Tag Archives: glycogen

Glycolysis

Glycolysis: contents in brief

What is glycolysis?

Glycolysis, from Greek word glykys, meaning “sweet”, and lysis, meaning “dissolution or breakdown”, can be defined as the sequence of enzymatic reactions that, in the cytosol, also in the absence of oxygen, leads to the conversion of one molecule of glucose, a six carbon sugar, to two molecules of pyruvate, a three carbon compound, with the concomitant production of two molecules of ATP, the universal energy currency in biological systems.

Glycolysis
Fig. 1 – The Glycolytic Pathway

Glycolysis, which evolved before a substantial amount of oxygen had accumulated in the atmosphere, is the metabolic pathway with the largest flux of carbon in most living cells, and is present in almost all organisms.
This pathway, not requiring oxygen, played a crucial role in metabolic processes during the first 2 billion years of evolution of life, and probably represents the most ancient biological mechanism for extracting energy from organic molecules when oxygen availability is low. Moreover, it is a source of precursors for aerobic catabolism and for various biosynthetic processes.
Note: Glycolysis is also known as the Embden-Meyerhof pathway, named after Gustav Embden and Otto Meyerhof, the two researchers who elucidated the entire pathway in the muscle.

⇑ Back to the top ⇑

Glycolysis: the first metabolic pathway to be elucidated

The development of biochemistry has gone hand in hand with the elucidation of glucose metabolism, especially glycolysis, the first metabolic pathway to have been elucidated.
Though the elucidation of this metabolic pathway was worked out in the ‘40 of the last century, the key discovery about glucose metabolism was made in 1897, quite by accident, following a problem arose a year earlier, when a German chemist, M. Hahn, in attempting to obtain and preserve cell-free protein extracts of yeast, encountered difficulties in its conservation. A colleague, Hans Buchner, remembering a method for preserving jams, suggested to add sucrose to the extract.

Glycolsysis
Fig. 2 -Eduard Buchner

Eduard Buchner, Hans’s brother, put the idea of Hans into practice, and observed that the solution produced bubbles. This prompted Eduard to conclude that a fermentation was occurring, a quite surprising discovery. Indeed fermentation, according to Pasteur’s assertion in 1860, was inextricably tied to living cells, whereas it was now demonstrated that it could also occur outside them. Briefly, these two researchers refuted the vitalist dogma and had a pivotal role in starting modern biochemistry.
Eduard Bucher was awarded the Nobel Prize for Medicine in 1907 for this research, and was the first of several researchers who won the award for their discoveries concerning the glycolytic pathway.
It was later demonstrated, working with muscle extracts, that many of the reactions of lactic fermentation  were the same of those of alcoholic fermentation , thus revealing the underlying unity in biochemistry.
As previously mentioned, glycolysis was then fully elucidated in the first half of the last century largely due to the work of researchers such as Gerty and Carl Cori, Carl Neuberg, Arthur Harden, William Young, Jacob Parnas, Otto Warburg, Hans von Euler-Chelpin, Gustav Embden and Otto Meyerhof. In particular, Warburg and von Euler-Chelpin elucidated the whole pathway in yeast, and Embden and Meyerhof in muscle in the 30’s.

⇑ Back to the top ⇑

Why is glycolys so important?

Glycolysis is essential to most living cells both from the energy point of view and as a source of precursors for many other metabolic pathways. And the rate of carbon flow through glycolysis, namely, the amount of glucose converted to pyruvate per unit time, is regulated to meet these two basic needs for the cell.
From the energetic point of view, although glycolysis is a relatively inefficient pathway, it can occur in the absence of oxygen, the condition in which life evolved on Earth and that many contemporary cells, both eukaryotic and prokaryotic, experience. Here are some examples.

  • In most animals, muscles exhibit an activity-dependent anaerobiosis, namely, they can work anaerobically for short periods. For example, when animals, but also athletes, perform high intense exercises, their need for ATP exceeds body’s ability to supply oxygen to the muscle. In such situation, muscles function, albeit for a short period of time, anaerobically.
  • Another example is the cornea of the eye, a poorly vascularized tissue.
  • Many microorganisms live in environments where oxygen is low or absent, such as deep water, soil, but also skin pores. And a variety of microorganisms called obligate anaerobes cannot survive in the presence of oxygen, a highly reactive molecule. Examples are Clostridium perfringens, Clostridium tetani, and Clostridium botulinum, that cause gangrene, tetanus and botulism, respectively.

It should also be underlined that glycolysis also plays a key role in those cells and tissues in which glucose is the sole source of energy, such as:

  • red blood cells, lacking mitochondria,
  • sperm cells;
  • the brain, which can also use ketone bodies for fuel in times of low glucose;
  • the adrenal medulla.

A similar situation is also found in the plant world where many aquatic plants and some plant tissues specialized in starch accumulation, such as potato tubers, use glucose as the main source of energy.

Note: There are organisms that are facultative anaerobes, namely organisms that can survive in the presence and in the absence of oxygen, acting aerobically or anaerobically, respectively. Examples are animals belonging to the genus Mytilus, which display an habitat-dependent anaerobiosis, a condition similar to the activity-dependent anaerobiosis seen in muscle.

Finally, it should not be forgotten that under aerobic conditions, in cells with mitochondria, glycolysis constitutes the upper part of the metabolic pathway leading to the complete oxidation of glucose to carbon dioxide (CO2) and water for energy purposes.

Glycolysis
Fig. 3 – Glycolysis: Source of Building Blocks for Biosynthesis

Some glycolytic intermediates, for example glucose 6-phosphate (G-6-P), fructose 6-phosphate (F-6-P) or dihydroxyacetone phosphate (DHAP), may be used as building blocks in several metabolic pathways, such as those leading to the synthesis of glycogen, fatty acids,  triglycerides, nucleotides, of some amino acids, or 2,3-bisphosphoglycerate (2,3-BPG).

⇑ Back to the top ⇑

The steps of glycolysis

The 10 steps that make up glycolysis can be divided into two phases.
The first, called the preparatory phase, consists of 5 steps and starts with the conversion of glucose to fructose 1,6-bisphosphate (F-1,6-BP) through three enzymatic reactions, namely, a phosphorylation at C-1, an isomerization, and a second phosphorylation, this time at C-6, with consumption of 2 ATP. Fructose 1,6-bisphosphate is then cleaved into two phosphorylated three-carbon compounds, glyceraldehyde 3-phosphate and dihydroxyacetone phosphate.  Finally, the isomerization of DHAP to a second molecule of glyceraldehyde-3- phosphate occurs. In the preparatory phase therefore a glucose is split into two molecules of glyceraldehyde 3-phosphate, and two ATP are consumed.
In the second phase, called the payoff phase, consisting of the remaining 5 steps of the pathway, the two molecules of glyceraldehyde 3-phosphate are converted into two molecules of pyruvate, with the concomitant production of 4 ATP. So, in this phase, part of the energy present in the chemical bonds of glucose is extracted and conserved in the form of ATP. Furthermore, reducing equivalents are extracted and conserved in the form of the reduced coenzyme NADH. The metabolic fate of NADH will depend on the cell type and aerobic or anaerobic conditions.

Note: Glucose metabolized in the glycolytic pathway derives both from glucose that enters the cell through specific membrane transporters, that in turn derives from the bloodstream, and glucose 6-phosphate produced by glycogen degradation.

⇑ Back to the top ⇑

Reaction 1: glucose phosphorylation to glucose 6-phosphate

In the first step of the glycolytic pathway glucose is phosphorylated to glucose 6-phosphate at the expense of one ATP.

Glucose + ATP → Glucose 6-phosphate + ADP + H+

In most cells this reaction is catalyzed by hexokinase (EC 2.7.1.1), enzyme present in the cells of all organisms, and in humans with four isozyme).
Hexokinase and pyruvate kinase, the other kinase of the glycolysis, like many other kinases, require the presence of magnesium ion, Mg2+, or of another bivalent metal ion such as manganese, Mn2+, for their activity. Mg2+ binds to the ATP to form the complex MgATP2-, and in fact the true substrate of the enzyme is not ATP but this complex. It should be emphasized that the nucleophilic attack by a hydroxyl group (-OH) of glucose at the terminal phosphorus atom of the ATP is facilitated by the action of Mg2+ that interacts with the negative charges of the phosphoryl groups of the nucleoside triphosphate.
The formation of the phosphoester bond between a phosphoryl group and the hydroxyl group at C-6 of glucose is thermodynamically unfavorable and requires energy to proceed, energy that is provided by the ATP. Indeed, while the phosphorylation of glucose at C-6 by inorganic phosphate has a ΔG°’ of 13.8 kJ/mol (3.3 kcal/mol), namely, it is an endoergonic reaction, the hydrolysis of ATP to ADP and Pi has ΔG°’ of -30.5 kJ/mol (-7.3 kcal/mol), namely, it is an esoergonic reaction. The net reaction has a ΔG°’ equal to (-30.5 + 13.8) = -16.7 kJ/mol (-7.3 + 3.3 = -4.0 kcal/mol). Under cellular conditions the reaction is even more favorable, with a ΔG equal to -33.5 kJ/mol (-8.0 kcal/mol).
Therefore, this is an essentially irreversible reaction.

Note: In biochemistry, phosphorylations are fundamental reactions catalyzed by enzymes called kinases, a subclass of transferases. Kinases catalyze the transfer of the terminal phosphoryl group, or γ-phosphoryl group, of a nucleoside triphosphate to an acceptor nucleophile to form a phosphoester bond. Specifically, hexokinase catalyzes the transfer of the γ-phosphoryl group of ATP to a variety of hexoses, that is, sugars with six carbons, such as fructose and mannose), in addition to glucose.

⇑ Back to the top ⇑

The importance of glucose phosphorylation

The phosphorylation of the glucose has some functions.

  • Glucose 6-phosphate, due to its negative charge and because there are no transporters for phosphorylated sugars in the plasma membrane, cannot diffuse out of the cell. Thus, after the initial phosphorylation, no further energy is needed to keep the phosphorylated molecule within the cell, despite the large difference between its intra- and extracellular concentrations.
    Similar considerations are valid for each of the eight phosphorylated intermediates between glucose 6-phosphate and pyruvate.
  • The rapid phosphorylation of glucose maintains a low intracellular concentration of the hexose, thus favoring its facilitated diffusion into the cell.
  • Phosphorylation causes an increase in the energy content of the molecule, that is, it starts to destabilize it, thus facilitating its further metabolism.

⇑ Back to the top ⇑

Other possible fates of glucose 6-phosphate

Glucose 6-phosphate is a key metabolite of glucose metabolism. In fact, in addition to be metabolized in the glycolytic pathway, in anabolic conditions it can have other fates (see Fig. 3). Here are some examples.

  • It can be used in the synthesis of:

glycogen, a polysaccharide stored mainly in the liver and muscle;
complex polysaccharides present in the extracellular matrix;
galactose;
glucosamine and other sugars used for protein glycosylation.

  • It can be metabolized by the pentose phosphate pathway, that provides cells with:

NADPH, needed for reductive biosynthesis, such as fatty acid, cholesterol, steroid hormone, and deoxyribonucleotide biosynthesis, and for preventing oxidative damage in cells such as erythrocytes;
ribose 5-phosphate, used in nucleotide synthesis but also in NADH, FADH2 and coenzyme A synthesis.

⇑ Back to the top ⇑

Reaction 2: isomerization of glucose 6-phosphate to fructose 6-phosphate

In the second step of the glycolytic pathway, the isomerization of glucose 6-phosphate, an aldose, to fructose 6-phosphate, a ketose, occurs. This reaction is catalyzed by phosphoglucose isomerase, also known as phosphohexose isomerase or glucose phosphate isomerase (EC 5.3.1.9).

Glucose 6-phosphate ⇄ Fructose 6-phosphate

Like hexokinase, phosphoglucose isomerase requires the presence of Mg2+.
The ΔG°’ of the reaction is 1.7 kJ/mol (0.4 kcal/mol), while the ΔG is -2.5 kJ/mol (-0.6 kcal/mol). These small values indicate that the reaction is close to equilibrium and is easily reversible.
The reaction essentially consists in the shift of the carbonyl group at C-1 of the open-chain form of glucose 6-phosphate to C-2 of the open-chain form of fructose 6-phosphate.

Glycolysis
Fig. 4 – Phosphoglucose Isomerase Reaction

The enzymatic reaction can be divided at least into three steps. Since in aqueous solution both hexoses are primarily present in the cyclic form, the enzyme must first open the ring of G-6P, catalyze the isomerization, and, finally, the formation of the five-membered ring of F-6-P.
This isomerization is a critical step for glycolytic pathway, as it prepares the molecule for the subsequent two steps.
Why?

  • The phosphorylation that occurs in the third step requires the presence of an alcohol group at C-1, and not of a carbonyl group.
  • In the fourth step, the covalent bond between C-3 and C-4 is cleaved, and this reaction is facilitated by the presence of the carbonyl group at C-2.

⇑ Back to the top ⇑

Reaction 3: phosphorylation of fructose 6-phosphate to fructose 1,6-bisphosphate

In the third step of the glycolytic pathway, a second phosphorylation reaction occurs. Phosphofructokinase 1 or PFK-1 (EC 2.7.1.11) catalyzes the phosphorylation of fructose 6-phosphate at C-1 to form fructose 1,6-bisphosphate, at the expense of one ATP.

Fructose 6-phosphate + ATP → Fructose 1,6-bisphosphate + ADP + H+

PFK-1 is so named to distinguish it from phosphofructokinase 2 or PFK-2 (EC 2.7.1.105), the enzyme that catalyzes the phosphorylation of fructose 6-phosphate to fructose 2,6-bisphosphate.
Like the reaction catalyzed by hexokinase/glucokinase, this phosphorylation, too, is an essentially irreversible step, irreversibility, once again, achieved by coupling, by phosphofructokinase 1, with the hydrolysis of ATP. In fact, phosphorylation of fructose 6-phosphate by inorganic phosphate is endergonic, with a ΔG°’ of 16.3 kJ/mol (3.9 kcal/mol), whereas, when the reaction is coupled to the hydrolysis of ATP, the overall equation becomes exergonic, with a ΔG°’ of -14.2 kJ/mol (-3.4 kcal/mol) and a ΔG of -22.2 kJ/mol (-5.3 kcal/mol).
While hexokinase allows to trap glucose inside the cell, phosphofructokinase 1 prevents glucose to be used for glycogen synthesis or the production of other sugars, but is instead metabolized in the glycolytic pathway. In fact, unlike glucose 6-phosphate, fructose 1,6-bisphosphate cannot be used directly in other metabolic pathways than glycolysis/gluconeogenesis, that is, phosphofructokinase 1 catalyzes the first “committed” step of the glycolytic pathway. Such reactions are usually catalyzed by enzymes regulated allosterically, that prevent the accumulation of both intermediates and final products. PFK-1 is no exception, being subject to allosteric regulation by positive and negative effectors that signal the energy level and the hormonal status of the organism.
Some protists and bacteria, and perhaps all plants, have a phosphofructokinase that uses pyrophosphate (PPi) as a donor of the phosphoryl group in the synthesis of F-1,6-BP. This reaction has a ΔG°’ of -2.9 kJ/mol (-12.1 kcal/mol).

Fructose 6-phosphate + PPi → Fructose 1,6-bisphosphate + Pi

Note: The prefix bis– in bisphosphate, as fructose 1,6-bisphosphate, indicates that there are two phosphoryl groups are bonded to different atoms.
The prefix di– in diphosphate, as in adenosine diphosphate, indicates that there are two phosphoryl groups connected by an anhydride bond to form a pyrophosphoryl group, namely, they are directly bonded to one another.
Similar rules also apply to the nomenclature of molecules that have three phosphoryl groups standing apart, such as inositol 1,4,5-trisphosphate, or connected by anhydride bonds, such as ATP or guanosine triphosphate or GTP.

⇑ Back to the top ⇑

Reaction 4: cleavage of fructose 1,6-bisphosphate into two three-carbon fragments

In the fourth step of the glycolytic pathway, fructose 1,6-bisphosphate aldolase, often called simply aldolase (EC 4.1.2.13), catalyzes the reversible cleavage of fructose 1,6-bisphosphate into glyceraldehyde 3-phosphate, an aldose, and dihydroxyacetone phosphate, a ketose. The enzyme cleaves the bond between C-3 and C-4.

Fructose 1,6-bisphosphate ⇄ Dihydroxyacetone phosphate + Glyceraldehyde 3-phosphate

All glycolytic intermediates downstream to this reaction are three-carbon molecules, instead of six-carbon molecules as the previous ones.
The ΔG°’ of the reaction in the direction of glyceraldehyde 3-phosphate and dihydroxyacetone phosphate production is of 23.8 kJ/mol (5.7 kcal/mol), and the Km is approximately 10-4 M, values that would indicate that the reaction does not proceed as written from left to right. However, under normal cellular conditions, due to the lower concentrations of the reactants, the ΔG is -1.3 kJ/mol (-0.3 kcal/mol), a very small value, thus the reaction is easily reversible, that is, essentially to equilibrium.

Note: The name “aldolase” derives from the nature of the reverse reaction, from right to left as written, that is, an aldol condensation.

⇑ Back to the top ⇑

Reaction 5: interconversion of dihydroxyacetone phosphate and glyceraldehyde 3-phosphate

Of the two products of the previous reaction, glyceraldehyde 3-phosphate goes directly into the second phase of the glycolytic pathway. Conversely, DHAP is not on the direct pathway of glycolysis and must be converted, isomerized, to glyceraldehyde 3-phosphate to continue through the pathway. This isomerization is catalyzed by triose phosphate isomerase (EC 5.3.1.1).

Dihydroxyacetone phosphate ⇄ Glyceraldehyde 3-phosphate

Triose phosphate isomerase, in converting dihydroxyacetone phosphate into glyceraldehyde 3-phosphate, catalyzes the transfer of a hydrogen atom from C-1 to C-2, that is, catalyzes an intramolecular oxidation-reduction. And in essence, after the enzyme reaction, the carbons C-1, C-2 and C-3 of the starting glucose to become equivalent,  chemically indistinguishable, from the carbons C-6, C-5 and C-4, respectively.
Therefore, the net result of the the last two steps of glycolysis is the production of two molecules of glyceraldehyde 3-phosphate.
The ΔG°’ of the reaction is of 7.5 kJ/mol (1.8 kcal/mol), while the ΔG is 2.5 kJ/mol (0.6 kcal/mol). Although at equilibrium dihydroxyacetone phosphate represent about 96% of the trioso phosphates, the reaction proceeds readily towards the formation of glyceraldehyde 3-phosphate because of the subsequent step of the glycolytic pathway that removes the glyceraldehyde 3-phosphate produced.
One of the distinguishing features of triose phosphate isomerase is the great catalytic efficiency. The enzyme is in fact considered kinetically perfect. Why?  The enzyme enhances the isomerization rate by a factor of 1010 compared with that obtained with a catalyst such as acetate ion. Indeed, the Kcat/KM ratio for the isomerization of glyceraldehyde 3-phosphate is equal to 2×108 M-1s-1, value close to the diffusion-controlled limit. Thus, the rate-limiting step in the reaction catalyzed by triose phosphate isomerase is diffusion-controlled encounter of enzyme and substrate.
From the energetic point of view, the last two steps of glycolysis are unfavorable, with ΔG°’ of 31.3 kJ/mol  (7.5 kcal/mol), whereas the net ΔG°’ of the first five reactions is of 2.1 kJ/mol (0.5 kcal/mol), with a Keq of about 0.43. And it is the free energy derived from the hydrolysis two ATP that, under standard-state conditions, makes the value of the overall equilibrium constant close to one. If instead we consider ΔG, it is quite negative, -56.8 kJ/mol (-13.6 kcal/mol).

Notice that dihydroxyacetone phosphate may also be reduced to glycerol 3-phosphate (see Fig. 3) in the reaction catalyzed by cytosolic glycerol 3-phosphate dehydrogenase (EC 1.1.1.8).

Dihydroxyacetone phosphate + NADH + H+ ⇄ Glycerol 3-phosphate + NAD+

The enzyme acts as a bridge between glucose and lipid metabolism because the glycerol 3-phosphate produced is used in the synthesis of lipids such as triacylglycerols.
This reaction is an important sources of glycerol 3-phosphate in adipose tissue and small intestine.

⇑ Back to the top ⇑

Reaction 6: oxidation of glyceraldehyde 3-phosphate to 1,3-bisphosphoglycerate

In the sixth step of the glycolytic pathway, the first step of the second phase, the payoff phase, glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12) catalyses the oxidation of glyceraldehyde 3-phosphate to 1,3-bisphosphoglycerate (1,3-BPG), with the concomitant reduction of NAD+ to NADH.

Glyceraldehyde 3-phosphate + NAD+ + Pi ⇄ 1,3-Bisphosphoglycerate + NADH + H+

This is the first of the two glycolytic reactions in which the chemical energy needed for the subsequent synthesis of ATP is harvested and made available; the other reaction is catalyzed by enolase (EC 4.2.1.11). Why?
This reaction is the sum of two processes.

  • In the first reaction, the oxidation of the aldehyde group to a carboxyl group occurs, step in which NAD+ is used as oxidizing agent. The reaction is quite exergonic, with a ∆G’° of -43 kJ/mol (-10.3 kcal/mol).
  • In the second reaction, the formation of the bond between the carboxylic group at C-1 of 1,3-bisphosphoglycerate and orthophosphate occurs, to form an anhydride called acyl phosphate. The reaction is quite endergonic, with a ∆G’° of 49.3 kJ/mol (11.8 kcal/mol).

These two chemical processes must not take place in succession but must be coupled in order to allow the formation of the acyl phosphate because the oxidation of the aldehyde group is used to drive the formation of the anhydride, with an overall ΔG°’ of 6.3 kJ/mol (1.5 kcal/mol), and a ΔG of 2.5 kJ/mol (0.6 kcal/mol), both slightly endoergonic.
Therefore, the free energy that might be released as heat is instead conserved by the formation of the acyl phosphate.

Note: The reversible reduction of the nicotinamide ring of NAD+ or NADP+ is due to the loss of two hydrogen atoms by another molecule, in this case the aldehyde group of glyceraldehyde 3-phosphate, that undergoes oxidation, and to the subsequent transfer of a hydride ion, the equivalent of two electrons and a proton, to the nicotinamide ring. The other proton removed from the substrate is released to the aqueous solution. Below, the half reactions for both coenzymes.

NAD+ + 2 e + 2 H+ → NADH + H+

NADP+ + 2 e + 2 H+ → NADH + H+

⇑ Back to the top ⇑

Reaction 7: phosphoglycerate kinase and the first ATP forming reaction

In the seventh step of the glycolytic pathway, phosphoglycerate kinase (EC 2.7.2.3) catalyzes the transfer of the high-energy phosphoryl group from the acyl phosphate of 1,3-BPG to ADP to form ATP and 3-phosphoglycerate (3-PG).

1,3-Bisphosphoglycerate + ADP + H+ ⇄ 3-Phosphoglycerate + ATP

The ΔG°’ of the reaction is of -18.5 kJ/mol (-4.4 kcal/mol), namely, it is an exergonic reaction. The ΔG is 1.3 kJ/mol (0.3 kcal/mol).
The high phosphoryl-transfer potential of the acyl phosphate is used to phosphorylate ADP. The production of ATP in this manner  is called substrate-level phosphorylation. In other words, part of the energy released during the oxidation of the aldehyde group in the sixth step is now conserved by the synthesis of ATP from the ADP and Pi.
The reaction catalyzed by phosphoglycerate kinase is the first reaction of glycolysis in which part of the chemical energy present in glucose molecule is conserved as ATP. And, because the reactions catalyzed by aldolase and triose phosphate isomerase, step 4 and 5, respectively, lead to the formation of two molecules of glyceraldehyde 3-phosphate per molecule of glucose, in this step two ATP are produced and the ATP debt created by  the preparatory phase, steps 1 and 3, respectively, is “paid off”.
It should be noted that the enzyme is named for the reverse reaction, from right to left as written, that is, the phosphorylation of 3-phosphoglycerate to form 1,3-bisphosphoglycerate at the expense of one ATP.
Indeed, this enzyme, like all other enzymes, is able to catalyze the reaction in both directions. And the direction leading to the synthesis of 1,3-bisphosphoglycerate occurs during the photosynthetic CO2 fixation and gluconeogenesis.

The sixth and seventh reactions of glycolysis, are, as a whole, an energy-coupling process in which the common intermediate is 1,3-bisphosphoglycerate. While the reaction leading to the synthesis of 1,3-BPG is endergonic, with a ΔG°’ of 6.3 kJ/mol (1.5 kcal/mol), the second reaction is strongly exergonic, with a ΔG°’ of -18.5 kJ/mol (-4,4 kcal/mol). The overall ΔG°’ is -12.2 kJ/mol (-2.9 kcal/mol), namely, the reaction catalyzed by phosphoglycerate kinase is sufficiently exergonic to pull even the previous one, too, making the overall reaction exergonic.

Glyceraldehyde 3-phosphate + ADP + Pi + NAD+ ⇄ 3-Phosphoglycerate + ATP + NADH + H+

In reality, phosphoglycerate kinase reaction is sufficiently exergonic to pull also the reactions catalyzed by aldolase and triose phosphate isomerase.

⇑ Back to the top ⇑

What is substrate-level phosphorylation?

Substrate-level phosphorylation is defined as the production of ATP by the transfer of a phosphoryl group from a substrate to ADP, a process involving chemical intermediates and soluble enzymes.
There is also a second type of phosphorylation for the synthesis of ATP called oxidative phosphorylation, a process involving not chemical intermediates and soluble enzymes but transmembrane proton gradients and membrane-bound enzymes.

Because the standard free energy of hydrolysis of the phosphoryl group of 3-phosphoglycerate is equal to 12.5 kJ/mol (-3 kcal/mol), it is not sufficient to produce ATP by phosphoryl group transfer. In the two subsequent reactions of glycolysis, 3-phosphoglycerate is converted to phosphoenolpyruvate (PEP), a molecule with a phosphoryl group transfer potential sufficiently elevated to allow the synthesis of ATP.

⇑ Back to the top ⇑

Reaction 8: from 3-phosphoglycerate to 2-phosphoglycerate

In the eighth step of the glycolytic pathway, 3-phosphoglycerate is converted into 2-phosphoglycerate (2-PG), in a reversible reaction catalyzed by phosphoglycerate mutase (EC 5.4.2.1). The reaction requires Mg2+, and has a very small ΔG, equal to about 0.8 kJ/mol (0.2 kcal/mol) and a ΔG°’ of 4.4 kJ/mol (1.1 kcal/mol).
Phosphoglycerate mutase is a mutase, enzymes that catalyze intramolecular group transfers, in this case the transfer of a phosphoryl group from C-3 to C-2 of the 3-phosphoglycerate. Mutases, in turn, are a subclass of isomerases.
The mechanism by which this reaction takes place depends on the type of organism studied. For example, in yeast or in rabbit muscle the reaction occurs in two steps and involves the formation of phosphoenzyme intermediates. In the first step, a phosphoryl group bound to a histidine residue in the active site of the enzyme is transferred to the hydroxyl group at C-2 of 3-PG to form 2,3-bisphosphoglycerate. In the next step, the enzyme acts as a phosphatase converting 2,3-BPG into 2-phosphoglycerate; however, the phosphoryl group at C-3 is not released but linked to the histidine residue of the active site to regenerate the intermediate enzyme-His-phosphate. Schematically:

Enzyme-His-phosphate + 3-Phosphoglycerate ⇄ Enzyme-His + 2,3-Phosphoglycerate

Enzyme-His + 2,3-Bisphosphoglycerate ⇄ Enzyme-His-phosphate + 2-Phosphoglycerate

Notice that the phosphoryl group of 2-phosphoglycerate is not the same as that of the substrate 3-phosphoglycerate.
Approximately once in every 100 catalytic cycles, 2,3-BPG dissociates from the active site of the enzyme, leaving it unphosphorylated, that is, in the inactive form. The inactive enzyme may be reactivated by binding 2,3-bisphosphoglycerate, which must, therefore, be present in the cytosol to ensure the maximal activity of the enzyme. And 2,3-BPG is present in small, but sufficient amounts in most cells, except for red blood cells, where it acts as an allosteric inhibitor, too, reducing  the affinity of hemoglobin for oxygen, and has a concentration of 4-5 mM.

Note: 3-Phosphoglycerate can also be used for the biosynthesis of serine, from which glycine and cysteine derive (see Fig. 3). The biosynthesis of serine begins with the reaction catalyzed by phosphoglycerate dehydrogenase (EC 1.1.1.95). The enzyme catalyzes the oxidation of 3-phosphoglycerate to 3-phosphohydroxypyruvate and the concomitant reduction of NAD+ to NADH. This reaction is also the rate-limiting step of this biosynthetic pathway, because serine inhibits the activity of the enzyme.

⇑ Back to the top ⇑

Synthesis of 2,3-bisphosphoglycerate and the Rapoport-Luebering pathway

1,3-Bisphosphoglycerate can be also converted into 2,3-bisphosphoglycerate (see Fig. 3).
In red blood cells this reaction is catalyzed by the bisphosphoglycerate mutase, one of the three isoforms of phosphoglycerate mutase found in mammals. The enzyme requires the presence of 3-phosphoglycerate as it catalyzes the intermolecular transfer of a phosphoryl group from C-1 of 1,3-bisphosphoglycerate to the C-2 of 3-phosphoglycerate. Therefore, 3-phosphoglycerate becomes 2,3-BPG, while 1,3-BPG is converted into 3-phosphoglycerate. The mutase enzyme activity has EC number 5.4.2.4.

Glycolisys
Fig. 5 – Synthesis of 2,3-Bisphosphoglycerate

2,3-Bisphosphoglycerate can then be hydrolyzed to 3-phosphoglycerate in the reaction catalyzed by the phosphatase activity of bisphosphoglycerate mutase, that removes the phosphoryl group at C-2. This activity has EC number 3.1.3.13. The enzyme is also able to catalyze the interconversion of 2-phosphoglycerate and 3-phosphoglycerate, therefore, it is a trifunctional enzyme. 3-Phosphoglycerate can then re-enter the glycolytic pathway. This detour from glycolysis, also called Rapoport-Luebering pathway, that leads to the synthesis of 3-phosphoglycerate without any ATP production.
The other two isoforms of phosphoglycerate mutase, phosphoglycerate mutase 1 or type M, present in the muscle, and phosphoglycerate mutase 2 or type B, present in all other tissues, are able to catalyze, in addition to the interconversion of the 2-phosphoglycerate and 3-phosphoglycerate, the two steps of Rapoport-Luebering pathway, although with less efficacy than the glycolytic reaction. Therefore they are trifunctional enzymes.

⇑ Back to the top ⇑

Reaction 9: formation of phosphoenolpyruvate

In the ninth step of the glycolytic pathway, 2-phosphoglycerate is dehydrated to form phosphoenolpyruvate, an enol, in a reversible reaction catalyzed by enolase.

2-Phosphoglycerate ⇄ Phosphoenolpyruvate + H2O

The reaction requires Mg2+ that stabilizes the enolic intermediate that is formed during the process.
The ΔG°’ of the reaction is 7.5 kJ/mol (1.8 kcal/mol), while ΔG -3.3 kJ/mol (-0.8 kcal/mol).
Like 1,3-BPG, phosphoenolpyruvate has a phosphoryl group transfer potential high enough to allow ATP formation. Why does this phosphoryl group have a high free energy of hydrolysis?
Although phosphoenolpyruvate and 2-phosphoglycerate contain nearly the same amount of metabolic energy with respect to decomposition to CO2, H20 and Pi, 2-PG dehydration leads to a redistribution of energy such that the standard free energy of hydrolysis of the phosphoryl groups vary as described below:

  • -17.6 kJ/mol (-4.2 kcal/mol) for 2-phosphoglycerate, a phosphoric ester;
  • -61.9 kJ/mol (-14.8 kcal/mol) for phosphoenolpyruvate, an enol phosphate.

What happens is that the phosphoryl group traps PEP in its unstable enol form. When, in the last step of glycolysis, phosphoenolpyruvate donates the phosphoryl group to ADP, ATP and the enol form of pyruvate are formed. The enol form of pyruvate is unstable and tautomerizes rapidly and nonenzymatically to the more stable keto form, that predominates at pH 7. So, the high phosphoryl-transfer potential of PEP is due to the subsequent enol-keto tautomerization of pyruvate.

⇑ Back to the top ⇑

Reaction 10: the transfer of the phosphoryl group from the phosphoenolpyruvate to the ADP

In the final step of the glycolytic pathway, pyruvate kinase (EC 2.7.1.40) catalyzes the transfer of the phosphoryl group from phosphoenolpyruvate to ADP to form pyruvate and ATP. This is the second substrate-level phosphorylation of glycolysis.

Phosphoenolpyruvate + ADP + H+ → Pyruvate + ATP

The enzyme is a tetramer and, like PFK-1, is a highly regulated. Indeed, it has binding sites for numerous allosteric effectors. Moreover, in vertebrates, there are at least three isozymes of pyruvate kinase, of which the M type predominates in muscle and brain, while the L type in liver. These isozymes have many properties in common, whereas differ in the response to hormones such as glucagon, epinephrine and insulin.
The enzyme activity is stimulated by potassium ion (K+)  and some other monovalent cations.
The reaction is essentially irreversible, with a ΔG°’ of -31.4 kJ/mol (-7.5 kcal/mol), and a ΔG of -16.7 kJ/mol (-4.0 kcal/mol), largely due, as anticipated in the previous paragraph, to the tautomerization of the pyruvate from the enol form to the more stable keto form.

Glycolysis
Fig. 6 – Spontaneous Tautomerization of Pyruvate

And, of the -61.9 kJ/mol (14.8 kcal/mol) released from the hydrolysis of the phosphoryl group of PEP, nearly half is conserved in the formation of the phosphoanhydride bond between ADP and Pi, whose ΔG°’ is of -30.5 kJ/mol (-7.3 kcal/mol). The remaining energy, -31.4 kJ/mol (-7.5 kcal/mol), is the driving force that makes the reaction proceed towards ATP production.
While the reaction catalyzed by phosphoglycerate kinase, in the seventh step of the glycolytic pathway, pays off the ATP debt of the preparatory phase, the reaction catalyzed by pyruvate kinase allows a net gain of two ATP.

⇑ Back to the top ⇑

The fate of NADH and pyruvate produced in glycolysis

Glycolysis produces  2 NADH, 2 ATP, and 2 pyruvate molecules per molecule of glucose.
NADH must be reoxidized to NAD+ to allow glycolysis to proceed. NAD+, a coenzyme that is produced from the vitamin B3, also known as niacin, is present in limited amounts in the cytosol, ≤ 10-5M, a value well below than that of glucose metabolized in a few minutes, and must be continuously regenerated. Therefore, the final step of the glycolytic pathway is the regeneration of NAD+ from NADH through aerobic or anaerobic pathways, each of which involves pyruvate. Such pathways allow, therefore, maintenance of the redox balance of the cell.

Glycolysis
Fig. 7 – Possible Catabolic Fates of the Pyruvate Produced in Glycolysis

Pyruvate is a versatile metabolite that can enter several metabolic pathways, both anabolic and catabolic, depending on the type of cell, the energy state of the cell and the availability of oxygen. With the exception of some variations encountered in bacteria, exploited, for example, in food industry for the production of various foods such as many cheeses, there are essentially three pathways in which pyruvate may enter:

This allows glycolysis to proceed in both anaerobic and aerobic conditions.
It is therefore possible to state that the catabolic fate of the carbon skeleton of glucose is influenced by the cell type, the energetic state of the cell, and the availability of oxygen.

⇑ Back to the top ⇑

Lactic acid fermentation

In animals, with few exceptions, and in many microorganisms when oxygen availability is insufficient to meet the energy requirements of the cell, or if the cell is without mitochondria, the pyruvate produced by glycolysis is reduced to lactate in the cytosol, in a reaction catalyzed by lactate dehydrogenase (EC 1.1.1.27).

Pyruvate + NADH + H+ ⇄ Lactate + NAD+

In the reaction, pyruvate, by accepting electrons from NADH, is reduced to lactate, while NAD+ is regenerated. And the overall equilibrium of the reaction strongly favors the formation of lactate, as shown by the value of ΔG°’ of -25.1 kJ/mol (-6 kcal/mol).
The conversion of glucose to lactate is called lactic acid fermentation. The overall equation of the process is:

Glucose + 2 Pi + 2 ADP + 2H+ → 2 Lactate + 2 ATP + 2 H2O

Notice that fermentation, discovered by Louis Pasteur who defined it “la vie sans l’air”, is a metabolic pathway that:

  • extracts energy from glucose and stores it as ATP;
  • does not consume oxygen;
  • does not change the concentration of NAD+ or NADH.

With regard to coenzymes, neither NAD+ nor NADH appears in the overall equation, although both are crucial in the process, that is, no net oxidation-reduction occurs. In other words, in the conversion of glucose, C6H12O6, to lactate, C3H6O3, the ratio of hydrogen to carbon atoms of the reactants and products does not change.
From an energy point of view, it should however be emphasized that fermentation extracts only a small amount of the chemical energy of glucose.

In humans, much of the lactate produced enters the Cori cycle for glucose production via gluconeogenesis. We can also state that lactate production shifts part of the metabolic load from the extrahepatic tissues, such as skeletal muscle during intense bouts of exercise, like a 200-meter, when the rate of glycolysis can almost instantly increase 2,000-fold, to the liver.
In contrast to skeletal muscle that releases lactate into the venous blood, the heart muscle is able to take up and use it for fuel, due to its completely aerobic metabolism and to the properties of the heart isozyme of lactate dehydrogenase, referred to as H4. Therefore, portion of the lactate released by skeletal muscle engaged in intense exercise is used by the heart muscle for fuel.

Note: Lactate produced by microorganisms during lactic acid fermentation is responsible for both the scent and taste of sauerkraut, namely, fermented cabbage, as well as for the taste of soured milk.

⇑ Back to the top ⇑

Alcoholic fermentation

In microorganisms such as brewer’s and baker’s yeast, in certain plant tissues, and in some invertebrates and protists, pyruvate, under hypoxic or anaerobic conditions, may be reduced in two steps to ethyl alcohol or ethanol, with release of CO2.
The first step involves the non-oxidative decarboxylation of pyruvate to form acetaldehyde, an essentially irreversible reaction. The reaction is catalyzed by pyruvate decarboxylase (EC 4.1.1.1), an enzyme that requires Mg2+ and thiamine pyrophosphate, a coenzyme derived from vitamin thiamine or vitamin B1. The enzyme is absent in vertebrates and in other organisms that perform lactic acid fermentation.
In the second step, acetaldehyde is reduced to ethanol in a reaction catalyzed by alcohol dehydrogenase (EC 1.1.1.1), an enzyme that contains a bound zinc atom in its active site. In the reaction, NADH supplies the reducing equivalents and is oxidized to NAD+. At neutral pH, the equilibrium of the reaction lies strongly toward ethyl alcohol formation.
The conversion of glucose to ethanol and CO2 is called alcoholic fermentation. The overall reaction is:

Glucose + 2 Pi + 2 ADP + 2 H+ → 2 Ethanol + 2 CO2 + 2 ATP + 2 H2O

And, as for lactic fermentation, even in alcoholic fermentation no net oxidation-reduction occurs.

Alcoholic fermentation is the basis of the production of beer and wine. Notice that the CO2 produced by brewer’s yeast is responsible for the characteristics “bubbles” in beer, champagne and sparkling wine, while that produced by baker’s yeast causes dough to rise.

⇑ Back to the top ⇑

Fate of pyruvate and NADH under aerobic conditions

In cells with mitochondria and under aerobic conditions, the most common situation in multicellular and many unicellular organisms, the oxidation of NADH and pyruvate catabolism follow distinct pathways.
In the mitochondrial matrix, pyruvate is first converted to acetyl-CoA in a reaction catalyzed by the pyruvate dehydrogenase complex. In the reaction, a oxidative decarboxylation, pyruvate loses a carbon atom as CO2, and the remaining two carbon unit is bound to Coenzyme A to form acetyl-coenzyme A or acetyl-CoA.

Pyruvate + NAD+ + CoA → acetyl-CoA + CO2 + NADH + H+

The acetyl group of acetyl-CoA is then completely oxidized to CO2 in the citric acid cycle, with production of NADH and FADH2. Pyruvate dehydrogenase therefore represents a bridge between glycolysis, which occurs in the cytosol, and the citric acid cycle, which occurs in the mitochondrial matrix.
In turn, electrons derived from oxidations that occur during glycolysis are transported into mitochondria via the reduction of cytosolic intermediates. In this way, in the cytosol NADH is oxidized to NAD+, while the reduced intermediate, once in the mitochondrial matrix, is reoxidized through the transfer of its reducing equivalents to Complex I of the mitochondrial electron transport chain. Here the electrons flow to oxygen to form H2O, a transfer that supplies the energy needed for the synthesis of ATP through the process of oxidative phosphorylation. Of course, also the electrons carried by NADH formed by pyruvate dehydrogenase and citric acid cycle and by FADH2 formed by citric acid cycle meet a similar fate.

Note: FADH2 transfers its reducing equivalents not to Complex I but to Complex II.

⇑ Back to the top ⇑

Anabolic fates of pyruvate

Under anabolic conditions, the carbon skeleton of pyruvate may have fates other than complete oxidation to CO2 or conversion to lactate. In fact, after its conversion to acetyl-CoA, it may be used, for example, for the synthesis of fatty acids, or of the amino acid alanine (see Fig. 3).

⇑ Back to the top ⇑

Glycolysis and ATP production

In the glycolytic pathway the glucose molecule is degraded to two molecules of pyruvate.
In the first phase, the preparatory phase, two ATP are consumed per molecule of glucose in the reactions catalyzed by hexokinase and PFK-1. In the second phase, the payoff phase, 4 ATP are produced through substrate-level phosphorylation in the reactions catalyzed by phosphoglycerate kinase and pyruvate kinase. So there is a net gain of two ATP per molecule of glucose used. In addition, in the reaction catalyzed by glyceraldehyde 3-phosphate dehydrogenase, two molecules of NADH are produced for each glucose molecule.

Glycolysis
Fig. 8 – Free-Energy Changes of Glycolytic Reactions

The overall ΔG°’ of glycolysis is -85 kJ/mol (-20.3 kcal/mol), value resulting from the difference between the ΔG°’ of the conversion of glucose into two pyruvate molecules, -146 kJ/mol (-34,9 kcal/mol), and the ΔG°’ of the formation of ATP from ADP and Pi, 2 x 30.5 kJ/mol = 61 kJ / mol  (2  x 7.3 kcal/mol = 14.6 kcal/mol). Here are the two reactions.

Glucose + 2 NAD+ → 2 Pyruvate + 2 NADH + 2 H+

2 ADP + 2 Pi → 2 ATP + 2 H2O

The sum of the two reactions gives the overall equation of glycolysis.

Glucose + 2 NAD+ + 2 ADP + 2 Pi → 2 Pyruvate + 2 NADH + 2 H+ + 2 ATP + 2 H20

Thus, under standard conditions, the amount of released energy stored within ATP is (61/146) x 100 = 41.8%.
Notice that the overall equation of glycolysis can also be derived by considering all the reagents, ATP, NAD+, ADP, and Pi and all the products.

Glucose + 2 ATP + 2 NAD+ + 4 ADP + 2 Pi → 2 Pyruvate + 2 ADP + 2 NADH + 2 H+ + 4 ATP + 2 H20

Cancelling the common terms on both sides of the equation, we obtain the overall equation shown above.

⇑ Back to the top ⇑

Glycolysis and ATP production under anaerobic conditions

Under anaerobic conditions, regardless of what is the metabolic fate of pyruvate, conversion to lactate, ethanol or other molecules, there is no additional production of ATP downstream of glycolysis.
Therefore under these conditions, glycolysis extracts only a small fraction of the chemical energy of the glucose molecule, energy equal to 2840 kJ/mol (679 kcal/mol) released as a result of its conversion to CO2 and H2O. Indeed, only 146 kJ/mol are released in the conversion of a glucose molecule to two pyruvate molecules, equal to 5%, [(146/2,840) x 100], of the available chemical energy. Therefore,  pyruvate still contains most of the chemical energy of the hexose.
Similarly, the 4 electrons carried by NADH produced in step 6 of glycolysis cannot be used for ATP production.
In lactic acid fermentation, the ΔG°’ associated with the conversion of a glucose molecule to two molecules of lactate is -183.6 kJ/mol  (-43.9 kcal/mol), and 33.2% of such free energy, [(61/183.6) x 100] is stored within ATP, whereas it is 41.8% in the conversion of a glucose molecule to two molecules of pyruvate.
It should be noted that under actual conditions the amount of free energy required for the synthesis of ATP from ADP and Pi is much higher than that required under standard conditions, namely, approximately 50%  of the energy released is stored within ATP.

⇑ Back to the top ⇑

Glycolysis and ATP production under aerobic conditions

Under aerobic conditions, in cells with mitochondria, the amount of chemical energy that can be extracted from glucose and stored within ATP is much greater than under anaerobic conditions.
If we consider the two NADH produced during glycolysis, the flow of their 4 reducing equivalents along the mitochondrial electron transport chain allows the production of 2-3 ATP per electron pair through oxidative phosphorylation. Therefore, 6 to 8 ATP are produced when one molecule of glucose is converted into two molecules of pyruvate, 2 from glycolysis and 4-6 from oxidative phosphorylation.

Note: The amount of ATP produced from the reducing equivalents of NADH depends upon the mechanism  by which they are shuttled into mitochondria.

On the other hand, if we analyze the coordinated and consecutive action of glycolysis, pyruvate dehydrogenase, citric acid cycle,  mitochondrial electron transport chain and oxidative phosphorylation, much more energy can be extracted from glucose and stored within ATP. In this case, according to what reported by Lehninger, 30 to 32 ATP are produced for each glucose molecule, although recent estimates suggest a net production equal to 29.85 ATP/glucose, or 29.38 ATP/glucose if also ATP formed from GTP, in turn produced by the citric acid cycle, is exported. Considering both estimates, the production of ATP is about 15 times greater than under anaerobic condition.

⇑ Back to the top ⇑

Feeder pathways for glycolysis

Other carbohydrates besides glucose, both simple and complex, can be catabolized via glycolysis, after enzymatic conversion to one of the glycolytic intermediates.  Among the most important are:

Glycolysis
Fig. 9 – Feeder Pathways for Glycolysis

Dietary starch and disaccharides must be hydrolyzed in the intestine to the respective monosaccharides before being absorbed. Once in the venous circulation, monosaccharides reach the liver through the portal vein; this organ is the main site where they are metabolized.

⇑ Back to the top ⇑

Glycogen and starch

Regarding the phosphorolytic breakdown of starch and endogenous glycogen refer to the corresponding articles.

⇑ Back to the top ⇑

Fructose

Under physiological conditions, the liver removes much of the ingested fructose from the bloodstream before it can reach extrahepatic tissues.
The hepatic pathway for the conversion of the monosaccharide to intermediates of glycolysis consists of several steps.
In the first step fructose is phosphorylated to fructose 1-phosphate at the expense of one ATP. This reaction is catalyzed by fructokinase (EC 2.7.1.4), and requires the presence of Mg2+.

Fructose + ATP → Fructose 1-phosphate + ADP + H+

As for glucose, fructose phosphorylation traps the molecule inside the cell.
In the second step fructose 1-phosphate aldolase catalyzes the hydrolysis, an aldol cleavage, of fructose 1-phosphate to dihydroxyacetone phosphate and glyceraldehyde.

Fructose 1-phosphate → Dihydroxyacetone Phosphate + Glyceraldehyde

Dihydroxyacetone phosphate is an intermediate of the glycolytic pathway and, after conversion to glyceraldehyde 3-phosphate, may flow through the pathway. Conversely, glyceraldehyde is not an intermediate of the glycolysis, and is phosphorylated to glyceraldehyde 3-phosphate at the expense of one ATP. The reaction is catalyzed by triose kinase (EC 2.7.1.28), and requires the presence of Mg2+.

Glyceraldehyde + ATP → Glyceraldehyde 3-phosphate + ADP + H+

In hepatocytes, therefore, a molecule of fructose is converted to two molecules of glyceraldehyde 3-phosphate, at the expense of two ATP, as for glucose.

Fructose + 2 ATP → 2 Glyceraldehyde 3-phosphate +2 ADP +2  H+

⇑ Back to the top ⇑

Fructose and hexokinase

In extrahepatic sites, such as skeletal muscle, kidney or adipose tissue, fructokinase is not present, and fructose enters the glycolytic pathway as fructose 6-phosphate. In fact, as previously seen, hexokinase can catalyzes the phosphorylation of fructose at C-6.

Fructose + ATP → Fructose 6-phosphate + ADP + H+

However, the affinity of the enzyme for fructose is about 20 times lower than for glucose, so in the hepatocyte, where glucose is much more abundant than fructose, or in the skeletal muscle under anaerobic conditions, that is, when glucose is the preferred fuel, little amounts of fructose 6-phosphate are formed.
Conversely, in adipose tissue, fructose is more abundant than glucose, so that its phosphorylation by hexokinase is not competitively inhibited to a significant extent by glucose. In this tissue, therefore, fructose 6-phosphate synthesis is the entry point into glycolysis for the monosaccharide.
With regard to the metabolic effects of fructose, it is important to underline that in the liver the monosaccharide, being phosphorylated at C-1, enters glycolysis at triose phosphate level, thus downstream to the reaction catalyzed by PFK-1, an enzyme that plays a key role in the regulation of the flow of carbon through this metabolic pathway. Conversely, when fructose is phosphorylated at C-6, it enters the glycolytic pathway upstream of PFK-1.

⇑ Back to the top ⇑

Sorbitol

Fructose is the entry point into glycolysis for sorbitol, a sugar present in many fruits and vegetables, and used as a sweetener and stabilizer, too. In the liver, sorbitol dehydrogenase (EC 1.1.99.21) catalyzes the oxidation of sorbitol to fructose.

Sorbitol + NAD+ → Fructose + NADH + H+

The reaction requires the presence of zinc ion, and occurs in the cytosol.

⇑ Back to the top ⇑

Galactose

Galactose, for the most part derived from intestinal digestion of the lactose, once in the liver is converted, via the Leloir pathway, to glucose 1-phosphate.
For a more in-depth discussion of the Leloir pathway, see the article on galactose.
The metabolic fate of glucose 1-phosphate depends on the energy status of the cell.
Under conditions promoting glucose storage, glucose 1-phosphate can be channeled to glycogen synthesis. Conversely, under conditions that favor the use of glucose as fuel, glucose 1-phosphate is isomerized to glucose 6-phosphate in the reversible reaction catalyzed by phosphoglucomutase (EC 5.4.2.2).

Glucose 1-phosphate ⇄ Glucose 6-phosphate

In turn, glucose 6-phosphate can be channeled to glycolysis and be used for energy production, or dephosphorylated to glucose in the reaction catalyzed by glucose 6-phosphatase, and then released into the bloodstream.

⇑ Back to the top ⇑

Mannose

Mannose is present in various dietary polysaccharides, glycolipids and glycoproteins. In the intestine, it is released from these molecules, absorbed, and, once reached the liver, is phosphorylated at C-6 to form mannose 6-phosphate, in the reaction catalyzed by hexokinase.

Mannose + ATP → Mannose 6-phosphate + ADP + H+

Mannose 6-phosphate is then isomerized to fructose 6-phosphate in the reaction catalyzed by mannose 6-phosphate isomerase (EC 5.3.1.8.).

Mannose 6-phosphate ⇄ Fructose 6-phosphate

⇑ Back to the top ⇑

Regulation of glycolysis

The flow of carbon through the glycolytic pathway is regulated in response to metabolic conditions, both inside and outside the cell, essentially to meet two needs: the production of ATP and the supply of precursors for biosynthetic reactions.
And in the liver, to avoid wasting energy, glycolysis and gluconeogenesis are reciprocally regulated so that when one pathway is active, the other slows down. As explained in the article on gluconeogenesis, during evolution this was achieved by selecting different enzymes to catalyze the essentially irreversible reactions of the two pathways, whose activity are regulated separately. Indeed, if these reactions proceeded simultaneously at high speed, they would create a futile cycle or substrate cycle. A such fine regulation could not be achieved if a single enzyme operates in both directions.
The control of the glycolytic pathway involves essentially the reactions catalyzed by hexokinase, PFK-1, and pyruvate kinase, whose activity is regulated through:

  • allosteric modifications, that occur on a time scale of  milliseconds and are instantly reversible;
  • covalent modifications, that is, phosphorylations and dephosphorylation, that occur on a time scale of seconds;
  • changes in enzyme concentrations, resulting from changes in the rate of their synthesis and/or degradation, that occur on a time scale of hours.

Note: The main regulatory enzymes of gluconeogenesis are pyruvate carboxylase (EC 6.4.1.1) and fructose 1,6-bisphosphatase (EC 3.1.3.11).

⇑ Back to the top ⇑

Hexokinase

In humans, hexokinase has four tissue specific isozymes, designated as hexokinase I, II, III, and IV, encoded by as many genes.
Hexokinase I is the predominant isozyme in the brain, whereas in skeletal muscle hexokinase I and II are present, accounting for 70-75% and 25-30% of the isozymes, respectively.
Hexokinase IV, also known as glucokinase (EC 2.7.1.2), is mainly present in hepatocytes  and β cells of the pancreas, where it is the predominant isozyme. In the liver it catalyzes,  with glucose 6-phosphatase, the substrate cycle between glucose and glucose 6-phosphate.  Glucokinase differs from the other hexokinase isozymes in kinetic and regulatory properties.

Note: Isoenzymes or isozymes are different proteins that catalyze the same reaction, and that generally differ in kinetic and regulatory properties, subcellular distribution, or in the cofactors used. They may be present in the same species, in the same tissue or even in the same cell.

⇑ Back to the top ⇑

Comparison of the kinetic properties of hexokinase isozymes

The kinetic properties of hexokinase I, II, and III are similar.
Hexokinase I and II have a Km for glucose of 0.03 mM and 0.1 mM, respectively. Therefore these isoenzymes work very efficiently at normal blood glucose levels, 4-5 mM.
Conversely, glucokinase has a high Km for glucose, approximately 10 mM; this means that the enzyme works efficiently only when blood glucose concentration is high, for example after a meal rich in carbohydrates with a high glycemic index.

⇑ Back to the top ⇑

Regulation of the activity of hexokinases I-III

Hexokinases I-III are allosterically inhibited by glucose 6-phosphate, the product of their reaction. This ensures that glucose 6-phosphate does not accumulate in the cytosol when glucose is not needed for energy, for glycogen synthesis, for the pentose phosphate pathway, or as a source of precursors for biosynthetic pathways, leaving, at the same time, the monosaccharide in the blood, available for other organs and tissues. For example, when PFK-1 is inhibited, fructose 6-phosphate accumulates and then, due to phosphoglucose isomerase reaction, glucose 6-phosphate accumulates. Therefore, inhibition of PFK-1 leads to inhibition of hexokinases I-III.

In skeletal muscle, the activity of hexokinase I and II is coordinated with that of GLUT4, a low Km glucose transporter (5mM), whose translocation to the plasma membrane is induced by both insulin and physical activity. The combined action of GLUT4 on plasma membrane and hexokinase in the cytosol maintains a balance between glucose uptake and its phosphorylation. Because blood glucose concentration is between 4 and 5 mmol/L, its entry into the myocyte through GLUT4 may cause an increase in its concentration sufficient to saturate, or near saturate the enzyme, which therefore operates at or near its Vmax.

⇑ Back to the top ⇑

Regulation of the activity of hepatic glucokinase

Glucokinase differs in three respects from hexokinases I-III, and is particularly suitable for the role that the liver plays in glycemic control. Why?

  • As previously said, glucokinase has a Km for glucose of about 10 mM, much higher than the Km for glucose of hexokinases I-III, and higher than the value of fasting blood glucose levels (4-5 mM) as well. In the liver, where it is the predominant hexokinase isoenzyme, its role is to provide glucose 6-phosphate for the synthesis of glycogen and fatty acids. The activity of glucokinase is linked to that of GLUT2, the major glucose transporter in hepatocytes, with a high Km for glucose, approximately 10 mM. Hence, GLUT2 is very active when blood glucose concentration is high, rapidly equilibrating sugar concentrations in cytosol of hepatocytes and blood. Under such conditions glucokinase is active and converts glucose to glucose 6-phosphate, and, due to high Km for glucose, its activity continues to increase even when the intracellular concentration of the monosaccharide reaches or exceeds 10 mM.  Therefore, the rate at which glucose uptake and phosphorylation occurs are determined by the value of blood glucose level itself. On the other hand, when glucose availability is low, its concentration in the cytosol of hepatocytes is just as low, much lower than the Km for glucose of glucokinase, so that glucose produced through gluconeogenesis and/or glycogenolysis is not phosphorylated and can leave the cell.
    A similar situation also occurs in pancreatic β cells, where the GLUT2/glucokinase system causes the intracellular G-6-P concentration to equalize with glucose concentration in the blood, allowing the cells to detect and respond to hyperglycemia.
  • Unlike hexokinases I-III, glucokinase is not inhibited by glucose 6-phosphate, that is, is not product inhibited, and catalyzes its synthesis even when it accumulates.
  • Glucokinase is inhibited by the reversible binding of glucokinase regulatory protein or GKRP, a liver-specific regulatory protein. The mechanism of inhibition by GKRP occurs via the anchorage of glucokinase inside the nucleus, where it is separated from the other glycolytic enzymes.
    Glycolysis
    Fig. 10 – Regulation of Hepatic Glucokinase

    The binding between glucokinase and GKRP is much tighter in the presence of fructose 6-phosphate, whereas it is weakened by glucose and fructose 1-phosphate.
    In the absence of glucose, glucokinase is in its super-opened conformation that has low activity. The rise in cytosolic glucose concentration causes a concentration dependent transition of glucokinase to its close conformation, namely, its active conformation that is not accessible for glucokinase regulatory protein. Hence, glucokinase is active and no longer inhibited.
    Notice that fructose 1-phosphate is present in the hepatocyte only when fructose is metabolized. Hence, fructose relieves the inhibition of glucokinase by glucokinase regulatory protein.
    Example
    After a meal rich in carbohydrates, blood glucose levels rise, glucose enters the hepatocyte through GLUT2, and then moves inside the nucleus through the nuclear pores. In the nucleus glucose determines the transition of glucokinase to its close conformation, active and not accessible to GKRP, allowing glucokinase to diffuse in the cytosol where it phosphorylates glucose.
    Conversely, when glucose concentration declines, such as during fasting when blood glucose levels may drop below 4 mM, glucose concentration in hepatocytes is low, and fructose 6-phosphate binds to GKRP allowing it to bind tighter to glucokinase. This results in a strong inhibition of the enzyme. This mechanism ensures that the liver, at low blood glucose levels, does not compete with other organs, primarily the brain, for glucose.
    In the cell, fructose 6-phosphate is in equilibrium with glucose 6-phosphate, due to phosphoglucose isomerase reaction. Through its association with GKRP, fructose 6-phosphate allows the cell to decrease glucokinase activity, so preventing the accumulation of intermediates.

To sum up, when blood glucose levels are normal, glucose is phosphorylated mainly by hexokinases I-III, whereas when blood glucose levels are high glucose can be phosphorylated by glucokinase as well.

⇑ Back to the top ⇑

Regulation of phosphofructokinase 1 activity

Phosphofructokinase 1 is the key control point of carbon flow through the glycolytic pathway.
The enzyme, in addition to substrate binding sites, has several binding sites for allosteric effectors.
ATP, citrate, and hydrogen ions are allosteric inhibitors of the enzyme, whereas AMP, Pi and fructose 2,6-bisphosphate are allosteric activators.

Glycolysis
Fig. 11 – Regulation of PFK 1 and Fructose 1,6-bisphosphatase

It should be noted that ATP, an end product of glycolysis, is also a substrate of phosphofructokinase 1. Indeed, the enzyme has two binding sites for the nucleotide: a low-affinity regulatory site, and a high affinity substrate site.
What do allosteric effectors signal?

  • ATP, AMP and Pi signal the energy status of the cell.
    The activity of PFK-1 increases when the energy charge of the cell is low, namely, when there is a need for ATP, whereas it decreases when the energy charge of the cell is high, namely when ATP concentration in the cell is high. How?
    When the nucleotide is produced faster than it is consumed, its cellular concentration is high. Under such condition ATP, binding to its allosteric site, inhibits PFK-1 by reducing the affinity of the enzyme for fructose 6-phosphate. From the kinetic point of view, the increase in ATP concentration modifies the relationship between enzyme activity and substrate concentration, chancing the hyperbolic fructose 6-phosphate velocity curve into a sigmoidal one, and then, increasing Km for the substrate. However, under most cellular conditions, ATP concentration does not vary much. For example, during a vigorous exercise ATP concentration in muscle may lower of about 10% compared to the resting state, whereas glycolysis rate varies much more than would be expected by such reduction.
    When ATP consumption exceeds its production, ADP and AMP concentrations rise, in particular that of AMP, due to the reaction catalyzed by adenylate kinase (EC 2.7.4.3), that form ATP from ADP.

ADP + ADP ⇄ ATP + AMP

The equilibrium constant, Keq, of the reaction is:

Keq = [ATP][AMP]/[ADP]2= 0.44

Under normal conditions, ADP and AMP concentrations are about 10% and often less than 1% of ATP concentration, respectively.  Therefore, considering that the total adenylate pool is constant over the short term, even a small reduction in ATP concentration leads, due to adenylate kinase activity, to a much larger relative increase in AMP concentration. In turn, AMP acts by reversing the inhibition due to ATP.
Therefore, the activity of phosphofructokinase 1 depends on the cellular energy status:

when ATP is plentiful, enzyme activity decreases;

when AMP levels increase and ATP levels fall, enzyme activity increases.

Why is not ADP a positive effector of PFK-1? There are two reasons.
When the energy charge of the cell falls, ADP is used to regenerate ATP, in the reaction catalyzed by adenylate kinase Moreover, as previously said, a small reduction in ATP levels leads to larger-percentage changes in ADP levels and, above all, in AMP levels.

  • Hydrogen ions inhibit PFK-1. Such inhibition prevents, by controlling the rate of glycolysis, excessive lactate buildup and the consequent fall of blood pH.
  • Citrate is an allosteric inhibitor of PFK-1 that acts by enhancing the inhibitory effect of ATP.
    It is the product of the first step of the citric acid cycle, a metabolic pathway that provides building blocks for biosynthetic pathways and directs electrons into mitochondrial electron transport chain for ATP synthesis via oxidative phosphorylation. High citrate levels in the cytosol mean that, in the mitochondria, an overproduction of building blocks is occurring and the current energy are met, namely, the citric acid cycle has reached saturation. Under such conditions glycolysis, that feeds the cycle under aerobic condition, can slow down, sparing glucose.
    So, it should be noted that PFK-1 couples glycolysis and the citric acid cycle.
  • In the liver, the central control point of glycolysis and gluconeogenesis is the substrate cycle between F-6-P and F-1,6-BP, catalyzed by PFK-1 and fructose 1,6-bisphosphatase.
    The liver plays a pivotal role in maintaining blood glucose levels within the normal range.
    When blood glucose levels drop, glucagon stimulates hepatic glucose synthesis, via both glycogenolysis and gluconeogenesis, and at the same time signals the liver to stop consuming glucose to meet its needs.
    Conversely, when blood glucose levels are high, insulin causes the liver to use glucose for energy, and to synthesize glycogen, and triglycerides.
    In this context, the regulation of glycolysis and gluconeogenesis is mediated by fructose 2,6-bisphosphate, a molecule that allows the liver to play a major role in regulating blood glucose levels, and whose levels are controlled by insulin and glucagon.
    As a result of binding to its allosteric site on PFK-1, fructose 2,6-bisphosphate increases the affinity of the enzyme for fructose 6-phosphate, its substrate, while decreases its affinity for the allosteric inhibitors citrate and ATP. It is remarkable to note that under physiological concentrations of the substrates and positive and negative allosteric effectors, phosphofructokinase 1 would be virtually inactive in the absence of fructose 2,6-bisphosphate.
    On the other hand, the binding of fructose 2,6-bisphosphate to fructose 1,6-bisphosphatase inhibits the enzyme, even in the absence of AMP, another allosteric inhibitor of the enzyme.
    Due to these effects,  fructose 2,6-bisphosphate increases the net flow of glucose through glycolysis.
    For an more in-depth analysis of fructose 2,6-bisphosphate metabolism, refer to the article on gluconeogenesis.
  • Another metabolite involved in the control of the flow of carbon through glycolysis and gluconeogenesis is xylulose 5-phosphate, whose concentration in hepatocytes rises after ingestion of a carbohydrate-rich meal. The molecule, by activating protein phosphatase 2A, finally leads to an increase in the concentration of fructose 2,6-bisphosphate, and then to an increase in the flow of carbon through glycolysis and to a reduction in the flow of carbon through gluconeogenesis.

⇑ Back to the top ⇑

Regulation of pyruvate kinase activity

A further control point of carbon flow through glycolysis and gluconeogenesis is the substrate cycle between phosphoenolpyruvate and pyruvate, catalyzed by pyruvate kinase for glycolysis, and by the combined action of pyruvate carboxylase and phosphoenolpyruvate carboxykinase (EC 4.1.1.32) for gluconeogenesis.
All isozymes of pyruvate kinase are allosterically inhibited by high concentrations of ATP, long-chain fatty acids, and acetyl-CoA, all signs that the cell is in an optimal energy status. Alanine, too, that can be synthesized from pyruvate through a transamination reaction, is an allosteric inhibitor of pyruvate kinase; its accumulation signals that building blocks for biosynthetic pathways are abundant.

Glycolysis
Fig. 12 – Regulation of Hepatic Pyruvate Kinase

Conversely, pyruvate kinase is allosterically activated by fructose 1,6-bisphosphate, the product of the first committed step of glycolysis. Therefore, F-1,6-BP allows pyruvate kinase to keep pace with the flow of intermediates. It should be underlined that, at physiological concentration of PEP, ATP and alanine, the enzyme would be completely inhibited without the stimulating effect of F-1,6-BP.
The hepatic isoenzyme, but not the muscle isoenzyme, is also subject to regulation through phosphorylation by:

  • protein kinase A or PKA, activated by the binding of glucagon to the specific receptor or epinephrine to β-adrenergic receptors;
  • calcium/calmodulin dependent protein kinase or CAMK, activated by the binding of epinephrine to α1-adrenergic receptors.

Phosphorylation of the enzyme decreases its activity, by increasing the Km for phosphoenolpyruvate, and slows down glycolysis.
For example, when the blood glucose levels are low, glucagon-induced phosphorylation decreases pyruvate kinase activity. The phosphorylated enzyme is also less readily stimulated by fructose 1,6-bisphosphate but more readily inhibited by alanine and ATP. Conversely, the dephosphorylated form of pyruvate kinase is more sensitive to fructose 1,6-bisphosphate, and less sensitive to ATP and alanine. In this way, when blood glucose levels are low, the use of glucose for energy in the liver slows down, and the sugar is available for other tissues and organs, such as the brain. However, it should be noted that pyruvate kinase does not undergo glucagon-induced phosphorylation in the presence of fructose 1,6-bisphosphate.
An increase in the insulin/glucagon ratio, on the other hand, leads to dephosphorylation of the enzyme and then to its activation. The dephosphorylated enzyme is more readily stimulated by its allosteric activators F-1,6-BP, and less readily inhibited by allosteric inhibitors alanine and ATP.

⇑ Back to the top ⇑

References

Berg J.M., Tymoczko J.L., and Stryer L. Biochemistry. 5th Edition. W. H. Freeman and Company, 2002

de la Iglesia N., Mukhtar M., Seoane J., Guinovart J.J., & Agius L. The role of the regulatory protein of glucokinase in the glucose sensory mechanism of the hepatocyte. J Biol Chem 2000;275(14):10597-603. doi: 10.1074/jbc.275.14.10597

Garrett R.H., Grisham C.M. Biochemistry. 4th Edition. Brooks/Cole, Cengage Learning, 2010

Kabashima T., Kawaguchi T., Wadzinski B.E., Uyeda K. Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver. Proc Natl Acad Sci USA 2003;100:5107-12. doi:10.1073/pnas.0730817100

Kaminski M.T., Schultz J., Waterstradt R., Tiedge M., Lenzen S., Baltrusch S. Glucose-induced dissociation of glucokinase from its regulatory protein in the nucleus of hepatocytes prior to nuclear export. BBA – Molecular Cell Research 2014;1843(3):554-64. doi:10.1016/j.bbamcr.2013.12.002

Nelson D.L., M. M. Cox M.M. Lehninger. Principles of biochemistry. 6th Edition. W.H. Freeman and Company, 2012

Oslund R.C., Su X., Haugbro M., Kee J-M., Esposito M., David Y., Wang B., Ge E., Perlman D.H., Kang Y., Muir T.W., & Rabinowitz J.D. Bisphosphoglycerate mutase controls serine pathway flux via 3-phosphoglycerate. Nat Chem Biol 2017;13:1081-87. doi:10.1038/nchembio.2453

Rich P.R. The molecular machinery of Keilin’s respiratory chain. Biochem Soc Trans 2003;31(6):1095-105. doi:10.1042/bst0311095

Stipanuk M.H., Caudill M.A. Biochemical, physiological, and molecular aspects of human nutrition. 3rd Edition. Elsevier health sciences, 2013 [Google eBooks]

Van Schaftingen, E., and Hers, H-G. Inhibition of fructose-1,6-bisphosphatase by fructose-2,6-bisphosphate. Proc Natl Acad Sci USA 1981;78(5):2861-63 [PDF]

Van Schaftingen E., Jett M-F., Hue L., and Hers, H-G. Control of liver 6-phosphofructokinase by fructose 2,6-bisphosphate and other effectors. Proc Natl Acad Sci USA 1981;78(6):3483-86 [PDF]


Glycogen: an efficient storage form of energy in aerobic conditions

What is the net energy yield for the oxidation of a glucose unit from glycogen in aerobic conditions?

Aerobic Conditions: Glycogen Structure
Fig. 1 – Glycogen Structure

In aerobic conditions, the oxidation of a free glucose to CO2 and H2O (glycolysis, Krebs cycle and oxidative phosphorylation) leads to the net production of about 30 molecules of ATP.

Glucose from the action of glycogen phosphorylase: glucose-1-phosphate release (about 90% of the removed units).

Glycogen synthesis from free glucose costs two ATP units for each molecule; a glucose-1-phosphate is released by the action of glycogen phosphorylase with recovering/saving one of the two previous ATP molecules.
Therefore in aerobic condition, the oxidation of glucose starting from glucose-6-phosphate and not from free glucose yields 31 ATP molecules and not 30 (one ATP instead of two is expended in the activation phase, 30 ATP are produced during Krebs cycle and oxidative phosphorylation: 31 ATP gained).
The net rate between cost and yield is 1/31 (an energy conservation of about 97%).
The overall reaction is:

glycogen(n glucose residues) + 31 ADP + 31 Pi → glycogen(n-1 glucose residues) + 31 ATP + 6 CO2 + 6 H2O

If we combine glycogen synthesis, glycogen breakdown and finally the oxidation of glucose to CO2 and H2O we obtain 30 molecules of ATP per stored glucose unit, that is the overall reaction is:

glucose + 29 ADP + 30 Pi → 29 ATP + 6 CO2 + 6 H2O

Glucose from the action of debranching enzyme: free glucose release (about 10% of the removed units).

The net yield in ATP between glycogen synthesis and breakdown is two ATP molecules expended because of free glucose is released.
In this case the oxidation of glucose starts from the not-prephosphorylated molecule so we obtain 30 ATP molecules.
The net rate between cost and yield is 2/30 (a energy conservation of about 93,3%).
Considering the oxidation of the glucose units from glycogen to CO2 and H2O we have an energy conservation of:

1-(((1/31)*0,9)+((2/30)*0,1))=0,9643

Conclusion

In aerobic conditions, there is the conservation of about 97% of energy into the glycogen molecule, an extremely efficient storage form of energy.

References

Arienti G. “Le basi molecolari della nutrizione”. Seconda edizione. Piccin, 2003

Cozzani I. and Dainese E. “Biochimica degli alimenti e della nutrizione”. Piccin Editore, 2006

Giampietro M. “L’alimentazione per l’esercizio fisico e lo sport”. Il Pensiero Scientifico Editore, 2005

Mahan LK, Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Mariani Costantini A., Cannella C., Tomassi G. “Fondamenti di nutrizione umana”. 1th ed. Il Pensiero Scientifico Editore, 1999

Nelson D.L., M. M. Cox M.M. Lehninger. Principles of biochemistry. 4th Edition. W.H. Freeman and Company, 2004

Stipanuk M.H.. “Biochemical and physiological aspects of human nutrition” W.B. Saunders Company-An imprint of Elsevier Science, 2000

Prolonged exercise and carbohydrate ingestion

Prolonged Exercise: Open Water Swimming
Fig. 1 – Open Water Swimming

During prolonged exercise (>90 min), like marathon, Ironman, cross-country skiing, road cycling or open water swimming, the effects of supplementary carbohydrates on performance are mainly metabolic rather than central and include:

  • the provision of an additional muscle fuel source when glycogen stores become depleted;
  • muscle glycogen sparing;
  • the prevention of low blood glucose concentrations.

How many carbohydrates should an athlete take?

The optimal amount of ingested carbohydrate is that which results in the maximal rate of exogenous carbohydrate oxidation without causing gastrointestinal discomfort”. (Jeukendrup A.E., 2008).

Prolonged exercise: which carbohydrates should an athlete take?

Until 2004 it was believed that carbohydrates ingested during exercise (also prolonged exercise) could be oxidized at a rate no higher than 1 g/min, that is, 60 g/h, independent of the type of carbohydrate.
Exogenous carbohydrate oxidation is limited by their intestinal absorption and the ingestion of more than around 60 g/min of a single type of carbohydrate will not increase carbohydrate oxidation rate but it is likely to be associated with gastrointestinal discomfort (see later).
Why?
At intestinal level, the passage of glucose (and galactose) is mediated by a sodium dependent transporter called SGLT1. This transporter becomes saturated at a carbohydrate intake about 60 g/h and this (and/or glucose disposal by the liver that regulates its transport into the bloodstream) limits the oxidation rate to 1g/min or 60 g/h. For this reason, also when glucose is ingested at very high rate (>60 g/h), exogenous carbohydrate oxidation rates higher 1.0-1.1 g/min are not observed.

The rate of oxidation of ingested maltose, sucrose, maltodextrins and glucose polymer is fairly similar to that of ingested glucose.

Fructose uses a different sodium independent transporter called GLUT5. Compared with glucose, fructose has, like galactose, a lower oxidation rate, probably due to its lower rate of intestinal absorption and the need to be converted into glucose in the liver, again like galactose, before it can be oxidized.

Prolonged Exercise: Maltodextrin and Fructose: Oxidation of Ingested Carbohydrates
Fig. 1 – Oxidation of Ingested Carbohydrates

However, if the athlete ingests different types of carbohydrates, which use different intestinal transporters, exogenous carbohydrate oxidation rate can increase significantly.
It seems that the best mixture is maltodextrins and fructose.

Note: the high rates of carbohydrate ingestion may be associated with delayed gastric emptying and fluid absorption; this can be minimized by ingesting combinations of multiple transportable carbohydrates that enhance fluid delivery compared with a single carbohydrate. This also causes relatively little gastrointestinal distress.

Conclusion

The ingestion of different types of carbohydrates that use different intestinal transporters can:

References

Carbohydrate ingestion during exercise of relatively short duration and high intensity

Intermittent high intensity exercise and carbohydrate ingestion

High Intensity: During-Exercise Nutrition
Fig. 1- During-Exercise Nutrition

Carbohydrate ingestion during intermittent high intensity or prolonged (>90 min) sub-maximal exercise can:

  • increase exercise capacity;
  • improve exercise performance;
  • postpone fatigue.

The intake of very small amounts of carbohydrates or carbohydrate mouth rinsing (for example with a 6% maltodextrin solution) may improve exercise performance by 2-3% when the exercise is of relatively short duration (<1 h) and high intensity (>75% VO2max), that is, an exercise not limited by the availability of muscle glycogen stores, given adequate diet.
The underlying mechanisms for the ergogenic effect of carbohydrates during this type of activity are not metabolic but may reside in the central nervous system: it seems that carbohydrates are detected in the oral cavity by unidentified receptors, promoting an enhanced sense of well-being and improving pacing.
These effects are independent of taste or sweet and non-sweet of carbohydrates but are specific to carbohydrates.

It should be noted that performance effects with drink ingestion are similar to the mouth rinse; therefore athletes, when they don’t complain of gastrointestinal distress when ingesting too much fluid, may have an advantage taking the drink (in endurance sports, dehydration and carbohydrate depletion are the most likely contributors to fatigue).

Conclusion

It seems that during exercise of relatively short duration (<1 h) and high intensity (>75% VO2max) it is not necessary to ingest large amounts of carbohydrates: a carbohydrate mouth rinsing or the intake of very small amounts of carbohydrates may be sufficient to obtain a performance benefit.

References

Hydration before endurance sports

Dehydration and endurance sports

Pre-hydration
Fig. 1 – Pre-hydration

In endurance sports, like Ironman, open water swimming, road cycling, marathon, or cross-country skiing, the most likely contributors to fatigue are dehydration and carbohydrate (especially liver and muscle glycogen) depletion.

Pre-hydration

Due to sweat loss needed to dissipate the heat generated during exercise, dehydration can compromise exercise performance.
It is important to start exercising in a euhydrated state, with normal plasma electrolyte levels, and attempt to maintain this state during any activity.
When an adequate amount of beverages with meals are consumed and a protracted recovery period (8-12 hours) has elapsed since the last exercise, the athlete should be euhydrated.
However, if s/he has not had adequate time or fluids/electrolytes volume to re-establish euhydration, a pre-hydration program may be useful to correct any previously incurred fluid-electrolyte deficit prior to initiating the next exercise.

Pre-hydration program

If during exercise the nutritional target is to reduce sweat loss to less than 2–3% of body weight, prior to exercise the athlete should drink beverages at least 4 hours before the start of the activity, for example, about 5-7 mL/kg body weight.
But if the urine is still dark (highly concentrated) and/or is minimal, s/he should slowly drink more beverages, for example, another 3-5 mL/kg body weight, about 2 hours before the start of activity so that urine output normalizes before starting the event.

It is advisable to consume small amounts of sodium-containing foods or salted snacks and/or beverages with sodium that help to stimulate thirst and retain the consumed fluids.
Moreover, palatability of the ingested beverages is important to promote fluid consumption before, during, and after exercise. Fluid palatability is influenced by several factors, such as:

  • temperature, often between 15 and 21 °C;
  • sodium content;
  • flavoring.

And hyper-hydration?

Hyper-hydration, especially in the heat, could improve thermoregulation and exercise performance, therefore, it might be useful for those who lose body water at high rates, as during exercise in hot conditions or who have difficulty drinking sufficient amounts of fluid during exercise.
However there are several risks:

  • fluids that expand the intra- and extra-cellular spaces (e.g. glycerol solutions plus water) greatly increase the risk of having to void during exercise;
  • hyper-hydration may dilute and lower plasma sodium which increases the risk of dilutional hyponatraemia, if during exercise, fluids are replaced aggressively.

Finally, it must be noted that plasma expanders or hyper-hydrating agents are banned by the World Anti-Doping Agency (WADA).

Conclusion

“Pre-hydrating with beverages, if needed, should be initiated at least several hours before the exercise task to enable fluid absorption and allow urine output to return toward normal levels. Consuming beverages with sodium and/or salted snacks or small meals with beverages can help stimulate thirst and retain needed fluids” (Sawka et al., 2007).

References

Carbohydrate ingestion 60 min before exercise

Introductory statement

Carbohydrates
Fig. 1 – Carbohydrates

An high-carbohydrate diet in the days before exercise, as well as ingestion of meals high in carbohydrate 3-4 h before exercise, better if with low glycemic index, can have positive effects on athlete’s performance.

For many years it has been suggested that ingestion of carbohydrates 30-60 min before exercise may adversely affect performance because it could cause hypoglycemia (blood glucose < 3.5 mmol/l or < 63 mg/l), a major contributor to fatigue. In fact, a typical athlete’s mantra is: “Avoid carbohydrate in the hour before exercise”!
What is the reason of that?
Glucose ingestion may cause hyperglycaemia followed by hyperinsulinaemina that may result in:

  • a rapid decline in glycemia 15-30 minutes after the onset of exercise, called rebound or reactive hypoglycaemia, most likely the result of:

I. an increase in muscle glucose uptake (due to the mobilization of GLUT-4 transporters by the action of insulin but also from physical activity itself);
II. the reduction in liver glucose output;

  • in addition, higher availability of carbohydrates to the muscle stimulates glycolysis and this, in combination to insulin-induced inhibition of lipolysis in both adipose tissue and muscle, results in a reduction in fat oxidation (apparently long-chain fatty acids, not medium-chain fatty acids). This may lead to premature glycogen depletion and early onset of fatigue (glycogen would be almost the only available fuel for working muscle).
    This effect is temporary, approximately lasting only for the first 20 min of exercise so, it is likely that this little glycogen breakdown has no significant effect on exercise performance.

Therefore, at least in theory, carbohydrate ingestion 60 minutes before exercise could affect performance but only two studies (Foster et al. 1979, e Kovisto et al. 1981) have reported a reduced endurance capacity while the majority of studies have reported no change or an improvement in performance.
To clarify these results, a systematic series of studies was done in trained subjects. The conclusion of these studies was that:

  • There is no effect of pre-exercise carbohydrate feeding on performance, even though in some cases hypoglycaemia did develop”.
  • There was no relationship between low blood glucose concentrations and performance”. (Jeukendrup and Killer S.C. 2010)

Conclusion

Ingestion of meals rich in carbohydrates 3-4 h before exercise is important for the increase of liver and muscle glycogen stores, or for their resynthesis in previously depleted muscle and liver.
Carbohydrate ingestion 30-60 min before exercise may be important in topping-up liver glycogen stores which serve to maintain blood glucose concentrations during exercise.
Based on the currently available scientific evidences, there is no reason to avoid carbohydrates 60 min before the onset of exercise, because they don’t seem to have any detrimental effect on performance.

References

Carbohydrate loading before competition

Carbohydrate loading and endurance exercise

Carbohydrate loading: Alberto Sordi and Spaghetti
Fig. 1 – Alberto Sordi and Spaghetti

Carbohydrate loading is a good strategy to increase fuel stores in muscles before the start of the competition.

What does the muscle “eat” during endurance exercise?

Muscle “eats” carbohydrates, in the form of glycogen, stored in the muscles and liver, carbohydrates ingested during the exercise or just before that, and fat.

During endurance exercise, the most likely contributors to fatigue are dehydration and carbohydrate depletion, especially of muscle and liver glycogen.
To prevent the “crisis” due to the depletion of muscle and liver carbohydrates, it is essential having high glycogen stores before the start of the activity.

What does affect glycogen stores?

  • The diet in the days before the competition.
  • The level of training (well-trained athletes synthesize more glycogen and have potentially higher stores, because they have more efficient enzymes).
  • The activity in the day of the competition and the days before (if muscle doesn’t work it doesn’t lose glycogen). Therefore, it is better to do light trainings in the days before the competition, not to deplete glycogen stores, and to take care of nutrition.

The “Swedish origin” of carbohydrate loading

Very high muscle glycogen levels (the so-called glycogen supercompensation) can improve performance, i.e. time to complete a predetermined distance, by 2-3% in the events lasting more than 90 minutes, compared with low to normal glycogen, while benefits seem to be little or absent when the duration of the event is less than 90 min.
Well-trained athletes can achieve glycogen supercompensation without the depletion phase prior to carbohydrate loading, the old technique discovered by two Swedish researchers, Saltin and Hermansen, in 1960s.
The researchers discovered that muscle glycogen concentration could be doubled in the six days before the competition following this diet:

  • three days of low carb menu (a nutritional plan very poor in carbohydrates, i.e. without pasta, rice, bread, potatoes, legumes, fruits etc.);
  • three days of high carbohydrate diet, the so-called carbohydrate loading (a nutritional plan very rich in carbohydrates).

This diet causes a lot of problems: the first three days are very hard and there may be symptoms similar to depression due to low glucose delivery to brain, and the benefits are few.
Moreover, with the current training techniques, the type and amount of work done, we can indeed obtain high levels of glycogen: above 2.5 g/kg of body weight.

The “corrent” carbohydrate loading

Carbohydrate Loading
Fig. 2 – Carbohydrate Loading: 2500 kcal Diet

If we compete on Sunday, a possible training/nutritional plan to obtain supercompensation of glycogen stores can be the following:

  • Wednesday, namely four days before the competition, moderate training and then dinner without carbohydrates;
  • from Thursday on, namely the three days before the competition, hyperglucidic diet and light trainings.

The amount of dietary carbohydrates needed to recover glycogen stores or to promote glycogen loading depends on the duration and intensity of the training programme, and they span from 5 to 12 g/kg of body weight/d, depending on the athlete and his activity. With higher carbohydrate intake you can achieve higher glycogen stores but this does not always results in better performance; moreover, it should be noted that glycogen storage is associated with weight gain due to water retention (approximately 3 g per gram of glycogen), and this may not be desirable in some sports.

References

Endurance sports and nutrition

What are endurance sports?

Endurance Sports
Fig. 1 – Endurance Sports

In the last years endurance sports, defined in the PASSCLAIM document of the European Commission as those lasting 30 min or more, are increasing in popularity and competitions as half marathons, marathons, even ultramarathons, half Ironmans, or Ironman competitions attract more and more people.
They are competitions which can last hours, or days in the more extreme case of ultramarathons.
Athletes at all levels should take care of training and nutrition to optimize performance and to avoid potential health threats.
In endurance sports the most likely contributors to fatigue are dehydration and carbohydrate depletion (especially liver and muscle glycogen).

Dehydration and endurance sports

Dehydration is due to sweat losses needed to dissipate the heat that is generated during exercise. To prevent the onset of fatigue from this cause, the nutritional target is to reduce sweat losses to less than 2–3% of body weight; it is equally important to avoid drinking in excess of sweating rate, especially low sodium drinks, to prevent hyponatraemia (low serum sodium levels).

Glycogen depletion and endurance sports

Muscle glycogen and blood glucose are the most important substrates from which muscle obtains the energy needed for contraction.
Fatigue during prolonged exercise is often associated with reduced blood glucose levels and muscle glycogen depletion; therefore, it is essential starting exercise/competition with high pre-exercise muscle and liver glycogen concentrations, the last one for the maintaining of normal blood glucose levels.

Other problems which reduce performance and can be an health threat of the athlete, especially in long-distance races, are gastrointestinal problems, hyperthermia and hyponatraemia.
Hyponatraemia has occasionally been reported, especially among slower competitors with very high intakes of low sodium drinks.
Gastrointestinal problems occur frequently, especially in long-distance races; both genetic predisposition and the intake of highly concentrated carbohydrate solutions, hyperosmotic drinks, as well as the intake of fibre, fat, and protein seem to be important in their occurrence.

References

Glycogen: an efficient storage form of energy in anaerobic conditions

What is the net energy yield for the oxidation of a glucose unit from glycogen in anaerobic conditions?

In anaerobic conditions, the oxidation of a free glucose to lactate leads to the net production of two molecules of ATP.

Anaerobic Conditions: Glycolysis to Lactate
Fig. 1 – Glycolysis to Lactate

Glucose from the action of glycogen phosphorylase: glucose-1-phosphate release (about 90% of the removed units).

Glycogen synthesis from free glucose costs two ATP units for each molecule; a glucose-1-phosphate is released by the action of glycogen phosphorylase, with recovering/saving of one of the two previous ATP molecules.
Therefore the oxidation of glucose to lactate starting from glucose-6-phosphate and not from free glucose yields three ATP molecules and not two (one ATP is expended in the activation stage instead of two, 4 ATP are produced in the third stage: three ATP gained).
The net rate between cost and yield is 1/3 (an energy conservation of about 66,7%).
The overall reaction is:

glycogen(n glucose residues) + 3 ADP + 3 Pi → glycogen(n-1 glucose residues) + 2 lactate + 3 ATP

If we combine glycogen synthesis, glycogen breakdown and finally glycolysis to lactate we obtain only one ATP molecule per stored glucose unit, that is the overall sum is:

glucose + ADP + Pi → 2 lactate + ATP

Glucose from the action of debranching enzyme: free glucose release (about 10% of the removed units).

The net yield in ATP between glycogen synthesis and breakdown is two ATP molecules expended because of free glucose is released.
In this case the oxidation of glucose starts from the not-prephosphorylated molecule and it yields two ATP molecules.
Therefore the net yield in ATP is zero.
Considering the oxidation of the glucose units from glycogen to lactate we have an energy conservation of:

1-(((1/3)*0,9)+((2/2)*0,1))=0,60

Conclusion

In anaerobic conditions, there is the conservation of about 60% of energy into the glycogen molecule, a good storage form of energy.

References

Arienti G. “Le basi molecolari della nutrizione”. Seconda edizione. Piccin, 2003

Cozzani I. and Dainese E. “Biochimica degli alimenti e della nutrizione”. Piccin Editore, 2006

Giampietro M. “L’alimentazione per l’esercizio fisico e lo sport”. Il Pensiero Scientifico Editore, 2005

Mahan LK, Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Mariani Costantini A., Cannella C., Tomassi G. “Fondamenti di nutrizione umana”. 1th ed. Il Pensiero Scientifico Editore, 1999

Nelson D.L., M. M. Cox M.M. Lehninger. Principles of biochemistry. 4th Edition. W.H. Freeman and Company, 2004

Stipanuk M.H.. “Biochemical and physiological aspects of human nutrition” W.B. Saunders Company-An imprint of Elsevier Science, 2000

Carbohydrate mouth rinse and endurance exercise performance

Carbohydrate mouth rinse and performance responses

The importance of carbohydrates as an energy source for exercise is well known: one of the first study to hypothesize and recognize their importance was the study of Krogh and Lindhardt at the beginning of the 20th century (1920); later, in the mid ‘60’s, Bergstrom and Hultman discovered the crucial role of muscle glycogen on endurance capacity.
Nowdays, the ergogenic effects of carbohydrate supplementation on endurance performance are well known; they are mediated by mechanisms such as:

  • a sparing effect on liver glycogen;
  • the maintenance of glycemia and rates of carbohydrate oxidation;
  • the stimulation of glycogen synthesis during low-intensity exercise ;
  • a possible stimulatory effect on the central nervous system.

However, their supplementation, immediately before and during exercise, has an improving effect also during exercise (running or cycling) of a shorter and more intense nature: >75% VO2max (maximal oxygen consumption) and ≤1 hour, during which euglycaemia is rarely challenged and adequate muscle glycogen store remains at the cessation of the exercise.

Hypothesis for carbohydrate mouth rinse

In the absence of a clear metabolic explanation it was speculated that ingesting carbohydrate solutions may have a ‘non-metabolic’ or ‘central effect’ on endurance performance. To explore this hypothesis many studies have investigated the performance responses of subjects when carbohydrate solutions (about 6% carbohydrate, often maltodextrins) are mouth rinsed during exercise, expectorating the solution before ingestion.
By functional magnetic resonance imaging and transcranial stimulation it was shown that carbohydrates in the mouth stimulate reward centers in the brain and increases corticomotor excitability, through oropharyngeal receptors which signal their presence to the brain.
Probably salivary amylase releases very few glucose units from maltodextrins which is probably what is needed in order to activate the purported carbohydrate receptors in the oropharynx (no glucose transporters in the oropharynx are known).
However, the performance response appears to be dependent upon the pre-exercise nutritional status of the subject: most part of the studies showing an improving effect on performance was conducted in a fasted states (3- to 15-h fasting).
Only one study has shown improvements of endurance capacity   in both fed and fasted states by carbohydrate mouth rinse, but in non-athletic subjects.

References

Beelen M., Berghuis J., Bonaparte B., Ballak S.B., Jeukendrup A.E., van Loon J. Carbohydrate mouth rinsing in the fed state: lack of enhancement of time-trial performance. Int J Sport Nutr Exerc Metab 2009;19(4):400-9 [Abstract]

Bergstrom J., Hultman E. A study of glycogen metabolism during exercise in man. Scand J Clin Invest 1967;19:218-28 [Abstract]

Bergstrom J., Hultman E. Muscle glycogen synthesis after exercise: an enhancing factor localized in muscle cells in man. Nature 1966;210:309-10 [Abstract]

Painelli V.S., Nicastro H., Lancha A. H.. Carbohydrate mouth rinse: does it improve endurance exercise performance? Nutrition Journal 2010;9:33 [Abstract]

Fares E.J., Kayser B. Carbohydrate mouth rinse effects on exercise capacity in pre- and postprandial States. J Nutr Metab 2011;385962. doi: 10.1155/2011/385962. Epub 2011 Jul 27 [Abstract]

Krogh A., Lindhard J. The relative value of fat and carbohydrate as sources of muscular energy. Biochem J 1920;14:290-363 [PDF]

Rollo I. Williams C. Effect of mouth-rinsing carbohydrate solutions on endurance performance. Sports Med. 2011;41(6):449-61 [Abstract]