Archivi tag: flavonoli

Polifenoli dell’uva e del vino: composizione chimica e attività biologiche

Polifenoli dell’uva e del vino: contenuti in breve

Il consumo di uva e prodotti derivati, in primis il vino rosso ma solo durante i pasti, è stato associato a numerosi effetti positivi sulla salute, che non si limitano al solo effetto antiossidante/antiradicalico, ma includono anche un’azione:

  • antiinfiammatoria;
  • cardioprotettiva;
  • anticancerosa;
  • antimicrobica;
  • neuroprotettiva
Polifenoli dell'Uva
Fig. 1 – Uva Rossa

Nell’uva sono presenti numerosi nutrienti quali zuccheri, vitamine, sali minerali, fibre e fitochimici. Tra questi ultimi, i polifenoli si sono dimostrati i composti più importanti nel determinare gli effetti positivi del frutto e dei prodotti derivati.
L’uva è infatti uno dei frutti più ricchi in polifenoli, la cui composizione è fortemente influenzata da diversi fattori quali la varietà o cultivar, le condizioni ambientali in cui avviene la maturazione, eventuali malattie quali infezioni fungine, come anche la lavorazione che subisce.
Al momento le specie di vite principalmente coltivate a livello mondiali sono: l’europea, Vitis vinifera, le nordamericane, Vitis labrusca e Vitis rotundifolia, ed ibridi francesi.
Nota: l’uva in realtà non è un frutto ma un’infruttescenza ossia un raggruppamento di frutti: il grappolo. A sua volta il grappolo è composto dal peduncolo, dal raspo o graspo, dai pedicelli, e dalle bacche o acini o chicchi.

⇑ Torna all’inizio ⇑

Quali sono i polifenoli dell’uva e del vino?

I polifenoli sono presenti sia in quantità che in varietà decisamente maggiori nell’uva rossa, e quindi nel vino rosso, rispetto a quella bianca. Questo, secondo molti ricercatori, sarebbe alla base dei maggiori benefici sulla salute derivanti al consumo di uva/vino rosso rispetto a quella bianca ed i suoi derivati.
I polifenoli dell’uva e del vino sono una complessa miscela di composti flavonoidi, il gruppo più abbondante, e non flavonoidi.
Tra i flavonoidi si ritrovano:

Tra i polifenoli non flavonoidi:

La maggior parte dei flavonoidi presenti nel vino derivano dallo strato epidermico della buccia, mentre il 60-70% del totale dei polifenoli è presente nel vinacciolo. Da notare che oltre il 70% dei polifenoli dell’uva non sono estratti e rimangono nella vinaccia.
Le complesse interazioni chimiche che si stabiliscono tra questi composti, e tra di loro e gli altri composti di natura differente presenti nell’uva e nel vino, sono probabilmente essenziali nel determinare sia la qualità delle uve e del vino che l’ampio spettro di effetti terapeutici propri di questi alimenti.
Nel vino la miscela di polifenoli svolge importanti funzioni essendo in gradi di influenzare:

  • il gusto amaro;
  • l’astringenza;
  • il colore rosso, di cui sono tra i maggiori responsabili;
  • la sensibilità all’ossidazione, essendo sostanze facilmente ossidabili quando esposte all’aria.

Infine sono un conservante importante per il vino stesso e la base per un lungo invecchiamento.

⇑ Torna all’inizio ⇑

Polifenoli dell’uva e del vino: antociani o antocianine

Sono flavonoidi ampiamente presenti nella frutta e verdura.
Nell’uva si accumulano in modo principale nella buccia (nei primi strati esterni del tessuto ipodermico), cui conferiscono il colore, avendo tonalità che variano dal rosso al blu. In alcune varietà, dette “teinturier”, si accumulano anche nella polpa dell’acino.
Esiste una stretta correlazione tra la sintesi degli antociani e lo sviluppo dell’acino. Quando l’acino raggiunge l’invaiatura, ossia il momento in cui termina la sua crescita, ha inizio la loro sintesi, che determina anche il cambiamento di colore dell’acino stesso che diventa viola. La sintesi raggiunge il massimo livello alla maturazione completa dell’acino.
Tra i flavonoidi del vino sono uno degli antiossidanti più potenti.
Ogni specie e varietà d’uva ha una composizione unica in antocianine. Inoltre nelle uve di Vitis vinifera, a seguito di una mutazione a carico del gene che codifica per 5-O-glucosiltransferasi, mutazione che determina la sintesi di un enzima inattivo, sono prodotti solo 3-monoglucosidi, mentre nelle uve derivanti da altre specie avviene anche la glicosilazione in posizione 5. Interessante notare che i derivati 3-glucosidici sono colorati più intensamente dei 3,5-diglucosidi.

Polifenoli dell'Uva
Fig. 2 – Malvidina-3-glucoside

Nell’uva e nel vino rosso i più abbondanti sono i 3-monoglucosidi della malvidina, la più abbondante sia nell’uva che nel vino, e della petunidina, delfinidina, peonidina, cianidina.
L’idrossile in posizione 6 del glucosio può a sua volta essere acilato con un gruppo acetilico, caffeico o cumarico, acilazione che ne aumenta ulteriormente la stabilità.
Le antocianidine, ossia le forme non coniugate, non sono presenti ne nell’uva ne nel vino, se non in tracce.
Gli antociani sono scarsamente presenti nelle uve bianche, e dunque nel vino bianco.
La composizione in antociani del vino è fortemente influenzata sia dal tipo di cultivar che dalle tecniche di vinificazione, ritrovandosi nel vino in conseguenza di processi di estrazione dalla buccia dovuti alla macerazione delle uve. Di conseguenza vini derivanti da varietà simili di uve possono avere composizioni in antocianine molto diverse.
Insieme alla proantocianidine, sono i polifenoli più importanti nel determinare alcune importanti proprietà organolettiche del vino rosso, in quanto sono i principali responsabili dell’astringenza, amarezza, stabilità chimica nei confronti dell’ossidazione, come anche del colore del vino giovane.
Riguardo al colore va sottolineato che con il tempo la loro concentrazione si riduce, mentre il colore è dovuto sempre più alla formazione di pigmenti polimerici prodotti della condensazione degli antociani sia tra di loro che  con altre molecole.
Nel corso dell’invecchiamento del vino gli antociani e le proantocianidine possono interagire a dare molecole con struttura complessa che possono parzialmente precipitare.

⇑ Torna all’inizio ⇑

Polifenoli dell’uva e del vino: flavanoli o catechine

Sono, insieme ai tannini condensati, i flavonoidi più abbondanti, rappresentando fino al 50% del totale dei polifenoli nelle uve bianche e dal 13% al 30% in quelle rosse.
Il loro livello nel vino dipende dal tipo di cultivar.

Polifenoli dell'uva
Fig. 3- Catechina

In genere il flavanolo più abbondante nel vino è la catechina, ma si ritrovano anche epicatechina ed epicatechina-3-gallato.

⇑ Torna all’inizio ⇑

Polifenoli dell’uva e del vino: proantocianidine o tannini condensati

Polifenoli dell'Uva
Fig. 4 – Procianidina C1

Formate da unità di catechine, sono presenti nella buccia, nel vinacciolo e nel raspo del grappolo d’uva in forma di:

  • dimeri, di cui i più comuni sono le proacianidine B1-B4, ma possono essere presenti anche le procianidine B5-B8;
  • trimeri, e tra questi la procianidina C1 è la più abbondante;
  • tetrameri;
  • polimeri, formati fino da 8 monomeri.

Il loro livello nel vino dipende dalle tecniche di vinificazione e dalla varietà dell’uva e, al pari degli antociani, sono molto più abbondanti nei vini rossi, in particolare in quelli invecchiati, rispetto ai bianchi.
Inoltre, come detto in precedenza, insieme agli antociani, i tannini condensati sono importanti nel determinare alcune proprietà organolettiche del vino.

⇑ Torna all’inizio ⇑

Polifenoli dell’uva e del vino: flavonoli

Sono presenti in una grande varietà di frutta e verdura, anche se in basse concentrazioni.
Nell’uva sono il terzo gruppo di flavonoidi più abbondanti, dopo proantocianidine e catechine.
Si ritrovano principalmente nell’epidermide esterna della buccia, dove agiscono come agenti protettivi nei confronti della radiazione UV-A e UV-B, ed hanno un ruolo di copigmentazione insieme agli antociani.
La loro sintesi inizia nel germoglio; la concentrazione più elevata è raggiunta poche settimane dopo l’invaiatura, per poi ridursi quando il chicco aumenta di dimensioni. Il loro contenuto totale è molto variabile, con le varietà rosse spesso più ricche rispetto a quelle bianche.
Nell’uva sono presenti come 3-glucosidi. Il loro profilo dipende dal tipo di uva e cultivar:

  • nell’uva bianca si ritrovano i derivati della quercetina, campferolo ed isoramnetina;
  • i derivati della miricetina, laricitrina e siringetina si ritrovano, insieme ai precedenti, solo in quella rossa, a causa della mancata espressione nell’uva bianca del gene che codifica per la flavonoide-3’,5’-idrossilasi.
Polfenoli dell'Uva
Fig. 5 – Quercetina-3-glucoside

In generale i 3-glucosidi ed i 3-glucoronidi della quercetina sono i principali flavonoli nella maggior parte delle uve. Nelle uve moscate invece i più rappresentati sono la quercetina-3-ramnoside e la quercetina aglicone.
A differenza dell’uva, nel vino e nel succo d’uva i flavonoli sono presenti anche come agliconi, in conseguenza dell’idrolisi acida che si verifica durante la lavorazione e la conservazione. Si ritrovano nel vino in quantità variabile, e i principali sono i glicosidi della miricetina e quercetina, che da soli rappresentano il 20-50% del totale dei flavonoli del vino rosso.

⇑ Torna all’inizio ⇑

Polifenoli dell’uva e del vino: idrossicinnamati

Gli acidi idrossicinnamici sono la principale classe di polifenoli non flavonoidi nell’uva ed i principali polifenoli del vino bianco.
I più importanti sono gli acidi p-cumarico, caffeico, sinapico e ferulico, presenti nel vino in forma di esteri con l’acido tartarico.

Polifenoli dell'Uva
Fig. 6 – Acido Ferulico

Sono molecole dotate di attività antiossidante e in alcune cultivar bianche di Vitis vinifera, assieme ai flavonoli, sono i principali polifenoli responsabili dell’assorbimento della radiazione ultravioletta a livello dell’acino.

⇑ Torna all’inizio ⇑

Polifenoli dell’uva e del vino: stilbeni

ono fitoalessine che, al contrario dei flavonoidi che sono presenti in tutte le piante superiori, sono prodotti in basse concentrazioni solo da poche specie edibili, tra cui la vite.
Insieme agli altri polifenoli dell’uva e del vino anche gli stilbeni, ed in particolare il resveratrolo, sono stati associati agli effetti benefici sulla salute conseguenti al consumo della bevanda.

Polifenoli dell'Uva
Fig. 7 – trans-Resveratrolo

Il loro contenuto aumenta dall’invaiatura sino alla maturazione del chicco, ed è influenzato dal tipo di cultivar, dal clima, dalle tecniche di vinificazione e dalla pressione fungina.
I principali stilbeni presenti nell’uva e nel vino sono:

  • cis– e trans-resveratrolo (3,5,4’-triidrossistilbene);
  • piceide o resveratrolo-3-glucopiranoside e astringina o  3’-idrossi trans-piceide;
  • piceatannolo;
  • dimeri ed oligomeri del resveratrolo, detti viniferine, di cui le più importanti sono:

α-viniferina, un trimero;
β-viniferina, un tetramero ciclico;
γ-viniferina, un oligomero altamente polimerizzato;
ε-viniferina, un dimero ciclico.

Nell’uva sono state identificati in tracce anche altre forme isomeriche e glicosilate del resveratrolo e del piceatannolo, come il resveratroloside, l’opeafenolo, il resveratrolo di- e triglucoside.
La glicosilazione degli stilbeni è importante per la conservazione, il trasporto, la modulazione dell’attività antifungina e la protezione dalla degradazione ossidativa del vino.
La sintesi di dimeri ed oligomeri del resveratrolo, prodotti sia nell’uva che nel vino, rappresenta un meccanismo di difesa nei confronti di attacchi esogeni, o al contrario è il risultato dell’azione di enzimi extracellulari rilasciati da patogeni nel tentativo di eliminare composti tossici indesiderati.

⇑ Torna all’inizio ⇑

Polifenoli dell’uva e del vino: idrossibenzoati

I derivati dell’acido idrossibenzoico sono componenti minori dell’uva e del vino.
Nell’uva i principali sono gli acidi gentisico, gallico, p-idrossibenzoico e protocatechico.

Polifenoli dell'Uva
Fig. 8 – Acido Gallico

A differenza degli idrossicinnamati, che nel vino sono presenti come esteri con l’acido tartarico, si ritrovano in forma libera.
Insieme ai flavonoli, proantocianidine, catechine ed idrossicinnamati sono tra i responsabili dell’astringenza del vino.

⇑ Torna all’inizio ⇑

Bibliografia

Andersen Ø.M., Markham K.R. Flavonoids: chemistry, biochemistry, and applications. CRC Press Taylor & Francis Group, 2006

Basli A, Soulet S., Chaher N., Mérillon J.M., Chibane M., Monti J.P.,1 and Richard T. Wine polyphenols: potential agents in neuroprotection. Oxid Med Cell Longev 2012. doi:10.1155/2012/805762

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Flamini R., Mattivi F.,  De Rosso M., Arapitsas P. and Bavaresco L. Advanced knowledge of three important classes of grape phenolics: anthocyanins, stilbenes and flavonols. Int J Mol Sci 2013;14:19651-19669. doi:10.3390/ijms141019651

Georgiev V., Ananga A. and Tsolova V. Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients 2014;6: 391-415. doi:10.3390/nu6010391

Guilford J.M. and Pezzuto J.M. Wine and health: a review. Am J Enol Vitic 2011;62(4):471-486. doi:10.5344/ajev.2011.11013

He S., Sun C. and Pan Y. Red wine polyphenols for cancer prevention. Int J Mol Sci 2008;9:842-853. doi:10.3390/ijms9050842

Xia E-Q., Deng G-F., Guo Y-J. and Li H-B. Biological activities of polyphenols from grapes. Int J Mol Sci 2010;11-622-646. doi:10.3390/ijms11020622

Waterhouse A.L. Wine phenolics. Ann N Y Acad Sci 2002;957:21-36. doi:10.1111/j.1749-6632.2002.tb02903.x

Polifenoli dell’olio d’oliva: variabilità e composizione chimica

Polifenoli dell’olio d’oliva: contenuti in breve

Polifenoli dell’olio d’oliva: influenze ambientali ed estrattive

Polifenoli dell'Olio d'Oliva
Fig. 1 – Olive

L’olio di oliva, che si ottiene dalla spremitura delle olive o drupe, il frutto della pianta dell’olivo (Olea europaea), è la principale fonte di grassi della Dieta Mediterranea e un’ottima fonte di polifenoli.
I polifenoli, molecole con proprietà antiossidanti, sono presenti nella polpa dell’oliva e, a seguito della spremitura, passano nell’olio.
La concentrazione dei polifenoli dell’olio di oliva è il risultato di una complessa interazione tra vari fattori, sia ambientali che legati al processo di estrazione dell’olio stesso, quali:

  • il luogo di coltivazione;
  • il cultivar (la varietà);
  • il grado di maturazione delle olive al momento del raccolto.
    Il loro livello di solito si riduce con l’eccessiva maturazione delle drupe, anche se ci sono delle eccezioni a queste regole. Ad esempio le olive coltivate nei climi più caldi, a dispetto della loro maturazione più veloce, producono oli più ricchi in polifenoli.
  • il clima;
  • il processo di estrazione. A questo riguardo c’è da sottolineare il fatto che nell’olio d’oliva raffinato il contenuto in polifenoli non è significativo.

Ogni variazione nella concentrazione dei differenti polifenoli dell’olio influenza il gusto, le proprietà nutrizionali e la stabilità dell’olio di oliva stesso. Ad esempio, l’idrossitirosolo e l’oleuropeina (vedi sotto), conferiscono all’olio extravergine di oliva un sapore pungente ed amaro.

⇑ Torna all’inizio ⇑

Classi di polifenoli dell’olio d’oliva

Tra i polifenoli dell’olio d’oliva sono presenti sia molecole con struttura semplice, come gli acidi fenolici e gli alcool fenolici, che complessa, quali i flavonoidi, i secoiridoidi ed i lignani.

⇑ Torna all’inizio ⇑

Flavonoidi

I flavonoidi comprendono glicosidi dei flavonoli (rutina o quercetina-3-rutinoside), dei flavoni (luteolina-7-glicoside), e degli antociani (glicosidi della delfinidina).

⇑ Torna all’inizio ⇑

Acidi fenolici ed alcol fenolici

Tra gli acidi fenolici, i primi polifenoli con struttura semplice ad essere osservati nell’olio d’oliva, si ritrovano:

  • gli acidi idrossibenzoici, come l’acido gallico, l’acido protocatecuico, e  l’acido 4-idrossibenzoico (tutti con struttura C6-C1);
  • gli acidi idrossicinnamici, come gli acidi caffeico, vanillico, siringico, p-cumarico e o-cumarico (tutti con struttura C6-C3).

Tra gli alcoli fenolici, i più abbondanti sono l’idrossitirosolo (3,4-diidrossifeniletanolo), e il tirosolo [2-(4-idrossifenil)-etanolo].

⇑ Torna all’inizio ⇑

Idrossitirosolo

L’idrossitirosolo può essere presente sia libero che esterificato con l’acido elenoico a dare oleuropeina ed il suo aglicone, sia come componente della molecola verbascoside. Inoltre si può ritrovare in diverse forme glicosidiche, a seconda del gruppo ossidrile cui si va a legare il glucoside.

Polifenoli dell'Olio di Oliva
Fig. 2 – Idrossitirosolo

E’ uno dei principali composti fenolici presente nelle olive, nell’olio extravergine di oliva e nelle acque di vegetazione.
In natura, la sua concentrazione, come quella del tirosolo, aumenta durante la maturazione del frutto, in parallelo con l’idrolisi di composti con peso molecolare più elevato, mentre il contenuto totale dei composti fenolici e dell’alfa-tocoferolo diminuisce. Può quindi essere considerato come un indicatore del grado di maturazione delle olive.
Nell’olio extravergine di oliva fresco l’idrossitirosolo per la maggior parte si trova impegnato in un legame in forma esterifica, mentre con il passare del tempo, grazie a reazioni di idrolisi, la forma non esterificata diventa quella prevalente.
Infine, la sua concentrazione si correla con la stabilità dell’olio.

⇑ Torna all’inizio ⇑

Secoiridoidi

Sono i polifenoli dell’olio d’oliva con struttura più complessa, e sono il prodotto del metabolismo secondario dei terpeni.
Sono composti che legano uno zucchero e sono caratterizzati dalla presenza nella loro struttura di acido elenolico (sia nella sua forma glucosidica che agliconica), la molecola comune ai glicosidi secoiroidi della famiglia delle Oleaceae.
A differenza dei tocoferoli, flavonoidi, ed acidi ed alcol fenolici che di ritrovano in molta frutta e verdura appartenente a famiglie botaniche differenti, i secoiridoidi sono presenti soltanto nelle piante della famiglia delle Oleaceae.
I principali secoiridoidi sono l’oleuropeina, la demetiloleuropeina, il ligstroside e la nuzenide.
In particolare, l’oleuropeina e la demetiloleuropeina (come la verbascoside) sono abbondanti nella polpa, ma si ritrovano anche nelle altre parti del frutto. La nuzenide è presente solo nei semi.

⇑ Torna all’inizio ⇑

Oleuropeina

L’oleuropeina, il secoiridoide più importante ed il principale tra i polifenoli dell’olio d’oliva, è l’estere tra l’idrossitirosolo e l’acido elenoico.

Polifenoli dell'Olio d'Oliva
Fig. 3 – Oleuropeina

E’ presente in quantità molto elevate nelle foglie dell’olivo, come anche in tutte le parti del frutto, buccia, polpa e nocciolo compreso.
Si accumula nell’oliva durante la fase di crescita, sino a raggiungere il 14% del peso netto; quando il frutto diventa più verde, la sua quantità si riduce. Infine, quando la drupa vira verso il marrone scuro, colore dovuto alla presenza di antociani, la riduzione nella concentrazione della oleuropeina diventa più evidente. E’ stato inoltre dimostrato che nelle cultivar verdi il suo contenuto è maggiore rispetto alle cultivar nere.
Nel corso della riduzione dei livelli di oleuropeina e di altri secoiridoidi, è possibile osservare un aumento di composti come i flavonoidi, i verbascosidi, ed i fenoli semplici. La riduzione del suo contenuto è accompagnata anche da un aumento dei suoi prodotti secondari glicosilati, che raggiungono i valori massimi nelle olive nere.

⇑ Torna all’inizio ⇑

Lignani

Polifenoli dell'Olio d'Oliva
Fig. 4 – Lignani

Un altro gruppo di polifenoli dell’olio d’oliva sono i lignani, in particolare (+)-1-acetossipinoresinolo e (+)-pinoresinolo.
Il (+)-pinoresinolo è un composto comune della frazione lignana di diverse piante come il sesamo (Sesamun indicum) e i semi della specie Forsithia, appartenente alla famiglia delle Oleaceae. E’stato ritrovato anche nel nocciolo delle olive.
Il (+)-1-acetossipinoresinolo e (+)-1-idrossipinoresinolo, ed i loro glicosidi, sono stati ritrovati nella corteccia dell’oliva (Olea europeae).
I lignani non sono presenti nel pericarpo delle drupe, ne nei rametti e foglie che possono accidentalmente essere spremuti insieme alle olive.
Pertanto, come riescano a passare nell’olio divenendone una delle frazioni fenoliche più importanti non è ancora noto.
(+)-1-acetossipinoresinolo e (+)-pinoresinolo non sono presenti negli oli di semi, e sono virtualmente assenti dagli oli di oliva vergini raffinati, mentre nell’olio extravergine di oliva possono raggiungere una concentrazione di 100 mg/kg.
Come per i fenoli semplici ed i secoiridoidi, esiste una notevole variazione nella loro concentrazione tra gli oli di oliva di varia origine, variabilità probabilmente legata alle differenze tra le zone di produzione, clima, varietà di olive e tecniche di produzione dell’olio.

⇑ Torna all’inizio ⇑

Bibliografia

Cicerale S., Lucas L. and Keast R. Biological activities of phenolic compounds present in virgin olive oil. Int. J. Mol. Sci. 2010;11: 458-479. doi:10.3390/ijms11020458

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Manach C., Scalbert A., Morand C., Rémésy C., and Jime´nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-47 [Abstract]

Owen R.W., Mier W., Giacosa A., Hull W.E., Spiegelhalder B. and Bartsch H. Identification of lignans as major components in the phenolic fraction. Clin Chem 2000;46:976-988 [Abstract]

Tripoli E., Giammanco M., Tabacchi G., Di Majo D., Giammanco S. and La Guardia M. The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health. Nutr Res Rev 2005:18;98-112. doi:10.1079/NRR200495

Isoflavoni: definizione, struttura e soia

Isoflavoni: contenuti in breve

Che cosa sono gli isoflavoni?

Gli isoflavoni sono polifenoli privi di colore appartenenti alla classe dei flavonoidi.
A differenza della maggior parte degli altri flavonoidi, hanno una distribuzione tassonomica limitata, trovandosi quasi esclusivamente nelle piante appartenenti alla famiglia delle Leguminose o Fabacee, in particolare nella soia.
Poiché i legumi, la soia in primis, sono una parte importante della dieta in molte culture, questi flavonoidi potrebbero avere un grande impatto sulla salute umana.
Si trovano anche nei fagioli e nelle fave, ma in concentrazioni molto minori rispetto a quelle presenti nella soia e nei prodotti derivati.
Un’altra buona fonte di tali molecole è il trifoglio rosso o trifoglio dei prati (Trifolium pratense), anch’esso appartenente alla famiglia delle Leguminose.
Nella frutta e verdura, al momento, non ne sono stati trovati.

Insieme agli acidi fenolici, quali l’acido caffeico e l’acido gallico, e ai glicosidi della quercetina, sono i polifenoli meglio assorbiti, seguiti dalle catechine (ma non le gallocatechine) e dai flavanoni.

Nelle piante alcuni isoflavoni sono dotati di attività antimicrobica e sono sintetizzati in risposta ad attacchi da parte di batteri o funghi; agiscono quindi come fitoalesine.

⇑ Torna all’inizio ⇑

Struttura chimica degli isoflavoni

Mentre nella maggior parte dei flavonoidi l’anello B si lega all’anello C in posizione 2, negli isoflavoni l’anello B si lega all’anello C in posizione 3.

Isoflavoni
Fig. 1 – Struttura di Base degli Isoflavoni

Anche se non sono steroidi, sono strutturalmente simili agli estrogeni, in particolare all’estradiolo. Questo conferisce loro proprietà pseudormonali, compresa la capacità di legarsi ai recettori per gli estrogeni, e sono per questo considerati fitoestrogeni o estrogeni vegetali. I benefici spesso ascritti alla soia e ai cibi a base di soia (es. il tofu) si ritiene derivino dalla capacità degli isoflavoni presenti di agire come fitoestrogeni.
Va però sottolineato che il legame ai recettori per gli estrogeni sembra perdere forza con il tempo, per cui la loro efficacia non andrebbe sopravvalutata.
Negli alimenti sono presenti in quattro forme:

  • aglicone;
  • 7-O-glucoside;
  • 6’-O-acetil-7-O-glucoside;
  • 6’-O-malonil-7-O-glucoside.

⇑ Torna all’inizio ⇑

Isoflavoni della soia: genisteina, daidzeina e gliciteina

Isoflavoni
Fig. 2 – Isoflavoni

La soia ed i derivati della soia, come il latte di soia, il tofu, il tempeh e il miso, sono la principale fonte di isoflavoni nella dieta umana.
Il contenuto in isoflavoni della soia e dei prodotti derivati varia in modo considerevole in funzione della zona geografica e delle condizioni di crescita e lavorazione; ad es. la soia ne contiene tra 580 e 3800 mg/kg di peso fresco mentre il latte di soia tra i 30 e i 175 mg/L. I più abbondanti in questi alimenti sono la genisteina, la daidzeina e la gliciteina, in genere presenti in rapporto di concentrazione 1:1:0,2; altri isoflavoni presenti sono la biocanina A e la formononetina.
I 6’-O-malonil derivati hanno un gusto sgradevole, amaro e astringente, e quindi conferiscono un cattivo sapore ai cibi in cui sono contenuti. Tuttavia, essendo sensibili alla temperatura, sono spesso idrolizzati a glicosidi nel corso dei processi industriali, come la produzione del latte di soia.
I processi di fermentazione che sono necessari nella preparazione di certi cibi come il tempeh ed il miso determinano a loro volta l’idrolisi dei glicosidi ad agliconi, ossia la molecola priva di zucchero.
I glicosidi degli isoflavoni della soia e dei prodotti della soia possono essere deglicosilati anche ad opera delle β-glicosidasi dell’intestino tenue umano.
Gli agliconi sono molto resistenti al calore.
Sebbene molti composti presenti nella dieta siano convertiti dai batteri intestinali in molecole meno attive, in altri casi si verifica la conversione in molecole dotate di maggiore attività biologica. Questo è il caso degli isoflavoni, ma anche dei prenilflavonoidi del luppolo (Humulus lupulus), e dei lignani, anch’essi fitoestrogeni.

⇑ Torna all’inizio ⇑

Isoflavoni della soia e menopausa

Nelle donne in perimenopausa, anche detta transizione menopausale, e in menopausa vera e propria, i sintomi vasomotori, come le vampate di calore e le sudorazioni notturne, e la perdita di massa ossea sono molto comuni. La terapia sostitutiva ormonale (TOS) si è dimostrata un trattamento molto efficace per queste problematiche.
Il ricorso a terapie alternative a base di fitoestrogeni è aumentato a seguito della pubblicazione dei risultati del “Women’s Health Initiative” (WHI), i quali suggeriscono che la terapia sostitutiva ormonale potrebbero portare più rischi, in particolare un aumento della probabilità di sviluppare di alcune malattie croniche, che benefici.
Tra i fitoestrogeni più utilizzati dalle donne in menopausa ci sono gli isoflavoni della soia, spesso assunti in forma di alimenti fortificati o compresse. Molti studi hanno però messo in evidenza la mancanza di efficacia degli isoflavoni di soia, e del trifoglio rosso, anche in grandi dosi, nella prevenzione dei sintomi vasomotori (vampate di calore e sudorazioni notturne) e della perdita di massa ossea durante la menopausa.

⇑ Torna all’inizio ⇑

Bibliografia

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Han X., Shen T. and Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci 2007;9:950-988. doi:10.3390/i8090950

Lethaby A., Marjoribanks J., Kronenberg F., Roberts H., Eden J., Brown J. Phytoestrogens for menopausal vasomotor symptom. Cochrane Database of Systematic Reviews 2013, Issue 12. Art. No.: CD001395. doi:10.1002/14651858.CD001395.pub4

Manach C., Scalbert A., Morand C., Rémésy C., and Jime´nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-47 [Abstract]

Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010;2:1231-46. doi:10.3390/nu2121231

Flavonoidi: definizione, struttura e classificazione

Flavonoidi: contenuti in breve

Che cosa sono i flavonoidi?

I flavonoidi sono i polifenoli più abbondanti nella dieta dell’uomo, rappresentandone circa i 2/3 di tutti i quelli assunti. Come gli altri fitochimici sono il prodotto del metabolismo secondario delle piante e, al momento, non è possibile stabilire precisamente il loro numero, anche se ne sono stati identificati oltre 4000.
Nella frutta e nella verdura si trovano generalmente in forma di glicosidi e in alcuni casi acilglicosidi, mentre meno frequentemente, ed in concentrazioni minori, in forme acilate, metilate e solfate.
Sono molecole idrosolubili e si accumula all’interno dei vacuoli cellulari.

⇑ Torna all’inizio ⇑

Struttura chimica dei flavonoidi

La loro struttura di base è costituita da uno scheletro di difenilpropano, ossia due anelli benzenici (indicati come A e B, vedi figura) collegati da una catena di tre atomi di carbonio che forma un anello piranico (anello eterociclico contenente ossigeno) chiuso con l’anello benzenico A, che è detto anello C. La loro struttura è pertanto definita anche come C6-C3-C6.

Struttura di Base dei Flavonoidi
Fig. 1 – Scheletro di Difenilpropano

Nella maggior parte dei casi l’anello B si lega all’anello C in posizione 2, ma può legarsi anche in posizione 3 o 4; questo, insieme con le caratteristiche strutturali dell’anello B e gli schemi di glicosilazione ed idrossilazione dei tre anelli, fa si che i flavonoidi siano il gruppo di fitochimici, quindi non solo di polifenoli, più ampio e diversificato presente in natura.
Le attività biologiche di questi composti, ad esempio sono dei potenti antiossidanti, dipendono sia dalle caratteristiche strutturali che dallo schema di glicosilazione.

⇑ Torna all’inizio ⇑

Classificazione dei flavonoidi

Sottogruppi di Flavonoidi
Fig. 2 – Sottogruppi di Flavonoidi

Possono essere suddivisi in diverse sottogruppi sulla base del carbonio dell’anello C su cui va a legarsi l’anello B, e del grado di insaturazione ed ossidazione dell’anello C.
I flavonoidi in cui l’anello B si lega in posizione 3 dell’anello C sono detti isoflavoni; quelli in cui l’anello B si lega in posizione 4 neoflavonoidi, mentre quelli in cui l’anello B si lega in posizione 2 a loro volta essere suddividi in sei sottogruppi sulla base delle caratteristiche strutturali dell’anello C: flavoni, flavonoli, flavanoni, flavanonoli, flavanoli o catechine ed antociani.
Infine, i flavonoidi con l’anello C aperto sono detti calconi.

  • Flavoni
    Hanno un doppio legame tra la posizione 2 e 3 ed un chetone in posizione 4 dell’anello C. La maggior parte dei flavoni della verdura e frutta presenta un gruppo idrossilico in posizione 5 dell’anello A, mentre l’idrossilazione in altre posizioni, per la maggior parte in posizione 7 dell’anello A o 3’ e 4’ dell’anello B, possono variare a seconda della classificazione tassonomica della particolare verdura o frutta.
    La glicosilazione si verifica per la maggior parte sulle posizione 5 e 7, la metilazione e l’acilazione sui gruppi idrossilici dell’anello B.
    Alcuni flavoni, come la nobiletina e la tangerina, sono polimetossilati.
  • Flavonoli
    I flavonoli rispetto ai flavoni presentano un gruppo ossidrilico in posizione 3 dell’anello C, gruppo ossidrilico che può essere anche glicosilato. Di nuovo, al pari dei flavoni, anche i flavonoli sono molto vari per quello che riguarda l’idrossilazione e la metilazione, e, considerando i vari schemi di glicosilazione, i sono forse il sottogruppo più comune ed ampio di flavonoidi nella frutta e verdura. Ad esempio, la quercetina è presente in moltissimi alimenti vegetali.
  • Flavanoni
    I flavanoni, anche detti diidroflavoni, hanno l’anello C saturo; quindi, a differenza dei flavoni, mancano del doppio legame tra le posizione 2 e 3 e questa è l’unica differenza strutturale tra i due sottogruppi di flavonoidi.I flavanoni possono essere multi-idrossilati, e diversi gruppi idrossilici possono essere metilati e/o glicosilati. Alcuni hanno modelli unici di sostituzione, ad esempio, flavanoni prenilati, furanoflavanoni, piranoflavanoni o flavanoni benzilati, dando un gran numero di derivati sostituiti.
    Negli ultimi 15 anni il numero dei flavanoni scoperti è notevolmente aumentato.
  • Flavanonoli
    I flavanonoli, anche detti diidroflavonoli, sono i 3-idrossi derivati dei flavanoni; sono un sottogruppo altamente diversificato e multisostituito.
  • Isoflavoni
    Come anticipato, gli isoflavoni sono flavonoidi in cui l’anello B si lega in posizione 3 dell’anello C. Hanno analogie strutturali con gli estrogeni, come l’estradiolo, e per questo sono anche detti fitoestrogeni.
  • Neoflavonoidi
    Nei neoflavonodi il gruppo B è legato in posizione 4 dell’anello C.
  • Flavanoli o flavan-3-oli o catechine
    I flavanoli sono detti anche flavan-3-oli poiché il gruppo ossidrilico è quasi sempre legato in posizione 3 dell’anello C; altro nome comune è catechine.
    A differenza di molti flavonoidi non presentano un doppio legame tra le posizione 2 e 3; altro carattere distintivo, ad es. rispetto ai flavanonoli, con cui condividono un ossidrile in posizione 3, è l’assenza di un carbonile, un gruppo chetonico, in posizione 4. Questa particolare struttura chimica permette ai flavanoli di avere due centri chirali nella molecola, sulle posizioni 2 e 3, quindi quattro possibili diastereoisomeri. La catechina è l’isomero con configurazione trans e la epicatechina è quello con configurazione cis. Ciascuna di queste due configurazioni ha due stereoisomeri, cioè, (+)-catechina e (-)-catechina, (+)-epicatechina e (-)-epicatechina.
    La (+)-catechina e (-)-epicatechina sono i due isomeri spesso presenti nelle piante commestibili.
    Un’altra importante caratteristica dei flavanoli, in particolare della catechina e della epicatechina, è quella di formare polimeri, detti proantocianidine o tannini condensati. Il nome “proantocianidine” deriva dal fatto che un clivaggio acido catalizzato produce antocianidine.
    Le proantocianidine in genere contengono da 2 a 60 monomeri di flavanolo (catechina o epicatechina).
    Sia i flavanoli monometrici che quelli oligomerici (da 2 a 7 monomeri) sono potenti antiossidanti.
  • Antocianidine
    Chimicamente, le antocianidine sono cationi di flavilio e per la maggior parte si trovano come sali di cloruro.
    Le antocianine o antociani sono i glicosidi delle antocianidine; lo zucchero si lega per la maggior parte dei casi in posizione 3 dell’anello C, zucchero che spesso si coniuga con acidi fenolici come l’acido ferulico.
    Sono l’unico gruppo di flavonoidi che conferisce colore ai vegetali (tutti gli altri flavonoidi sono privi di colore). Il colore degli antociani dipende dal pH e dall’acilazione o metilazione dei gruppi idrossilici sugli anelli A e B.
  • Calconi
    I calconi ed i diidrocalconi vengono considerati flavonoidi con struttura aperta; sono classificati tra i flavonoidi in quanto hanno vie di sintesi simili.

⇑ Torna all’inizio ⇑

Bibliografia

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Han X., Shen T. and Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci 2007;9:950-988. doi:10.3390/i8090950

Manach C., Scalbert A., Morand C., Rémésy C., and Jime´nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-47 [Abstract]

Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010;2:1231-1246. doi:10.3390/nu2121231