and bacteria.
In humans, epidemiological and physiological studies have shown that they can exert positive effects in the prevention of lifestyle-related diseases, such as type II diabetes and cancer. For example, an increased dietary intake of these polyphenols correlates with a reduction in the occurrence of certain types of estrogen-related tumors, such as breast cancer in postmenopausal women.
In addition, some lignans have also aroused pharmacological interest. Examples are:

  • podophyllotoxin, obtained from plants of the genus Podophyllum (Berberidaceae family); it is a mitotic toxin whose derivatives have been used as chemotherapeutic agents;
  • arctigenin and tracheologin, obtained from tropical climbing plants; they have antiviral properties and have been tested in the search for a drug to treat AIDS .

⇑ Back to the top ⇑

Chemical structure of lignans

Lignans
Fig. 1 – Phenylpropane unit

Their basic chemical structure consists of two phenylpropane units linked by a C-C bond between the central atoms of the respective side chains (position 8 or β), also called β-β’ bond. 3-3′, 8-O-4′, or 8-3′ bonds are observed less frequently; in these cases the dimers are called neolignans. Hence, their chemical structure is referred to as (C6-C3)2, and they are included in the phenylpropanoid group, as well as their precursors: the hydroxycinnamic acids (see below).
Based on their carbon skeleton, cyclization pattern, and the way in which oxygen is incorporated in the molecule skeleton, they can be divided into 8 subgroups: furans, furofurans, dibenzylbutanes, dibenzylbutyrolactones, dibenzocyclooctadienes, dibenzylbutyrolactols, aryltetralins and arylnaphthalenes. Furthermore, there is considerable variability regarding the oxidation level of both the propyl side chains and the aromatic rings.
They are not present in the free form in nature, but linked to other molecules, mainly as glycosylated derivatives.
Among the most common lignans, secoisolariciresinol (the most abundant one), lariciresinol, pinoresinol, matairesinol and 7-hydroxymatairesinol are found.

Note: they occur not only as dimers but also as more complex oligomers, such as dilignans and sesquilignans.

⇑ Back to the top ⇑

Biosynthesis of lignans

Lignans
Fig. 2 – Lignan Biosynthesis

In this section, we will examine the synthesis of some of the most common lignans.
The pathway starts from 3 of the 4 most common dietary hydroxycinnamic acids: p-coumaric acid, sinapic acid, and ferulic acid (caffeic acid is not a precursor of this subgroup of polyphenols). Therefore, they arise from the shikimic acid pathway, via phenylalanine.
The first three reactions reduce the carboxylic group of the hydroxycinnamates to alcohol group, with formation of the corresponding alcohols, called monolignols, that is, p-coumaric alcohol, sinapyl alcohol and coniferyl alcohol. These molecules also enter the pathway of lignin biosynthesis.

  • The first step, which leads to the activation of the hydroxycinnamic acids, is catalysed by hydroxycinnamate:CoA ligases, commonly called p-coumarate:CoA ligases (EC 6.2.1.12), with formation of the corresponding hydroxycinnamate-CoAs, namely, feruloil-CoA, p- coumaroyl-CoA and sinapil-CoA.
  • In the second step, a NADPH-dependent cinnamoyl-CoA: oxidoreductase, also called cinnamoyl-CoA reductase (EC1.2.1.44) catalyzes the formation of the corresponding aldehydes, and the release of coenzyme A.
  • In the last step, a NADPH-dependent cinnamyl alcohol dehydrogenase, also called monolignol dehydrogenase (EC 1.1.1.195), catalyzes the reduction of the aldehyde group to an alcohol group, with the formation of the aforementioned monolignols.
Lignans
Fig. 3 – (-)-Matairesinol

The next step, the dimerization of monolignols, involves the intervention of stereoselective mechanisms, or, more precisely, enantioselective mechanisms. In fact, most of the plant lignans exists as (+)- or (-)-enantiomers, whose relative amounts can vary from species to species, but also in different organs on the same plant, depending on the type of reactions involved.
The dimerization can occur through enzymatic reactions involving laccases (EC 1.10.3.2). These enzymes catalyze the formation of radicals that, dimerizing, form a racemic mixture. However, this does not explain how the enantiomeric mixtures found in plants are formed. The most accepted mechanism to explain the stereospecific synthesis involves the action of the laccase and of a protein able to direct the synthesis toward one or the other of the two enantiomeric forms: the dirigent protein. The reaction scheme might be: the enzyme catalyzes the synthesis of phenylpropanoid radicals that are orientated in such a way to obtain the desired stereospecific coupling by the dirigent protein.
For example, pinoresinol synthase, consisting of laccase and dirigent protein, catalyzes the stereospecific synthesis of (+)-pinoresinol from two units of coniferyl alcohol. (+)-Pinoresinol, in two consecutive stereospecific reactions catalyzed by NADPH-dependent pinoresinol/lariciresinol reductase (EC 1.23.1.2), is first reduced to (+)-lariciresinol, and then to (-)-secoisolariciresinol. (-)-Secoisolariciresinol, in the reaction catalyzed by NAD(P)-dependent secoisolariciresinol dehydrogenase (EC 1.1.1.331) is oxidized to (-)-matairesinol.

⇑ Back to the top ⇑

Metabolism of lignans by human gut microbiota

Their importance to human health is due largely to their metabolism by colonic microbiota, which carries out deglycosylations, para-dehydroxylations, and meta-demethylations without enantiomeric inversion. Indeed, this metabolization leads to the formation molecules with a modest estrogen-like activity (phytoestrogens), a situation similar to that observed with some isoflavones, such as those of soybean, some coumarins, and some stilbenes. These active metabolites are the so-called “mammalian lignans or enterolignans”, such as the aglycones of enterodiol and enterolactone, formed from secoisolariciresinol and matairesinol, respectively.
Studies conducted on animals fed diets rich in lignans have shown their presence as intact molecules, in low concentrations, in serum, suggesting that they may be absorbed as such from the intestine. These molecules exhibit estrogen-independent actions, both in vivo and in vitro, such as inhibition of angiogenesis, reduction of diabetes, and suppression of tumor growth.
Note: the term “phytoestrogen” refers to molecules with estrogenic or antiandrogenic activity, at least in vitro.

Once absorbed, they enter the enterohepatic circulation, and, in the liver, may undergo phase II reactions and be sulfated or glucuronidated, and finally excreted in the urine.

⇑ Back to the top ⇑

Food rich in lignans

Lignans
Fig. 4 – (-)-Secoisolariciresinol

The richest dietary source is flaxseed (linseed), that contains mainly secoisolariciresinol, but also lariciresinol, pinoresinol and matairesinol in good quantity (for a total amount of more than 3.7 mg/100 g dry weight). They are also found in sesame seeds.
Another important source is whole grains.
They are also present in other foods, but in concentrations from one hundred to one thousand times lower than those of flaxseed. Examples are:

  • beverages, generally more abundant in red wine, followed in descending order by black tea, soy milk and coffee;
  • fruits, such as apricots, pears, peaches, strawberries;
  • among vegetables, Brassicaceae, garlic, asparagus and carrots;
  • lentils and beans.

Their presence in grains and, to a lesser extent in red wine and fruit, makes them, at least in individuals who follow a Mediterranean-style eating pattern, the main source of phytoestrogens.

⇑ Back to the top ⇑

References

Andersen Ø.M., Markham K.R. Flavonoids: chemistry, biochemistry, and applications. CRC Press Taylor & Francis Group, 2006

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Heldt H-W. Plant biochemistry – 3th Edition. Elsevier Academic Press, 2005

Manach C., Scalbert A., Morand C., Rémésy C., and Jime´nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-47 [Abstract]

Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010;2:1231-46. doi:10.3390/nu2121231

Satake H, Koyama T., Bahabadi S.E., Matsumoto E., Ono E. and Murata J. Essences in metabolic engineering of lignan biosynthesis. Metabolites 2015;5:270-90. doi:10.3390/metabo5020270

van Duynhoven J., Vaughan E.E., Jacobs D.M., Kemperman R.A., van Velzen E.J.J, Gross G., Roger L.C., Possemiers S., Smilde A.K., Doré J., Westerhuis J.A.,and Van de Wiele T. Metabolic fate of polyphenols in the human superorganism. PNAS 2011;108(suppl. 1):4531-8. doi:10.1073/pnas.1000098107

Wink M. Biochemistry of plant secondary metabolism – 2nd Edition. Annual plant reviews (v. 40), Wiley J. & Sons, Inc., Publication, 2010

Anthocyanins: foods, absorption, metabolism

Anthocyanin rich foods

Anthocyanin
Fig. 1 – Red Cherries

Together with catechins and proanthocyanidins, anthocyanins and their oxidation products are the most abundant flavonoids in the human diet.
They are found in:

  • certain varieties of grains, such as some types of pigmented rice (e.g. black rice) and maize (purple corn);
  • in certain varieties of root and leafy vegetables such as aubergine, red cabbage, red onions and radishes, beans;
  • but especially in red fruits.

They are also present in red wine; as the wine ages, they are transformed into various complex molecules.
Anthocyanin content in vegetables and fruits is generally proportional to their color: it increases during maturation, and it reaches values up to 4 g/kg fresh weight (FW) in cranberries and black currants.
These polyphenols are found primarily in the skin, except for some red fruits, such as cherries and red berries (e.g. strawberries), in which they are present both in the skin and flesh.
Glycosides of cyanidin are the most common anthocyanins in foods.

Anthocyanins in fruits

  • Berries are the main source of anthocyanins, with values ranging between 67 and 950 mg/100 g FW.
  • Other fruits, such as red grapes, cherries and plums, have content ranging between 2 and 150 mg/100 g FW.
  • Finally, in fruits such as nectarines, peaches, and some types of apples and pears, anthocyanins are poorly present, with a content of less than 10 mg/100 g FW.

Cranberries, besides their very high content of anthocyanins, are one of the rare food that contain glycosides of the six most commonly anthocyanidins present in foods: pelargonidin, delphinidin, cyanidin, petunidin, peonidin, and malvidin. The main anthocyanins are the 3-O-arabinosides and 3-O-galactosides of peonidin and cyanidin. A total of 13 anthocyanins have been detected, mainly 3-O-monoglycosides.

Intestinal absorption of anthocyanins

Until recently, it was believed that anthocyanins, together with proanthocyanidins and gallic acid ester derivatives of catechins, were the least well-absorbed polyphenols, with a time of appearance in the plasma consistent with the absorption in the stomach and small intestine. Indeed, some studies have shown that their bioavailability has been underestimated since, probably, all of their metabolites have not been yet identified.
In this regard, it should be underlined that only a small part of the food anthocyanins is absorbed in their glycated forms or as hydrolysis products in which the sugar moiety has been removed. Therefore, a large amount of these ingested polyphenols enters the colon, where they can also suffer methylation, sulphatation, glucuronidation and oxidation reactions.

Anthocyanins and colonic microbiota

Few studies have examined the metabolism of anthocyanins by the colonic microbiota.
Within two hours, it seems that all the anthocyanins lose their sugar moieties, thus producing anthocyanidins.
Anthocyanidins are chemically unstable in the neutral pH of the colon. They can be metabolized by colonic microbiota or chemically degraded producing a set of new molecules that have not yet fully identified, but which include phenolic acids such as gallic acid, syringic acid, protocatechuic acid, vanillic acid and phloroglucinol (1,3,5-trihydroxybenzene). These molecules, thanks to their higher microbial and chemical stability, might be the main responsible for the antioxidant activities and the other physiological effects that have been observed in vivo and attributed to anthocyanins.

References

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

de Pascual-Teresa S., Moreno D.A. and García-Viguera C. Flavanols and anthocyanins in cardiovascular health: a review of current evidence. Int J Mol Sci 2010;11:1679-1703 [Abstract]

Escribano-Bailòn M.T., Santos-Buelga C., Rivas-Gonzalo J.C. Anthocyanins in cereals. J Chromatogr A 2004:1054;129-141 [Abstract]

Han X., Shen T. and Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci 2007;9:950-988 [Abstract]

Manach C., Scalbert A., Morand C., Rémésy C., and Jime´nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-47 [Abstract]

Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010;2:1231-1246 [Abstract]