Tag Archives: glycogen

Blood glucose levels and liver

Blood glucose levels and hepatic glycogen

One of the main functions of the liver is to participate in the maintaining of blood glucose levels within well defined range (in the healthy state before meals 60-100 mg/dL or 3.33-5.56 mmol/L). To do it the liver releases glucose into the bloodstream in:

  • fasting state;
  • between meals;
  • during physical activity.

Blood glucose levels and hepatic glucose-6-phosphatase

In the liver, glycogen is the storage form of glucose which is released from the molecule not as such, but in the phosphorylated form i.e. with charge, the glucose-1-phosphate (this process is called glycogenolysis). The phosphorylated molecule can’t freely diffuse from the cell, but in the liver it is present the enzyme glucose-6-phosphatase that hydrolyzes glucose-6-phosphate, produced from glucose-1-phosphate in the reaction catalyzed by phosphoglucomutase, to glucose (an irreversible dephosphorylation).

glycogen(n glucose residues) + Pi → glucose-1-phosphate + glycogen(n-1 glucose residues)

glucose-1-phosphate ↔ glucose-6-phosphate

glucose-6-phosphate + H2O → glucose + Pi

Then, glucose can diffuse from the hepatocyte, via a transporter into the plasma membrane called GLUT2, into the bloodstream to be delivered to extra-hepatic cells, in primis neurons and red blood cells for which it is the main, and for red blood cells the only energy source (neurons, with the exception of those in some brain areas that can use only glucose as energy source, can derive energy from another source, the ketone bodies, which becomes predominant during periods of prolonged fasting).

Note: the liver obtains most of the energy required from the oxidation of fatty acids, not from glucose.

Glucose-6-phosphatase is present also in the kidney and gut but not in the muscle and brain; therefore in these tissues glucose-6-phosphate can’t be released from the cell.
Glucose-6-phosphatase plays an important role also in gluconeogenesis.

Glucose-6-phosphatase is present into the membrane of endoplasmic reticulum and the hydrolysis of glucose-6-phosphate occurs into its lumen (therefore this reaction is separated from the process of glycolysis). The presence of a specific transporter, the glucose-6-phosphate translocase, is required to transport the phosphorylated molecule from citosol into the lumen of endoplasmic reticulum. Although a glucose transporter is present into the membrane of endoplasmic reticulum, most of the released glucose is not transported back into the cytosol of the cell but is secreted into the bloodstream. Finally, an ion transporter transports back into the cytosol the inorganic phosphate released into the endoplasmic reticulum.

References

Arienti G. “Le basi molecolari della nutrizione”. Seconda edizione. Piccin, 2003

Cozzani I. and Dainese E. “Biochimica degli alimenti e della nutrizione”. Piccin Editore, 2006

Giampietro M. “L’alimentazione per l’esercizio fisico e lo sport”. Il Pensiero Scientifico Editore, 2005

Mahan LK, Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Mariani Costantini A., Cannella C., Tomassi G. “Fondamenti di nutrizione umana”. 1th ed. Il Pensiero Scientifico Editore, 1999

Nelson D.L., M. M. Cox M.M. Lehninger. Principles of biochemistry. 4th Edition. W.H. Freeman and Company, 2004

Stipanuk M.H.. “Biochemical and physiological aspects of human nutrition” W.B. Saunders Company-An imprint of Elsevier Science, 2000

Glycogen: definition, structure and functions

What is glycogen?

Glycogen Structure
Fig. 1 – Glycogen Structure

Glycogen is an homopolysaccharide formed by units of glucose. Chemically similar to amylopectin, and therefore sometimes referred to as animal starch, compared to the latter it is more compact, extensively branched and larger, reaching a molecular weight up to 108 Da corresponding to about 600000 glucose molecules.
As in the amylopectin, glucose units in the main chain and in the lateral chains are linked by α-(1→4) glycosidic bonds. Lateral chains are joined to the main chain by an α-(1→6) glycosidic bond; unlike amylopectin branches are more frequent, approximately every 10 glucose units (rather than every 25-30 as in amylopectin) and are formed by a smaller numbers of glucose units.
Glycogen is located in the cytosol of the cell in the form of hydrated granules of diameter between 1 to 4 µm and forms complexes with regulatory proteins and enzymes responsible for its synthesis and degradation.

Functions of glycogen

Glycogen, discovered in 1857 by French physiologist Claude Bernard, is the storage form of glucose, and therefore of energy, in animals in which it is present in the liver, muscle (skeletal and heart muscle) and in lower amounts in nearly all the other tissues and organs.
In humans it represents less than 1% of the body’s caloric stores (the other form of caloric reserve, much more abundant, is triacylglycerols stored in adipose tissue) and is essential for maintaining normal glycemia too.
It represents about 10% of liver weight and 1% of muscle weight; although it is present in a higher concentration in the liver, the total stores in muscle are much higher thanks to its greater mass (in a non-fasting 70 kg adult male there are about 100 g of glycogen in the liver and 250 g in the muscle).

  • Liver glycogen stores is a glucose reserve that hepatocyte releases when needed to maintain a normal blood sugar levels: if you consider glucose availability (in a non-fasting 70 kg adult male) there is about 10 grams or 40 kcal in body fluids while hepatic glycogen can supply, also after a fasting night, about 600 kcal.
  • In skeletal and cardiac muscle, glucose from glycogen stores remains within the cell and is used as an energy source for muscle work.
  • The brain contains a small amount of glycogen, primarily in astrocytes. It accumulates during sleep and is mobilized upon waking, therefore suggesting its functional role in the conscious brain. These glycogen reserves also provide a moderate degree of protection against hypoglycemia.
  • It has a specialized role in fetal lung type II pulmonary cells. At about 26 weeks of gestation these cells start to accumulate glycogen and then to synthesize pulmonary surfactant, using it as a major substrate for the synthesis of surfactant lipids, of which dipalmitoylphosphatidylcholine is the major component.
Glycogen: Dipalmitoylphosphatidylcholine
Fig. 1 – Dipalmitoylphosphatidylcholine

Glycogen and foods

It is absent from almost all foods because after an animal is killed it is rapidly broken down to glucose and then to lactic acid; it should be noted that the acidity consequently to lactic acid production gradually improves the texture and keeping qualities of the meat. The only dietary sources are oysters and other shellfish that are eaten virtually alive: they contain about 5% glycogen.

In humans, accumulation of glycogen is associated with weight gain due to water retention: for each gram of stored glycogen 3 grams of water are retained.

References

Arienti G. “Le basi molecolari della nutrizione”. Seconda edizione. Piccin, 2003

Cozzani I. and Dainese E. “Biochimica degli alimenti e della nutrizione”. Piccin Editore, 2006

Giampietro M. “L’alimentazione per l’esercizio fisico e lo sport”. Il Pensiero Scientifico Editore, 2005

Mahan LK, Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Mariani Costantini A., Cannella C., Tomassi G. “Fondamenti di nutrizione umana”. 1th ed. Il Pensiero Scientifico Editore, 1999

Nelson D.L., M. M. Cox M.M. Lehninger. Principles of biochemistry. 4th Edition. W.H. Freeman and Company, 2004

Stipanuk M.H.. “Biochemical and physiological aspects of human nutrition” W.B. Saunders Company-An imprint of Elsevier Science, 2000

Strategies to maximize muscle glycogen resynthesis after exercise

Strategies to maximize muscle glycogen resynthesis after exercise: contents in brief

Post-exercise muscle glycogen synthesis

An important energy source for working muscle is its glycogen store, whose level is correlated with the onset of fatigue.
The highly trained athlete not only has glycogen stores potentially higher but he is also able to synthesize it faster thanks to more efficient enzymes.
To synthesize glycogen it is necessary to ingest carbohydrates; but how many, which, when, and how often?

⇑ Back to the top ⇑

The two phases of muscle glycogen synthesis after exercise

In order to restore as quickly as possible muscle glycogen depots, it is useful to know that, as a result of training sessions that deplete muscle glycogen to values below 75% those at rest and not fasting, glycogen synthesis occurs in two phases.
To know and therefore take advantage of the biphasicity is important for those athletes who are engaged in more daily training sessions, or who otherwise have little time for recovery between a high intensity exercise and the subsequent one (less than 8 hours), in order to maximize glycogen synthesis and achieve the optimal performance during a second close exercise session.
The two phases are characterized by:

  • a different sensitivity to circulating insulin levels;
  • a different velocity.

⇑ Back to the top ⇑

Muscle glycogen synthesis after exercise: the first phase

Muscle Glycogen
Fig. 1 – Glycogen Structure

The first phase, immediately following the end of an activity and lasting 30-60 minutes, is insulin-independent, i.e. glucose uptake by muscle cell as glycogen synthesis are independent from hormone action.
This phase is characterized by an elevated rate of synthesis that however decreases rapidly if you do not take in carbohydrates: the maximum rate is in the first 30 minutes, then declines to about one fifth in 60 minutes, and to about one ninth in 120 minutes from the end of exercise.
How is it possible to take advantage of this first phase to replenish muscle glycogen stores as much as possible? By making sure that the greatest possible amount of glucose arrives to muscle in the phase immediately following to the end of exercise, best if done within the first 30 minutes.

  • What to ingest?
    High glycemic index, but easy to digest and absorb, carbohydrates.
    Therefore, it is advisable to replace foods, even though of high glycemic index, that need some time for digestion and the subsequent absorption, with solutions/gel containing for example glucose and/or sucrose. These solutions ensure the maximal possible absorption rate and resupply of glucose to muscle because of they contain only glucose and are without fiber or anything else that could slow their digestion and the following absorption of the monosaccharide, that is, they are capable of producing high blood glucose levels in a relatively short time.
    It is also possible to play on temperature and concentration of the solution to accelerate the gastric transit.
    It should be further underlined that the use of these carbohydrate solutions is recommended only when the recovery time from a training/competition session causing significant depletion of muscle glycogen and the following one is short, less than 8 hours.
  • How many carbohydrates do you need?
    Many studies has been conducted to find the ideal amount of carbohydrates to ingest.
    If in post-exercise the athlete does not eat, glycogen synthesis rate is very low, while if he ingests adequate amounts of carbohydrates immediately after cessation of exercise, synthesis rate can reach a value over 20 times higher.
    From the analysis of scientific literature it seems reasonable to state that, as a result of training sessions that deplete muscle glycogen stores as seen above (<75% of those at rest and not fasting), the maximum synthesis rate is obtained by carbohydrate intake, with high glycemic index and high digestion and absorption rates, equal to about 1.2 g/kg of body weight/h for the next 4-5 hours from the end of exercise.
    In this way, the amount of glycogen produced is higher than 150% compared to the ingestion of 0.8 g/kg/h.
    Because further increases, up to 1.6 g/kg/h, do not lead to further rise in glycogen synthesis rate, the carbohydrate amount equal to 1.2 g/kg/h can be considered optimum to maximize the resynthesis rate of muscle glycogen stores during post-exercise.
  • And the frequency of carbohydrate ingestion?
    It was observed that if carbohydrates are ingested frequently, every 15-30 minutes, it seems there is a further stimulation of muscle glucose uptake as of muscle glycogen replenishment compared with ingestion at 2-hours intervals. Particularly, ingestions in the first post-exercise hours seem to optimize glycogen levels.

⇑ Back to the top ⇑

Muscle glycogen synthesis after exercise: the second phase

The second phase begins from the end of the first, lasts until the start of the last meal before the next exercise (hence, from several hours to days), and is insulin-dependent i.e. muscle glucose uptake and glycogen synthesis are sensitive to circulating hormone levels.
Moreover, you observe a significant reduction in muscle glycogen synthesis rate: with adequate carbohydrate intake the synthesis rate is at a value of about 10-30% lower than that observed during the first phase.
This phase can last for several hours, but tends to be shorter if:

In order to optimize the resynthesis rate of glycogen, experimental data indicate that meals with high glycemic index carbohydrates are more effective than those with low glycemic index carbohydrates; but if between a training/competition session and the subsequent one days and not hours spend, the evidences do not favor high glycemic index carbohydrates as compared to low glycemic index ones as long as an adequate amount is taken in.

⇑ Back to the top ⇑

Muscle glycogen synthesis rate and ingestion of carbohydrates and proteins

The combined ingestion of carbohydrates and proteins (or free insulinotropic amino acids) allows to obtain post-exercise glycogen synthesis rate that does not significantly differ from that obtained with larger amounts of carbohydrates alone. This could be an advantage for the athlete who may ingest smaller amount of carbohydrates, therefore reducing possible gastrointestinal complications commons during training/competition afterward to their great consumption.
From the analysis of scientific literature it seems reasonable to affirm that, after an exercise that depletes at least 75% of muscle glycogen stores, you can obtain a glycogen synthesis rate similar to that reached with 1.2 g/kg/h of carbohydrates alone (the maximum obtainable) with the coingestion of 0.8 g/kg/h of carbohydrates and 0.4 g/kg /h of proteins, maintaining the same frequency of ingestion, therefore every 15-30 minutes during the first 4-5 hours of post-exercise.

⇑ Back to the top ⇑

The two phases of muscle glycogen synthesis: molecular mechanisms

The biphasicity is consequence, in both phases, of an increase in:

  • glucose transport rate into cell;
  • the activity of glycogen synthase, the enzyme that catalyzes glycogen synthesis.

However, the molecular mechanisms underlying these changes are different.
In the first phase, the increase in glucose transport rate, independent from insulin presence, is mediated by the translocation, induced by the contraction, of glucose transporters, called GLUT4, on the cytoplasmatic membrane of the muscle cell.
In addition, the low glycogen levels also stimulate glucose transport as it is believed that a large portion of transporter-containing vesicles are bound to glycogen, and therefore they may become available when its levels are depleted.
Finally, the low muscle glycogen levels stimulate glycogen synthase activity too: it has been demonstrated that these levels are a regulator of enzyme activity far more potent than insulin.
In the second phase, the increase in muscle glycogen synthesis is due to insulin action on glucose transporters and on glycogen synthase activity of muscle cell. This sensibility to the action of circulating insulin, that can persist up to 48 hours, depending on carbohydrate intake and the amount of resynthesized muscle glycogen, has attracted much attention: it is in fact possible, through appropriate nutritional intervention, to increase the secretion in order to improve glycogen synthesis itself, but also protein anabolism, reducing at the same time the protein-breakdown rate.

⇑ Back to the top ⇑

Glycogen synthesis rate and insulin

The coingestion of carbohydrates and proteins (or free amino acids) increases postprandial insulin secretion compared to carbohydrates alone (in some studies there was an increase in hormone secretion 2-3 times higher compared to carbohydrates alone).
It was speculated that, thanks to the higher circulating insulin concentrations, further increases in post-exercise glycogen synthesis rate could be obtained compared to those observed with carbohydrates alone, but in reality it does not seem so. In fact, if carbohydrate intake is increased to 1.2 g/kg/h plus 0.4 g/kg/h of proteins no further increases in glycogen synthesis rate are observed if compared to those obtained with the ingestion of carbohydrates alone in the same amount (1,2 g/kg/h, that, as mentioned above, like the coingestion of 0,8 g/kg/h of carbohydrates and 0,4 g/kg/h of proteins, allows to attain the maximum achievable rate in post-exercise) or in isoenergetic quantities, that is, 1.6 g/kg (proteins and carbohydrates contain the same calorie/g)

⇑ Back to the top ⇑

Insulin and preferential carbohydrate storage

The greater circulating insulin levels reached with the coingestion of carbohydrates and proteins (or free amino acids) might stimulate the accumulation of ingested carbohydrates in tissues most sensitive to its action, such as liver and previously worked muscle, thus resulting in a more efficient storage, for the purposes of sport activity, of the same carbohydrates.

⇑ Back to the top ⇑

References

Beelen M., Burke L.M., Gibala M.J., van Loon J.C. Nutritional strategies to promote postexercise recovery. Int J Sport Nutr Exerc Metab 2010:20(6);515-32 doi:10.1123/ijsnem.20.6.515

Berardi J.M., Noreen E.E., Lemon P.W.R. Recovery from a cycling time trial is enhanced with carbohydrate-protein supplementation vs. isoenergetic carbohydrate supplementation. J Intern Soc Sports Nutrition 2008;5:24 doi:10.1186/1550-2783-5-24

Betts J., Williams C., Duffy K., Gunner F. The influence of carbohydrate and protein ingestion during recovery from prolonged exercise on subsequent endurance performance. J Sports Sciences 2007;25(13):1449-60 doi:10.1080/02640410701213459

Howarth K.R., Moreau N.A., Phillips S.M., and Gibala M.J. Coingestion of protein with carbohydrate during recovery from endurance exercise stimulates skeletal muscle protein synthesis in humans. J Appl Physiol 2009:106;1394–1402 doi:10.1152/japplphysiol.90333.2008

Jentjens R., Jeukendrup A. E. Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Medicine 2003:33(2);117-144 doi:10.2165/00007256-200333020-00004

Millard-Stafford M., Childers W.L., Conger S.A., Kampfer A.J., Rahnert J.A. Recovery nutrition: timing and composition after endurance exercise. Curr Sports Med Rep 2008;7(4):193-201 doi:10.1249/JSR.0b013e31817fc0fd

Price T.B., Rothman D.L., Taylor R., Avison M.J., Shulman G.I., Shulman R.G. Human muscle glycogen resynthesis after exercise: insulin-dependent and –independent phases. J App Physiol 1994:76(1);104–111 doi:10.1152/jappl.1994.76.1.104

van Loon L.J.C., Saris W.H.M., Kruijshoop M., Wagenmakers A.J.M. Maximizing postexercise muscle glycogen synthesis: carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures. Am J Clin Nutr 2000;72: 106-111 doi:10.1093/ajcn/72.1.106

Skeletal muscle glycogen stores and sports

Functions of skeletal muscle glycogen

Muscle glycogen represents a source of glucose, therefore energy, that can be used by muscle during physical activity: it is an energy store where needed!
Furthermore a close relationship exists between the onset of fatigue and depletion of its muscle stores.

Glycogen as energy source

Carbohydrates and fatty acids represent the main energy source for muscle during exercise and their relative contribution varies depending on:

  • the intensity and duration of exercise;
  • the level of training.

If for fatty acids there are no problems regarding body stores so it is not for carbohydrates whose stores, present in glycogen form principally in the liver and the muscle, are modest, less than 5% of total body energy stores: in a non-fasting 70 kg adult male there are about 250 g of glycogen in the muscle and 100 g in the liver, for a total energy of about 1400 kcal. In athletes the amount could be higher, for example in the best marathoners, again considering an adult male as above, you can reach up to 475 g in total, muscle plus liver, which corresponds to about 1900 kcal.
In spite of this, glycogen contribution to the total energy needed to sustain muscular workload rises with the increase of exercise intensity, whereas we reduce that in the form of fatty acids.
Furthermore, in the absence of replenishment with exogenous carbohydrates, performance is determined by the endogenous stores of liver and skeletal muscle glycogen, of which relative consumption is different: an increase of intensity increases that of the second (muscle) while remain more or less constant in that of the first (liver).

Skeletal muscle glycogen and intese exercises

In fact, skeletal muscle glycogen represents the most important energy reserve for prolonged moderate-high intensity exercise, an importance that increase in the case of high-intensity interval exercise (common in training session undertaken by swimmers runners, rowers or in team-sport players) or in resistance exercise, therefore both endurance and resistance exercises. If for example we consider the marathon about 80% of utilized energy derives from carbohydrate oxidation, for the most part skeletal muscle glycogen.
Finally, the replenishment rate of glycogen stores in post-exercise is one of the most important factors in establishing necessary recovery time.

Muscle glycogen and fatigue

Fatigue and low glycogen levels are closely correlate but it is not clear which mechanisms are at the basis of this relationship; one hypothesis is that there exists a minimum glycogen concentration that is “protected” and is resistant to being used during exercise, perhaps to ensure an energy reserve in case of extreme necessity.
Because of the closely relationship between skeletal muscle glycogen depletion and fatigue, its replenish rate in the post-exercise is one of the most important factors in determining necessary recovery time.

References

Arienti G. “Le basi molecolari della nutrizione”. Seconda edizione. Piccin, 2003

Beelen M., Burke L.M., Gibala M.J., van Loon J.C. Nutritional strategies to promote postexercise recovery. Int J Sport Nutr Exerc Metab 2010:20(6);515-32 doi:10.1123/ijsnem.20.6.515

Cozzani I. and Dainese E. “Biochimica degli alimenti e della nutrizione”. Piccin Editore, 2006

Giampietro M. “L’alimentazione per l’esercizio fisico e lo sport”. Il Pensiero Scientifico Editore, 2005

Mahan LK, Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Mariani Costantini A., Cannella C., Tomassi G. “Fondamenti di nutrizione umana”. 1th ed. Il Pensiero Scientifico Editore, 1999

Nelson D.L., M. M. Cox M.M. Lehninger. Principles of biochemistry. 4th Edition. W.H. Freeman and Company, 2004

Stipanuk M.H.. “Biochemical and physiological aspects of human nutrition” W.B. Saunders Company-An imprint of Elsevier Science, 2000

Daily protein requirements for athletes

Daily protein requirements and sports

Proteins Requirements
Fig. 1 – Food High in Proteins

It is now accepted by athletes, coaches and athletic trainers that proper diet is one of the cornerstones for achieving better athletic performance. Despite this widely spread assumption, many, even at the highest levels, still believe that an high protein intake is fundamental in the athlete’s diet. This opinion is not new and is deeply rooted in the imaginary of many people almost as if, eating meat, even of big and strong animals, we were able to gain their strength and vitality too.
The function of proteins as energy-supplier for working muscle was hypothesized for the first time by von Liebig in ‘800 and it is because of his studies if, even today, animal proteins, and therefore meats, are often believed having great importance in the energy balance in the athlete’s diet, despite nearly two centuries in which biochemistry and sports medicine have made enormous progress.
Really, by the end of ‘800 von Pettenkofer and Voit and, at the beginning of ‘900, Christensen and Hansen retrenched their importance for energy purposes, also for the muscle engaged  in sport performance, instead bringing out the prominent role played by carbohydrates and lipids.
Of course we shouldn’t think that proteins are not useful for the athlete or sedentary people. The question we need to answer is how many proteins a competitive athlete, engaged in intense and daily workouts, often two daily sessions (for 3-6 hours), 7/7, for more than 10 months a year, needs per day. We can immediately say that, compared to the general population, and with the exception of some sports, (see below) the recommended amount of protein is greater.

Metabolic fate of proteins at rest and during exercise

In a healthy adult subject engaged in a non-competitive physical activity, the daily protein requirements is about 0.85 g/kg desirable body weight, as shown by WHO.
Proteins turnover in healthy adults, about 3-4 g/kg body weight/day (or 210-280 g for a 70 kg adult), is slower for the muscle than the other tissues and decreasing with age, and is related to the amount of amino acids in the diet and protein catabolism.
At rest the anabolic process, especially of synthesis, uses about 75% amino acids while the remaining 25% undergoes oxidative process, that will lead to CO2 and urea release (for the removal of ammonia).
During physical activity, as result of the decreased availability of sugars, i.e. muscle glycogen and blood glucose used for energy purposes, as well as the intervention of cortisol, the percentage of amino acids destinated to anabolic processes is reduced while it increases that of amino acids diverted to catabolic processes, that is, it occurs an increase in the destruction of tissue proteins.
At the end of physical activity, for about two hours, anabolic processes remain low whereupon it occurs their sharp increase that brings them to values ​​higher than basal ones, so, training induces an increase in protein synthesis even in the absence of an increase in proteins intake.

What determines the daily protein requirements?

There are many factors to be taken into account in the calculation of the daily protein requirements.

  • The age of the subject (if, for example, he/she is in the age of development).
  • Gender: female athletes may require higher levels as their energy intake is lower.
  • An adequate carbohydrate intake reduces their consumption.
    During physical activity, glucogenic amino acids may be used as energy source directly in the muscle, after their conversion to glucose in the liver through gluconeogenesis.
    An adequate carbohydrate intake before and during prolonged exercise lowers the use of body proteins.
  • The amount of carbohydrates stored in muscles and liver (glycogen) (see above).
  • The energy intake of the diet.
    A reduced energy intake increases protein requirements; conversely, the higher energy intake, the lower the amount of protein required to achieve nitrogen balance; usually there is a nitrogen retention of 1-2 mg per kcal introduced.
    If the athlete is engaged in very hard competition/workouts, or if he requires an increase in muscle masses (e.g. strength sports) nitrogen balance must be positive; a negative balance indicates a loss of muscle mass.
    The nitrogen balance is calculated as difference between the nitrogen taken with proteins (equal to: g. proteins/6.25) and the lost one (equal to: urinary urea in 24 hours, in g., x0.56]; in formula:

Nb (nitrogen balance) = (g. protein/6.25) – [urinary urea in 24 hours, in g., x0.56)]

  • The type of competition/workouts that the athlete is doing, either resistance or endurance, as well as the duration and intensity of the exercise itself.
    Resistance training leads to an increase in protein turnover in muscle, stimulating protein synthesis to a greater extent than protein degradation; both processes are influenced by the recovery between a training and the next one as well as by the degree of training (more training less loss).
    In the resistance and endurance performances the optimal protein requirements in younger people as for those who train less time are estimated at 1.3 to 1.5 g protein/kg body weight, while in adult athletes who train more time is slightly lower, about 1-1.2 g/Kg of body weight.
    Why?
    In subjects engaged in a hard physical activity, proteins are used not only for plastic purposes, which are incremented, but also for energy purposes being able to satisfy in some cases up to 10-15% of the total energy demand.
    Indeed, intense aerobic performances, longer than 60 minutes, obtain about 3-5% of the consumed energy by the oxidation of protein substrates; if we add to this the proteins required for the repair of damaged tissue protein structures, it results a daily protein demand about 1.2 to 1.4 g/kg body weight.
    If the effort is intense and longer than 90 minutes (as it may occur in road cycling, running, swimming, or cross-country skiing), also in relation to the amount of available glycogen in muscle and liver (see above), the amount of proteins used for energy purposes can get to satisfy, in the latter stages of a prolonged endurance exercise, 15% of the energy needs of the athlete.
  • The physical condition.
  • When needed, the desired weight.
    Athletes attempting to lose weight or maintain a low weight may need more proteins.

From the above, protein requirements don’t exceed 1.5 g/kg body weight, also for an adult athlete engaged in intense and protracted workouts, while if you consider the amount of protein used for energy purposes, you do not go over 15% of the daily energy needs.
So, it’s clear that diets which supply higher amounts (sometimes much higher) of proteins aren’t of any use, stimulate the loss of calcium in bones and overload of work liver and kidney. Moreover, excess proteins don’t accumulate but are used to fat synthesis.

How to meet the increased protein requirements of athletes

Protein Requirements
Fig. 2 – Road Cycling

A diet that provides 12 to 15% of its calories from protein will be quite sufficient to satisfy the needs of almost all of the athletes, also those engaged in exhausting workouts.
In fact, with the exception of some sports whose energy expenditure is low, close to that of sedentary subject (for example: shooting, or artistic and rhythmic gymnastics), athletes need a high amount of calories and, for some sports such as road cycling, swimming or cross-country skiing, it may be double/triple than that of a sedentary subject.
The increase in food intake is accompanied by a parallel increase in protein intake, because only a few foods such as honey, maltodextrin, fructose, sugar and vegetable oils are protein-free, or nearly protein-free.

Calculation of protein requirements of athletes

If you consider an energy demand of 3500 kcal/die, with a protein intake equal to 15% of total daily calories, you have:

3500 x 0.15 = 525 Kcal

As 1 gram of protein contains 4 calories, you obtain:

525/4 = 131 g of proteins

Dividing the number found by the highest protein requirements seen above (1.5 g/kg body weight/day), you obtain:

131/1.5 = 87 kg

that is, the energy needs of a 87 kg athlete engaged in intense workouts are satisfied.
Repeating the same calculations for a caloric intake of 5000 , you obtain  187 g of protein; dividing it by 1.5 the result is 125 kg, that is, the energy needs of a 125 kg athlete are satisfied.
These protein intakes can be met by a Mediterranean-type diet, without protein or amino acids supplements.

References

Giampietro M. L’alimentazione per l’esercizio fisico e lo sport. Il Pensiero Scientifico Editore. Prima edizione 2005

Protein and amino acid requirements in human nutrition. Report of a joint FAO/WHO/UNU expert consultation. 2002 (WHO technical report series ; no. 935) [PDF]

Body weight: what to do not to increase it

In order to maintain body weight: adjust caloric intake according to consumption

Body Weight: Adjust Caloric Intake According to Consumption
Fig. 1 – Adjust Caloric Intake According to Consumption

In order to maintain your body weight, energy intake with foods must match your individual needs, depending on age, sex and level of physical activity; calories exceeding needs accumulate in form of fat that will deposit in various parts of the body (typically in men, as in postmenopausal women, the accumulation area for excellence is abdomen).
An example: let’s assume an energy requirement of 2000 kcal with an intake of 2100 kcal. The extra 100 kcal could result from 30 g of pasta or 35 g of bread or a 25 g package of crackers or 120 g of potatoes or 10 g of oils from any source etc., not a particularly large amount of food. This modest calories surplus, if performed daily for one year leads us to take:
100 kcal x 365 days = 36500 kcal/year extra calories compared to needs.
Since a kilogram of body fat contains approximately 7000 kcal, if we assume that 36500 kcal in excess accumulate exclusively in form of fat (very plausible approximation), we obtain: 36500/7000 = about 5 kilogram of body fat.
So, even a modest daily calorie surplus, over a year, can lead to a substantial body weight gain in the form of fat mass.
This example shows the importance of estimating with accuracy our daily energy requirements.

In order to maintain body weight: split daily caloric intake into multiple meals

Let’s assume that daily caloric requirement to maintain body weight is equal to 2000 kcal.
Is it the same thing if they are consumed in just two meals, maybe dividing them in half between lunch and dinner, or is it advisable to take three to five meals during a day?
In order to mantain body weight, the best choice  is to divide calories into five meals: breakfast, lunch and dinner, the most abundant, plus two snacks, one on mid-morning and the other on mid-afternoon. Why? There are various reasons.

  • Consuming only two meals during the day, lunch and dinner or breakfast and dinner, it is likely to approach both meals with a hunger difficult to control; we eat what we have on our plate already thinking about what else to eat, having the feeling of not being able to satisfy the hunger. We eat, but there is always room for more food. Among the reasons for this there are too many hours between meals. Two examples:

dinner at 8:00 p.m. and, the next day, lunch at 1:00 p.m.: the interval is 17 hours, more than 2/3 of a day;

breakfast at 7:00 a.m. and dinner to 8:00 p.m., 13 hours have passed, most of which are spent in working activities and therefore more energy-consuming than hours of sleep.

Then, drops in blood sugar levels (glycemia) can also occur: liver glycogen stores, essential for maintaining normal glycemia, with time intervals between meals previously seen, can easily reach values close to depletion.

Therefore, by splitting the daily caloric intake into two meals, it is most likely difficult to meet the target of assuming 2000 kcal (the suggested daily calorie intake).

  • The concentration of too many calories in a single meal may promote the increase of plasma triglycerides, the excess of which is linked to the onset of cardiovascular disease.
  • When accumulating almost all or all of the calories in just two meals we are likely to grow stout, have feelings of bloating and getting real digestive problems due to excess of ingested food, not to mention that could occur even a postprandial sleepiness or difficulties in getting asleep.

In order to maintain body weight: exercise regularly

Physical activity has a central role both in maintaining the reached body weight and in the loss of fat mass.
Make physical activity on a regular basis has several advantages.

  • If exercise is conducted on a regular basis and is structured in the proper way, is possible that, even without appreciable changes in weight, a redistribution of fat occurs between fat mass, which drops, and free fat mass, which, on the contrary, increases. Such a result can’t obviously be reached by simple walk; we need a specific training program, better if planned by a professional, and a proper diet, always of Mediterranean type.
  • We protect muscle mass (and as suggested in point 1. we can also increase it).
  • We maintain a high metabolism.
  • Muscle burn energy during and especially after exercise.
  • The body is toned.
  • Appetite is controlled more easily.
  • Making physical activity on a regular basis makes the prevention of weight gain easier, due to the inevitable “escapades” (indulging in a bit of chocolate, an ice cream etc..).
References

Giampietro M. L’alimentazione per l’esercizio fisico e lo sport. Il Pensiero Scientifico Editore. Prima edizione 2005

Mahan L.K., Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Shils M.E., Olson J.A., Shike M., Ross A.C.: “Modern nutrition in health and disease” 9th ed. 1999