Archivi tag: flavanoli o catechine

Polifenoli dell’uva e del vino: composizione chimica e attività biologiche

Polifenoli dell’uva e del vino: contenuti in breve

Il consumo di uva e prodotti derivati, in primis il vino rosso ma solo durante i pasti, è stato associato a numerosi effetti positivi sulla salute, che non si limitano al solo effetto antiossidante/antiradicalico, ma includono anche un’azione:

  • antiinfiammatoria;
  • cardioprotettiva;
  • anticancerosa;
  • antimicrobica;
  • neuroprotettiva
Polifenoli dell'Uva
Fig. 1 – Uva Rossa

Nell’uva sono presenti numerosi nutrienti quali zuccheri, vitamine, sali minerali, fibre e fitochimici. Tra questi ultimi, i polifenoli si sono dimostrati i composti più importanti nel determinare gli effetti positivi del frutto e dei prodotti derivati.
L’uva è infatti uno dei frutti più ricchi in polifenoli, la cui composizione è fortemente influenzata da diversi fattori quali la varietà o cultivar, le condizioni ambientali in cui avviene la maturazione, eventuali malattie quali infezioni fungine, come anche la lavorazione che subisce.
Al momento le specie di vite principalmente coltivate a livello mondiali sono: l’europea, Vitis vinifera, le nordamericane, Vitis labrusca e Vitis rotundifolia, ed ibridi francesi.
Nota: l’uva in realtà non è un frutto ma un’infruttescenza ossia un raggruppamento di frutti: il grappolo. A sua volta il grappolo è composto dal peduncolo, dal raspo o graspo, dai pedicelli, e dalle bacche o acini o chicchi.

⇑ Torna all’inizio ⇑

Quali sono i polifenoli dell’uva e del vino?

I polifenoli sono presenti sia in quantità che in varietà decisamente maggiori nell’uva rossa, e quindi nel vino rosso, rispetto a quella bianca. Questo, secondo molti ricercatori, sarebbe alla base dei maggiori benefici sulla salute derivanti al consumo di uva/vino rosso rispetto a quella bianca ed i suoi derivati.
I polifenoli dell’uva e del vino sono una complessa miscela di composti flavonoidi, il gruppo più abbondante, e non flavonoidi.
Tra i flavonoidi si ritrovano:

Tra i polifenoli non flavonoidi:

La maggior parte dei flavonoidi presenti nel vino derivano dallo strato epidermico della buccia, mentre il 60-70% del totale dei polifenoli è presente nel vinacciolo. Da notare che oltre il 70% dei polifenoli dell’uva non sono estratti e rimangono nella vinaccia.
Le complesse interazioni chimiche che si stabiliscono tra questi composti, e tra di loro e gli altri composti di natura differente presenti nell’uva e nel vino, sono probabilmente essenziali nel determinare sia la qualità delle uve e del vino che l’ampio spettro di effetti terapeutici propri di questi alimenti.
Nel vino la miscela di polifenoli svolge importanti funzioni essendo in gradi di influenzare:

  • il gusto amaro;
  • l’astringenza;
  • il colore rosso, di cui sono tra i maggiori responsabili;
  • la sensibilità all’ossidazione, essendo sostanze facilmente ossidabili quando esposte all’aria.

Infine sono un conservante importante per il vino stesso e la base per un lungo invecchiamento.

⇑ Torna all’inizio ⇑

Polifenoli dell’uva e del vino: antociani o antocianine

Sono flavonoidi ampiamente presenti nella frutta e verdura.
Nell’uva si accumulano in modo principale nella buccia (nei primi strati esterni del tessuto ipodermico), cui conferiscono il colore, avendo tonalità che variano dal rosso al blu. In alcune varietà, dette “teinturier”, si accumulano anche nella polpa dell’acino.
Esiste una stretta correlazione tra la sintesi degli antociani e lo sviluppo dell’acino. Quando l’acino raggiunge l’invaiatura, ossia il momento in cui termina la sua crescita, ha inizio la loro sintesi, che determina anche il cambiamento di colore dell’acino stesso che diventa viola. La sintesi raggiunge il massimo livello alla maturazione completa dell’acino.
Tra i flavonoidi del vino sono uno degli antiossidanti più potenti.
Ogni specie e varietà d’uva ha una composizione unica in antocianine. Inoltre nelle uve di Vitis vinifera, a seguito di una mutazione a carico del gene che codifica per 5-O-glucosiltransferasi, mutazione che determina la sintesi di un enzima inattivo, sono prodotti solo 3-monoglucosidi, mentre nelle uve derivanti da altre specie avviene anche la glicosilazione in posizione 5. Interessante notare che i derivati 3-glucosidici sono colorati più intensamente dei 3,5-diglucosidi.

Polifenoli dell'Uva
Fig. 2 – Malvidina-3-glucoside

Nell’uva e nel vino rosso i più abbondanti sono i 3-monoglucosidi della malvidina, la più abbondante sia nell’uva che nel vino, e della petunidina, delfinidina, peonidina, cianidina.
L’idrossile in posizione 6 del glucosio può a sua volta essere acilato con un gruppo acetilico, caffeico o cumarico, acilazione che ne aumenta ulteriormente la stabilità.
Le antocianidine, ossia le forme non coniugate, non sono presenti ne nell’uva ne nel vino, se non in tracce.
Gli antociani sono scarsamente presenti nelle uve bianche, e dunque nel vino bianco.
La composizione in antociani del vino è fortemente influenzata sia dal tipo di cultivar che dalle tecniche di vinificazione, ritrovandosi nel vino in conseguenza di processi di estrazione dalla buccia dovuti alla macerazione delle uve. Di conseguenza vini derivanti da varietà simili di uve possono avere composizioni in antocianine molto diverse.
Insieme alla proantocianidine, sono i polifenoli più importanti nel determinare alcune importanti proprietà organolettiche del vino rosso, in quanto sono i principali responsabili dell’astringenza, amarezza, stabilità chimica nei confronti dell’ossidazione, come anche del colore del vino giovane.
Riguardo al colore va sottolineato che con il tempo la loro concentrazione si riduce, mentre il colore è dovuto sempre più alla formazione di pigmenti polimerici prodotti della condensazione degli antociani sia tra di loro che  con altre molecole.
Nel corso dell’invecchiamento del vino gli antociani e le proantocianidine possono interagire a dare molecole con struttura complessa che possono parzialmente precipitare.

⇑ Torna all’inizio ⇑

Polifenoli dell’uva e del vino: flavanoli o catechine

Sono, insieme ai tannini condensati, i flavonoidi più abbondanti, rappresentando fino al 50% del totale dei polifenoli nelle uve bianche e dal 13% al 30% in quelle rosse.
Il loro livello nel vino dipende dal tipo di cultivar.

Polifenoli dell'uva
Fig. 3- Catechina

In genere il flavanolo più abbondante nel vino è la catechina, ma si ritrovano anche epicatechina ed epicatechina-3-gallato.

⇑ Torna all’inizio ⇑

Polifenoli dell’uva e del vino: proantocianidine o tannini condensati

Polifenoli dell'Uva
Fig. 4 – Procianidina C1

Formate da unità di catechine, sono presenti nella buccia, nel vinacciolo e nel raspo del grappolo d’uva in forma di:

  • dimeri, di cui i più comuni sono le proacianidine B1-B4, ma possono essere presenti anche le procianidine B5-B8;
  • trimeri, e tra questi la procianidina C1 è la più abbondante;
  • tetrameri;
  • polimeri, formati fino da 8 monomeri.

Il loro livello nel vino dipende dalle tecniche di vinificazione e dalla varietà dell’uva e, al pari degli antociani, sono molto più abbondanti nei vini rossi, in particolare in quelli invecchiati, rispetto ai bianchi.
Inoltre, come detto in precedenza, insieme agli antociani, i tannini condensati sono importanti nel determinare alcune proprietà organolettiche del vino.

⇑ Torna all’inizio ⇑

Polifenoli dell’uva e del vino: flavonoli

Sono presenti in una grande varietà di frutta e verdura, anche se in basse concentrazioni.
Nell’uva sono il terzo gruppo di flavonoidi più abbondanti, dopo proantocianidine e catechine.
Si ritrovano principalmente nell’epidermide esterna della buccia, dove agiscono come agenti protettivi nei confronti della radiazione UV-A e UV-B, ed hanno un ruolo di copigmentazione insieme agli antociani.
La loro sintesi inizia nel germoglio; la concentrazione più elevata è raggiunta poche settimane dopo l’invaiatura, per poi ridursi quando il chicco aumenta di dimensioni. Il loro contenuto totale è molto variabile, con le varietà rosse spesso più ricche rispetto a quelle bianche.
Nell’uva sono presenti come 3-glucosidi. Il loro profilo dipende dal tipo di uva e cultivar:

  • nell’uva bianca si ritrovano i derivati della quercetina, campferolo ed isoramnetina;
  • i derivati della miricetina, laricitrina e siringetina si ritrovano, insieme ai precedenti, solo in quella rossa, a causa della mancata espressione nell’uva bianca del gene che codifica per la flavonoide-3’,5’-idrossilasi.
Polfenoli dell'Uva
Fig. 5 – Quercetina-3-glucoside

In generale i 3-glucosidi ed i 3-glucoronidi della quercetina sono i principali flavonoli nella maggior parte delle uve. Nelle uve moscate invece i più rappresentati sono la quercetina-3-ramnoside e la quercetina aglicone.
A differenza dell’uva, nel vino e nel succo d’uva i flavonoli sono presenti anche come agliconi, in conseguenza dell’idrolisi acida che si verifica durante la lavorazione e la conservazione. Si ritrovano nel vino in quantità variabile, e i principali sono i glicosidi della miricetina e quercetina, che da soli rappresentano il 20-50% del totale dei flavonoli del vino rosso.

⇑ Torna all’inizio ⇑

Polifenoli dell’uva e del vino: idrossicinnamati

Gli acidi idrossicinnamici sono la principale classe di polifenoli non flavonoidi nell’uva ed i principali polifenoli del vino bianco.
I più importanti sono gli acidi p-cumarico, caffeico, sinapico e ferulico, presenti nel vino in forma di esteri con l’acido tartarico.

Polifenoli dell'Uva
Fig. 6 – Acido Ferulico

Sono molecole dotate di attività antiossidante e in alcune cultivar bianche di Vitis vinifera, assieme ai flavonoli, sono i principali polifenoli responsabili dell’assorbimento della radiazione ultravioletta a livello dell’acino.

⇑ Torna all’inizio ⇑

Polifenoli dell’uva e del vino: stilbeni

ono fitoalessine che, al contrario dei flavonoidi che sono presenti in tutte le piante superiori, sono prodotti in basse concentrazioni solo da poche specie edibili, tra cui la vite.
Insieme agli altri polifenoli dell’uva e del vino anche gli stilbeni, ed in particolare il resveratrolo, sono stati associati agli effetti benefici sulla salute conseguenti al consumo della bevanda.

Polifenoli dell'Uva
Fig. 7 – trans-Resveratrolo

Il loro contenuto aumenta dall’invaiatura sino alla maturazione del chicco, ed è influenzato dal tipo di cultivar, dal clima, dalle tecniche di vinificazione e dalla pressione fungina.
I principali stilbeni presenti nell’uva e nel vino sono:

  • cis– e trans-resveratrolo (3,5,4’-triidrossistilbene);
  • piceide o resveratrolo-3-glucopiranoside e astringina o  3’-idrossi trans-piceide;
  • piceatannolo;
  • dimeri ed oligomeri del resveratrolo, detti viniferine, di cui le più importanti sono:

α-viniferina, un trimero;
β-viniferina, un tetramero ciclico;
γ-viniferina, un oligomero altamente polimerizzato;
ε-viniferina, un dimero ciclico.

Nell’uva sono state identificati in tracce anche altre forme isomeriche e glicosilate del resveratrolo e del piceatannolo, come il resveratroloside, l’opeafenolo, il resveratrolo di- e triglucoside.
La glicosilazione degli stilbeni è importante per la conservazione, il trasporto, la modulazione dell’attività antifungina e la protezione dalla degradazione ossidativa del vino.
La sintesi di dimeri ed oligomeri del resveratrolo, prodotti sia nell’uva che nel vino, rappresenta un meccanismo di difesa nei confronti di attacchi esogeni, o al contrario è il risultato dell’azione di enzimi extracellulari rilasciati da patogeni nel tentativo di eliminare composti tossici indesiderati.

⇑ Torna all’inizio ⇑

Polifenoli dell’uva e del vino: idrossibenzoati

I derivati dell’acido idrossibenzoico sono componenti minori dell’uva e del vino.
Nell’uva i principali sono gli acidi gentisico, gallico, p-idrossibenzoico e protocatechico.

Polifenoli dell'Uva
Fig. 8 – Acido Gallico

A differenza degli idrossicinnamati, che nel vino sono presenti come esteri con l’acido tartarico, si ritrovano in forma libera.
Insieme ai flavonoli, proantocianidine, catechine ed idrossicinnamati sono tra i responsabili dell’astringenza del vino.

⇑ Torna all’inizio ⇑

Bibliografia

Andersen Ø.M., Markham K.R. Flavonoids: chemistry, biochemistry, and applications. CRC Press Taylor & Francis Group, 2006

Basli A, Soulet S., Chaher N., Mérillon J.M., Chibane M., Monti J.P.,1 and Richard T. Wine polyphenols: potential agents in neuroprotection. Oxid Med Cell Longev 2012. doi:10.1155/2012/805762

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Flamini R., Mattivi F.,  De Rosso M., Arapitsas P. and Bavaresco L. Advanced knowledge of three important classes of grape phenolics: anthocyanins, stilbenes and flavonols. Int J Mol Sci 2013;14:19651-19669. doi:10.3390/ijms141019651

Georgiev V., Ananga A. and Tsolova V. Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients 2014;6: 391-415. doi:10.3390/nu6010391

Guilford J.M. and Pezzuto J.M. Wine and health: a review. Am J Enol Vitic 2011;62(4):471-486. doi:10.5344/ajev.2011.11013

He S., Sun C. and Pan Y. Red wine polyphenols for cancer prevention. Int J Mol Sci 2008;9:842-853. doi:10.3390/ijms9050842

Xia E-Q., Deng G-F., Guo Y-J. and Li H-B. Biological activities of polyphenols from grapes. Int J Mol Sci 2010;11-622-646. doi:10.3390/ijms11020622

Waterhouse A.L. Wine phenolics. Ann N Y Acad Sci 2002;957:21-36. doi:10.1111/j.1749-6632.2002.tb02903.x


Perdita di peso e tè verde: tra mito e leggenda

Il tè verde: un alimento brucia grassi per la perdita di peso?

Nella fase di perdita di peso, come durante il mantenimento del peso perso, è importante mantenere il più costante possibile il dispendio energetico giornaliero.
In realtà, nel corso della perdita di peso il consumo calorico giornaliero in genere cala.
A partire dagli anni ‘90 dello scorso secolo è stato proposto che il tè verde, grazie al suo contenuto in caffeina e catechine, come la epigallocatechina gallato (EGCG), di cui risultano ricchi anche il tè oolong ed il tè bianco, fosse di aiuto per:

  • mantenere o addirittura aumentare la spesa energetica giornaliera;
  • incrementare l’ossidazione dei grassi, agendo dunque come una sorta di alimento brucia grassi.
Perdita di Peso e Tè Verde
Fig. 1 – Circonferenza Addominale

Quindi è stata attribuita al tè verde la capacità di determinare un calo del peso, di provocare il dimagrimento, e di essere dunque di aiuto al soggetto in sovrappeso od obeso nel raggiungimento del peso ideale.
Oltre a questi potenziali effetti termogenici e lipolitici, catechine e caffeina potrebbero essere utili agendo su altri bersagli quali l’assorbimento intestinale dei grassi e l’apporto energetico, forse attraverso il loro impatto sul microbiota intestinale e sull’espressione genica.
Sono stati quindi commercializzati prodotti per la perdita di peso e per il mantenimento del peso perso a base di estratti di tè verde, contenenti concentrazioni di catechine e caffeina molto maggiori rispetto alla bevanda classica.

Quanto c’è di verso nelle proprietà “brucia grassi” del tè verde?

La questione sembra essere stata risolta da una accurata meta-analisi di 15 studi sulla perdita di peso e assunzione dei suddetti prodotti brucia grassi.
Otto dei 15 studi in esame sono stati condotti in Giappone, ed i restanti fuori dal Giappone, per un numero complessivo di partecipanti pari a 1945, che sono stati  seguiti per un periodo compreso tra le 12 e le 13 settimane.
Lo studio ha evidenziato che l’assunzione di preparazioni a base di tè verde inducono, in adulti obesi ed in sovrappeso, una diminuzione di peso che:

  • non è statisticamente significativa;
  • è molto piccola;
  • probabilmente non è clinicamente importante.

Questi prodotti non si sono dimostrate utili neppure nel mantenimento del peso perso.
Quindi, sulla base delle ricerche scientifiche, il tè verde non sembra essere di aiuto nella perdita di peso ne nel mantenimento del peso perso.
Ricette magiche non ce ne sono: l’unico modo per perdere peso e mantenere la perdita ottenuta è quello di controllare l’apporto calorico giornaliero e fare attività fisica in maniera regolare.

Bibliografia

Hursel R. and Westerterp-Plantenga M.S. Catechin- and caffeine-rich teas for control of body weight in humans. Am J Clin Nutr 2013;98:1682S-1693S [Abstract]

Hursel R., Viechtbauer W. and Westerterp-Plantenga M.S. The effects of green tea on weight loss and weight maintenance: a meta-analysis. Int J Obesity 2009;33:956-961 [Full text]

Jurgens T.M., Whelan A.M., Killian L., Doucette S., Kirk S., Foy E. Green tea for weight loss and weight maintenance in overweight or obese adults. Editorial group: Cochrane Metabolic and Endocrine Disorders Group. 2012:12 Art. No.: CD008650 [Abstract]

Tè nero: definizione, lavorazione e polifenoli

Che cos’è il tè nero

Il tè nero, al pari degli altri tipi di tè, è un infuso di foglie lavorate di Camellia sinensis, la pianta del tè, arbusto appartenente alla famiglia delle Theaceae.
Il tè nero, un tè completamente ossidato, è il tipo di tè più consumato nel mondo, rappresentando circa il 78% del mercato della bevanda. E’ preferito dalle culture occidentali, mentre il tè più consumato in oriente, Cina e Giappone in primis, è il tè verde.

“Il tè si beve per dimenticare il frastuono del mondo.”
T’ien Yiheng

Lavorazione del tè nero

La lavorazione delle foglie della Camellia sinensins che porta alla produzione del tè nero procede attraverso alcune fasi:

  • appassimento o asciugatura;
  • arrotolamento;
  • ossidazione.

L’ultima fase, l’ossidazione, farà si che il tè nero abbia caratteristiche organolettiche e di composizione in polifenoli molto differenti rispetto al tè verde, che al contrario subisce processi di ossidazione molto ridotti.

Appassimento o asciugatura

Tè Nero: Appassimento delle Foglie del Tè
Fig. 1 – Appassimento delle Foglie del Tè

L’appassimento o asciugatura è il processo alla base della produzione del tè nero, attraverso il quale viene rimossa l’acqua presente nelle foglie fresche, determinando quindi la concentrazione della linfa della foglia stessa. L’appassimento migliorerà anche la lavorazione successiva.
L’appassimento può essere ottenuto in tre modi differenti:

  • esponendo le foglie alla luce solare;
  • attraverso processi indoor, ossia al chiuso, riscaldando in maniera appropriata le stanze in cui sono riposte le foglie;
  • ricorrendo all’utilizzo di macchinari che ventilano artificialmente le foglie.

Arrotolamento

All’appassimento segue l’arrotolamento che, rompendo il tessuto fogliare, facilita la fuoriuscita della linfa e promuove quindi la successiva ossidazione enzimatica dei polifenoli. Questo passaggio è fondamentale per la creazione dell’aroma, colore e sapore del tè nero.

Ossidazione

L’ultima fase della produzione del tè nero è quella della ossidazione (impropriamente detta anche fermentazione), passaggio chiave nel determinare la qualità del prodotto. In questa passaggio si verifica l’ossidazione enzimatica di circa il 90-95% dei polifenoli, accompagnata da altri cambiamenti che renderanno le foglie da verdi a rosse.
Importanti in questa fase sono la temperatura (in genere sui 25°C), il pH, l’umidità (95% o più), la ventilazione e la durata.

I polifenoli del tè nero: tearubigine e teaflavine

I processi ossidativi, sia enzimatici, ad opera della polifenolo ossidasi, che chimici, per azione dell’ossigeno atmosferico, avvengono a carico delle catechine monomeriche e gallate, e in misura minore dei glicosidi delle catechine, in special modo la miricetina, ma anche di composti non flavonoidi quali la teagallina.
Nel corso della lavorazione si assiste quindi ad una riduzione della concentrazione delle catechine monometriche, caratteristiche delle foglie fresche della Camellia sinensis e del tè verde, con formazione di polifenoli complessi quali:

  • tearubigine, di colore brunastro;
  • teaflavine e acidi teaflavici, di colore rosso-arancio.

Le tearubigine, polimeri di catechine non ancora ben caratterizzati, sono i principali polifenoli presenti nel tè nero, rappresentando circa il 20% dell’estratto ottenuto nel corso dell’infusione. Le tearubigine contribuiscono alla ricchezza di gusto, il cosiddetto “corpo”, del tè nero, oltre che al suo colore rossastro.
Le teaflavine, dimeri di catechine molto meglio caratterizzati rispetto alla tearubigine, costituiscono circa il 3-5% del peso dell’estratto ottenuto dall’infusione del tè. Le teaflavine contribuiscono al gusto vivace ed astringente, oltre che al colore rosso-arancio brillante della bevanda.
Le principali teaflavine sono:

  • teaflavina-3-gallato;
  • teaflavina-3’-gallato;
  • teaflavina digallato.

Benefici del tè nero e ossidazione dei polifenoli

Anche se il tè nero è ancora in grado di migliorare la salute, i processi ossidativi subiti dalle foglie nel corso della lavorazione attenuano gli effetti benefici che invece sono riportati dopo assunzione del tè verde (ascritti in particolare al suo contenuto in catechine quali la EGCG, la epicatechina e la epicatechina gallata).

Il contenuto in caffeina non varia significativamente.

Bibliografia

Asil M.H., Rabiei B., Ansari R.H. Optimal fermentation time and temperature to improve biochemical composition and sensory characteristics of black tea. Aust J Crop Sci 2012;6(3):550-8 [PDF]

Kuhnert N. Unraveling the structure of the black tea thearubigins. Arch Biochem Biophys 2010;501(1):37-51 [Abstract]

Li S., Lo C-Y., Pan M-H., Lai C-S. and Ho C-T. Black tea: chemical analysis and stability. Food Funct 2013;4:10-18 [Abstract]

Menet M-C., Sang S., Yang C.S., Ho C-T., and Rosen R.T. Analysis of theaflavins and thearubigins from black tea extract by MALDI-TOF mass spectrometry. J Agric Food Chem 2004;52:2455-61 [Abstract]

Sharma V.K., Bhattacharya A., Kumar A. and Sharma H.K. Health benefits of tea consumption. Trop J Pharm Res 2007;6(3):785-792 [Abstract]

Tè verde: definizione, lavorazione, proprietà, polifenoli

Che cos’è il tè verde?

Il tè verde è un infuso di foglie lavorate della pianta del tè, Camellia sinensis, membro della famiglia delle Theaceae.
E’ la bevanda più consumata in Asia, Cina e Giappone in particolare; solo negli ultimi anni, grazie ai suoi effetti benefici sulla salute, sta guadagnando l’attenzione delle popolazioni occidentali, dove il tè consumato con maggior frequenza è quello nero.
Attualmente a livello mondiale il tè verde rappresenta il 20% del mercato del tè.

“Non trovo mai una tazza di tè abbastanza grande o un libro abbastanza lungo da soddisfarmi.”
C.S. Lewis

Lavorazione e proprietà del tè verde

Tè verde
Fig. 1 – Camellia sinensis

Come tutti gli altri tipi di tè, viene prodotto a partire dalle foglie fresche di Camellia sinensis.
Le proprietà peculiari della bevanda derivano dal tipo di lavorazione che subiscono le foglie, lavorazione che riduce al minimo i processi ossidativi, sia enzimatici che chimici, a carico delle sostanze in esse contenute, in particolare le catechine.
Dunque, tra i differenti tipi di tè esistenti, il tè verde è quello che durante la lavorazione subisce la minore ossidazione.
Al termine della lavorazione le foglie del tè, avendo subito modificazioni chimiche poco significative, mantengono il loro colore verde. L’infuso sarà di colore giallo oro.
Infine, la lavorazione delle foglie assicura che il sapore del tè verde sarà più delicato e leggero di quello del tè nero.

Le tre fasi principali nella lavorazione del tè verde

Dopo la raccolta, le foglie sono esposte al sole per 2-3 ore e fatte appassire/asciugare. Di seguito, la lavorazione vera e propria procede attraverso tre fasi principali:

  • trattamento termico;
  • arrotolamento;
  • essicazione.

Trattamento termico

Il trattamento termico, breve e delicato, è il passaggio cruciale per la qualità e le proprietà finali della bevanda.
Può essere effettuato sia con il vapore (metodo tradizionale giapponese), che mediante cottura a secco in pentole calde (dei grandi wok, il metodo tradizionale cinese), una sorta di torrefazione.
Il trattamento termico ha lo scopo di:

  • inattivare gli enzimi presenti nei tessuti delle foglie, bloccando quindi i processi di ossidazione enzimatica, in particolare quelli a carico dei polifenoli;
  • eliminare l’odore d’erba, facendo così risaltare quello del tè;
  • far evaporare, nel caso della torrefazione, parte dell’acqua della foglia (l’acqua costituisce circa il 75% del peso della foglia), rendendola più morbida, così da facilitare il passaggio successivo.

Arrotolamento

Al trattamento termico delle foglie segue una fase di arrotolamento che ha lo scopo di:

  • facilitare la fase successiva di essiccamento;
  • distruggere il tessuto fogliare per favorire, in seguito, il rilascio degli aromi della foglia, migliorando così la qualità del prodotto.

Essiccazione

L’ultima fase è quella dell’essiccazione, che comporta anche la formazione di nuovi composti e migliora l’aspetto del prodotto.

I polifenoli del tè verde

tè verde
Fig. 2 – EGCG

Tutti i tipi di tè sono ricchi in polifenoli, molecole presenti anche nella frutta, nella verdura, nell’olio extravergine di oliva e nel vino rosso.
Le foglie fresche di Camellia sinensis sono ricche in polifenoli solubili in acqua, in particolare catechine (o flavanoli) e catechine glicosilate (entrambe appartenenti alla classe dei flavonoidi), molecole cui si ritiene siano dovuti gli effetti benefici che tradizionalmente si attribuiscono alla bevanda.
Le principali catechine presenti sono epigallocatechina-3-gallato (EGCG), epigallocatechina, epicatechina-3-gallato, epicatechina, ma si ritrovano anche catechina, gallocatechina, catechina gallato e gallocatechina gallato, sebbene in quantità minore. Questi polifenoli rappresentano il 30-42% del peso secco della foglia (ma solo il 3-10% del residuo secco nel tè nero).
La caffeina rappresenta circa il 3% (con variazioni dall’1,4 al 4,5%) del peso secco della foglia.

Assorbimento delle catechine del tè verde e limone

Studi condotti in vitro hanno messo in evidenza il grande potere antiossidante delle catechine, maggiore rispetto a quello della vitamina C e della vitamina E. In vitro, la EGCG è generalmente considerata la catechina biologicamente più attiva.
Studi in vivo e diversi studi epidemiologici hanno evidenziato i possibili effetti preventivi delle catechine del tè verde, in particolare della EGCG, nel prevenire lo sviluppo di malattie cardiovascolari, come l’ipertensione e ictus, e alcuni tipi di cancro, come il cancro del polmone (ma non tra i fumatori), e tumori del cavo orale e del tratto digestivo.
Per queste ragioni è essenziale massimizzarne l’assorbimento intestinale.
Le catechine sono molecole stabili in ambiente acido, ma non in ambiente non acido, come quello dell’intestino a valle dello stomaco; al termine della digestione ne rimangono intatte meno del 20% del totale.
Studi condotti con modelli di tubo digerente di ratto e di uomo, modelli che simulano la digestione nello stomaco e nel piccolo intestino, hanno evidenziato che l’aggiunta al tè verde di succo di agrumi o vitamina C aumenta in modo significativo l’assorbimento delle catechine.
Tra i succhi di agrumi testati nell’esperimento, il migliore è risultato il succo di limone, seguito dal succo di arancia, lime e pompelmo. I succhi di agrumi sembrano avere un effetto stabilizzante sulle catechine che va oltre quello che si potrebbe predire sulla base del loro contenuto in vitamina C.

Bibliografia

Clifford M.N., van der Hooft J.J.J., and Crozier A. Human studies on the absorption, distribution, metabolism, and excretion of tea polyphenols. Am J Clin Nutr 2013;98:1619S-1630S [Abstract]

Dwyer J.T. and Peterson J. Tea and flavonoids: where we are, where to go next. Am J Clin Nutr 2013;98:1611S-1618S [Abstract]

Green R.J., Murphy A.S., Schulz B., Watkins B.A. and Ferruzzi M.G. Common tea formulations modulate in vitro digestive recovery of green tea catechins. Mol Nutr Food Res 2007;51(9):1152-1162 [Abstract]

Huang W-Y., Lin Y-R., Ho R-F., Liu H-Y., and Lin Y-S. Effects of water solutions on extracting green tea leaves. ScientificWorldJournal 2013;Article ID 368350 [Abstract]

Sharma V.K., Bhattacharya A., Kumar A. and Sharma H.K. Health benefits of tea consumption. Trop J Pharm Res 2007;6(3):785-792 [Abstract]

Antocianine: alimenti, assorbimento, microbiota del colon

Antocianine: contenuti in breve

Antocianine nei cibi

Antocianine
Fig. 1 – Cileigie

Insieme con le catechine e le proantocianidine, le antocianine o  antociani ed i loro prodotti di ossidazione sono i flavonoidi più abbondanti nella dieta umana. Le antocianine si ritrovano:

  • in certe varietà di cereali pigmentati, come il riso nero o il mais viola;
  • in alcune verdure a foglia e a radice come melanzane, cavoli rossi, cipolle rosse e ravanelli, nei fagioli;
  • ma soprattutto nella frutta rossa.

Anche nel vino rosso sono presenti antociani (200-350 mg/L) che, nel corso dell’invecchiamento del vino stesso, sono trasformate in varie molecole complesse. Il contenuto nei cibi è generalmente proporzionale all’intensità del colore del frutto o verdura: aumenta nel corso della maturazione e raggiunge valori fino a 2-4 g/kg di peso fresco nel ribes nero e mirtilli rossi americani (cranberries). Questi polifenoli si trovano principalmente nella buccia, tranne che in certi tipi di frutta rossa, come ciliegie e frutti di bosco rossi (ad es. le fragole), dove sono presenti sia nella buccia che nella polpa. Gli antociani più comuni nei cibi sono i glicosidi della cianidina.

⇑ Torna all’inizio ⇑

Antocianine nella frutta

  • I frutti di bosco sono la principale fonte di antocianine, con valori variabili tra 66,8 e 947,5 mg/100 g di peso fresco.
  • Altri frutti, come l’uva rossa, le ciliegie e le prugne hanno contenuti variabili tra 2 e 150 mg/100 g di peso fresco.
  • Infine in frutti come pesche, nettarine ed alcuni tipi di pere e mele sono scarsamente presenti, con un contenuto inferiori a 10 mg/100 g peso fresco.

Il mirtillo rosso americano (cranberry), oltre ad avere un contenuto notevolmente elevato di antociani, è uno dei rari alimenti che contiene glicosidi delle sei antocianidine più comunemente trovate nei cibi: cianidina, peonidina, malvidina, pelargonidina, delfinidina, e petunidina. Gli antociani predominanti sono i 3-O-galattosidi e 3-O-arabinosidi della cianidina e peonidina; sono stati rilevati un totale di 13 antociani, principalmente in forma di 3-O-monoglicosi.

⇑ Torna all’inizio ⇑

Assorbimento intestinale delle antocianine

Fino a poco tempo fa si riteneva che gli antociani, insieme alle proantocianidine e ai derivati dell’acido gallico delle catechine, fossero i polifenoli meno ben assorbiti dall’intestino, con un tempo di comparsa nel plasma coerente con l’assorbimento sia nello stomaco che nell’intestino tenue. In realtà, alcuni studi hanno rivelato che la loro biodisponibilità è stata sottovalutata dal momento che tutti i loro metaboliti potrebbero non essere ancora stati identificati. A questo riguardo va sottolineato che solo una piccola parte delle antocianine presenti negli alimenti è assorbita come tale o come prodotti di idrolisi in cui lo zucchero è stato rimosso. Quindi, una grande quantità di questi polifenoli ingeriti entra nel colon, dove possono anche subire reazioni di glucuronidazione, solfatazione, metilazione ed ossidazione.

⇑ Torna all’inizio ⇑

Antocianine e microbiota del colon

Gli studi che esaminano il metabolismo degli antociani da parte del microbiota del colon sono pochi. Entro due ore sembra che tutti siano privati della loro componente zuccherina, liberando quindi antocianidine. Le antocianidine sono molecole chimicamente instabili nel pH neutro del colon che possono essere metabolizzate dalla microflora del colon o semplicemente essere degradate chimicamente con produzione di una serie di nuove molecole non ancora completamente identificate ma che comprendono acidi fenolici come:

  • acido gallico;
  • acido protocatecuico;
  • acido siringico;
  • acido vanillico;
  • floroglucinolo (1,3,5-triidrossibenzene).

Queste molecole, grazie alla loro maggiore stabilità sia chimica che microbica, potrebbero essere le principali responsabili delle attività antiossidanti e degli altri effetti fisiologici osservati in vivo ed attribuiti agli antociani.

⇑ Torna all’inizio ⇑

Bibliografia

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

de Pascual-Teresa S., Moreno D.A. and García-Viguera C. Flavanols and anthocyanins in cardiovascular health: a review of current evidence. Int J Mol Sci 2010;11:1679-1703. doi:10.3390/ijms11041679

Escribano-Bailòn M.T., Santos-Buelga C., Rivas-Gonzalo J.C. Anthocyanins in cereals. J Chromatogr A 2004:1054;129-141. doi:https://doi.org/10.1016/j.chroma.2004.08.152

Han X., Shen T. and Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci 2007;9:950-988. doi:10.3390/i8090950

Manach C., Scalbert A., Morand C., Rémésy C., and Jime´nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-47 [Abstract]

Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010;2:1231-1246. doi:10.3390/nu2121231


Polifenoli del tè: composti bioattivi dalle foglie del tè

Polifenoli del tè: dalla foglia alla tazza

Polifenoli del Tè
Fig. 1 – Camellia sinensis

Le foglie della pianta del tè, Camellia sinensis, ed il loro infuso, il tè, sono ricche di composti dotati di molte attività biologiche.
Nell’infuso sono state individuate più di 4000 molecole differenti.
Circa un terzo di queste molecole sono polifenoli, i composti più importanti nel determinare il valore nutrizionale della bevanda.

Il tè è una tazza di vita.” Anonimo

La maggior parte dei polifenoli del tè appartengono al gruppo dei flavonoidi, come le catechine del tè verde (ad esempio la EGCG), e le tearubigine e teaflavine del tè nero.
Altri composti bioattivi presenti sono:

  • alcaloidi, come caffeina, teofillina e teobromina;
  • aminoacidi, tra i quali uno dei più importanti è la teanina (r-glutamiletilamide), che è anche un neurotrasmettitore cerebrale ed uno dei più importanti aminoacidi presenti nel tè verde;
  • proteine;
  • carboidrati;
  • clorofilla;
  • acidi organici volatili, ossia molecole che sono vaporizzate facilmente e contribuiscono all’odore della bevanda;
  • fluoro, alluminio ed oligoelementi.

A tali molecole, la cui presenza nell’infuso dipende anche della lavorazione che subiscono le foglie dopo la raccolta, si deve il valore nutrizionale della bevanda, che è in grado di influenzare la salute in molti modi differenti.

Attività biologiche dei polifenoli

I polifenoli, sia in vitro che in vivo, hanno un ampio spettro di attività biologiche che includono:

  • proprietà antiossidanti;
  • riduzione di vari tipi di tumori;
  • inibizione dell’infiammazione;
  • effetti protettivi contro diabete ed iperlipidemia

Quindi sono molecole in grado di offrire protezione nei confronti dello sviluppo di molte malattie.
Data la loro abbondante presenza nel tè, negli ultimi anni è cresciuto l’interesse riguardo ai possibili effetti preventivi della bevanda nei confronti di diverse malattie, in particolare delle malattie cardiovascolari, ad es. nello sviluppo e progressione dell’aterosclerosi.

Meccanismi d’azione dei polifenoli del tè

Al momento sono disponibili poche informazioni su come i polifenoli del tè esercitino i loro effetti a livello cellulare.
Sembra, almeno in vitro, che siano le catechine per il tè verde e le teaflavine e tearubigine per il tè nero, le molecole responsabili degli effetti fisiologici e dei benefici per la salute esercitati dalla bevanda.
E tra gli meccanismi con cui i polifenoli del tè agiscono a livello cellulare sono stati osservati, oltre all’effetto antiossidante, modifiche nell’attività di varie protein chinasi, e di fattori di crescita e di trascrizione, effetti conseguenti al legame a specifici recettori presenti sulla membrana cellulare.
In aggiunta al legame polifenolo-recettore di membrana, sembra che i polifenoli del tè, o almeno la EGCG, possano agire anche entrando direttamente nella cellula, dove si legano a specifici bersagli molecolari.

Bibliografia

Dwyer J.T. and Peterson J. Tea and flavonoids: where we are, where to go next. Am J Clin Nutr 2013;98:1611S-1618S [Abstract]

Grassi D., Desideri G., Di Giosia P., De Feo M., Fellini E., Cheli P., Ferri L., and Ferri C. Tea, flavonoids, and cardiovascular health: endothelial protection. Am J Clin Nutr 2013;98:1660S-1666S [Abstract]

Lambert J.D. Does tea prevent cancer? Evidence from laboratory and human intervention studies. Am J Clin Nutr 2013;98:1667S-1675S [Abstract]

Lenore Arab L., Khan F., and Lam H. Tea consumption and cardiovascular disease risk. Am J Clin Nutr 2013;98:1651S-1659S [Abstract]

Lorenz M. Cellular targets for the beneficial actions of tea polyphenols. Am J Clin Nutr 2013;98:1642S-1650S [Abstract]

Sharma V.K., Bhattacharya A., Kumar A. and Sharma H.K. Health benefits of tea consumption. Trop J Pharm Res 2007;6(3):785-792 [Abstract]

Yuan J-M. Cancer prevention by green tea: evidence from epidemiologic studies. Am J Clin Nutr 2013;98:1676S-1681S [Abstract]

Isoflavoni: definizione, struttura e soia

Isoflavoni: contenuti in breve

Che cosa sono gli isoflavoni?

Gli isoflavoni sono polifenoli privi di colore appartenenti alla classe dei flavonoidi.
A differenza della maggior parte degli altri flavonoidi, hanno una distribuzione tassonomica limitata, trovandosi quasi esclusivamente nelle piante appartenenti alla famiglia delle Leguminose o Fabacee, in particolare nella soia.
Poiché i legumi, la soia in primis, sono una parte importante della dieta in molte culture, questi flavonoidi potrebbero avere un grande impatto sulla salute umana.
Si trovano anche nei fagioli e nelle fave, ma in concentrazioni molto minori rispetto a quelle presenti nella soia e nei prodotti derivati.
Un’altra buona fonte di tali molecole è il trifoglio rosso o trifoglio dei prati (Trifolium pratense), anch’esso appartenente alla famiglia delle Leguminose.
Nella frutta e verdura, al momento, non ne sono stati trovati.

Insieme agli acidi fenolici, quali l’acido caffeico e l’acido gallico, e ai glicosidi della quercetina, sono i polifenoli meglio assorbiti, seguiti dalle catechine (ma non le gallocatechine) e dai flavanoni.

Nelle piante alcuni isoflavoni sono dotati di attività antimicrobica e sono sintetizzati in risposta ad attacchi da parte di batteri o funghi; agiscono quindi come fitoalesine.

⇑ Torna all’inizio ⇑

Struttura chimica degli isoflavoni

Mentre nella maggior parte dei flavonoidi l’anello B si lega all’anello C in posizione 2, negli isoflavoni l’anello B si lega all’anello C in posizione 3.

Isoflavoni
Fig. 1 – Struttura di Base degli Isoflavoni

Anche se non sono steroidi, sono strutturalmente simili agli estrogeni, in particolare all’estradiolo. Questo conferisce loro proprietà pseudormonali, compresa la capacità di legarsi ai recettori per gli estrogeni, e sono per questo considerati fitoestrogeni o estrogeni vegetali. I benefici spesso ascritti alla soia e ai cibi a base di soia (es. il tofu) si ritiene derivino dalla capacità degli isoflavoni presenti di agire come fitoestrogeni.
Va però sottolineato che il legame ai recettori per gli estrogeni sembra perdere forza con il tempo, per cui la loro efficacia non andrebbe sopravvalutata.
Negli alimenti sono presenti in quattro forme:

  • aglicone;
  • 7-O-glucoside;
  • 6’-O-acetil-7-O-glucoside;
  • 6’-O-malonil-7-O-glucoside.

⇑ Torna all’inizio ⇑

Isoflavoni della soia: genisteina, daidzeina e gliciteina

Isoflavoni
Fig. 2 – Isoflavoni

La soia ed i derivati della soia, come il latte di soia, il tofu, il tempeh e il miso, sono la principale fonte di isoflavoni nella dieta umana.
Il contenuto in isoflavoni della soia e dei prodotti derivati varia in modo considerevole in funzione della zona geografica e delle condizioni di crescita e lavorazione; ad es. la soia ne contiene tra 580 e 3800 mg/kg di peso fresco mentre il latte di soia tra i 30 e i 175 mg/L. I più abbondanti in questi alimenti sono la genisteina, la daidzeina e la gliciteina, in genere presenti in rapporto di concentrazione 1:1:0,2; altri isoflavoni presenti sono la biocanina A e la formononetina.
I 6’-O-malonil derivati hanno un gusto sgradevole, amaro e astringente, e quindi conferiscono un cattivo sapore ai cibi in cui sono contenuti. Tuttavia, essendo sensibili alla temperatura, sono spesso idrolizzati a glicosidi nel corso dei processi industriali, come la produzione del latte di soia.
I processi di fermentazione che sono necessari nella preparazione di certi cibi come il tempeh ed il miso determinano a loro volta l’idrolisi dei glicosidi ad agliconi, ossia la molecola priva di zucchero.
I glicosidi degli isoflavoni della soia e dei prodotti della soia possono essere deglicosilati anche ad opera delle β-glicosidasi dell’intestino tenue umano.
Gli agliconi sono molto resistenti al calore.
Sebbene molti composti presenti nella dieta siano convertiti dai batteri intestinali in molecole meno attive, in altri casi si verifica la conversione in molecole dotate di maggiore attività biologica. Questo è il caso degli isoflavoni, ma anche dei prenilflavonoidi del luppolo (Humulus lupulus), e dei lignani, anch’essi fitoestrogeni.

⇑ Torna all’inizio ⇑

Isoflavoni della soia e menopausa

Nelle donne in perimenopausa, anche detta transizione menopausale, e in menopausa vera e propria, i sintomi vasomotori, come le vampate di calore e le sudorazioni notturne, e la perdita di massa ossea sono molto comuni. La terapia sostitutiva ormonale (TOS) si è dimostrata un trattamento molto efficace per queste problematiche.
Il ricorso a terapie alternative a base di fitoestrogeni è aumentato a seguito della pubblicazione dei risultati del “Women’s Health Initiative” (WHI), i quali suggeriscono che la terapia sostitutiva ormonale potrebbero portare più rischi, in particolare un aumento della probabilità di sviluppare di alcune malattie croniche, che benefici.
Tra i fitoestrogeni più utilizzati dalle donne in menopausa ci sono gli isoflavoni della soia, spesso assunti in forma di alimenti fortificati o compresse. Molti studi hanno però messo in evidenza la mancanza di efficacia degli isoflavoni di soia, e del trifoglio rosso, anche in grandi dosi, nella prevenzione dei sintomi vasomotori (vampate di calore e sudorazioni notturne) e della perdita di massa ossea durante la menopausa.

⇑ Torna all’inizio ⇑

Bibliografia

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Han X., Shen T. and Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci 2007;9:950-988. doi:10.3390/i8090950

Lethaby A., Marjoribanks J., Kronenberg F., Roberts H., Eden J., Brown J. Phytoestrogens for menopausal vasomotor symptom. Cochrane Database of Systematic Reviews 2013, Issue 12. Art. No.: CD001395. doi:10.1002/14651858.CD001395.pub4

Manach C., Scalbert A., Morand C., Rémésy C., and Jime´nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-47 [Abstract]

Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010;2:1231-46. doi:10.3390/nu2121231


Benefici del tè verde per la salute

Benefici del tè verde: tra scienza e mito

Benefici del Tè Verde
Fig. 1 – Benefici del Tè Verde

L’assunzione di tè, ed in particolare di tè verde, è da sempre associata, almeno nella cultura orientale, Cina e Giappone in primis, ad effetti benefici sulla salute. Solo di recente la comunità scientifica internazionale ha iniziato a studiare i benefici sulla salute conseguenti alla sua assunzione, riconoscendone il valore preventivo in molte malattie.

Benefici del tè verde nella prevenzione delle neoplasie

Molti studi epidemiologici e di laboratorio hanno dato risultati incoraggianti riguardo al possibile ruolo preventivo del tè, in particolare il tè verde e le sue catechine, un sottogruppo di flavonoidi (i flavonoidi sono i polifenoli più abbondanti nella dieta dell’uomo), nei confronti dello sviluppo di alcune neoplasie quali:

  • i tumori del cavo orale e del tratto digestivo;
  • il tumore del polmone tra coloro che non hanno mai fumato, non tra i fumatori.

I polifenoli del tè, il più attivo dei quali è la epigallocatechina-3-gallato (EGCG), sembrano agire non solo come antiossidanti, ma anche come molecole che, direttamente, possono influenzare l’espressione genica e diverse vie metaboliche.

Benefici del tè verde sulle malattie cardiovascolari

Le malattie cardiovascolari sono la principale causa di morte in tutto il mondo, e in particolare nei paesi a basso e medio reddito, con una stima di 17,3 milioni di decessi nel 2008, valore che aumenterà fino a 23,3 milioni entro il 2030.
Un consumo giornaliero di tè, soprattutto di tè verde, sembra essere associato ad una riduzione del rischio di sviluppare malattie cardiovascolari, in primis ipertensione ed ictus.
Tra i meccanismi proposti sembra essere importante l’accresciuta bioattività del monossido di azoto (NO) endoteliale, un potente vasodilatatore, dovuta all’azione dei polifenoli del tè che ne aumentano la sintesi e/o ne riducono la degradazione mediata dall’anione superossido.

Bere una tazza di tè al giorno farà sicuramente morire di fame il farmacista.” Proverbio cinese

Benefici del tè verde e potere antiossidante

In vitro, i polifenoli del tè si sono dimostrati in grado di neutralizzare i radicali liberi.
Poiché nello sviluppo di molte malattie, quali l’aterosclerosi, il cancro o l’artrite reumatoide, come nel danno conseguente alla riossigenazione di tessuti ischemici, l’azione dei radicali liberi ha un ruolo cruciale, i polifenoli del tè, ed in particolare le catechine del tè verde, possono avere un ruolo preventivo.

Benefici del tè verde sulla perdita di peso e sul mantenimento del peso perso

Il tè verde, ma anche il tè oolong, ossia tè ricchi di catechine e caffeina, hanno un potenziale effetto termogenico. Questo ne ha fatto un possibile strumento per:

  • la perdita del peso, aumentando il dispendio energetico e l’ossidazione dei grassi;
  • il mantenimento del peso perso, assicurando un elevato dispendio energetico durante il mantenimento della perdita di peso.

In realtà è stato dimostrato che il tè verde come anche i suoi estratti:

  • non sono in grado di indurre una perdita di peso significativa in adulti in sovrappeso e obesi;
  • non sono di aiuto nel mantenimento della perdita di peso.

Benefici del tè verde per la salute dentale

Studi in vitro e su animali hanno messo in evidenza che il tè, e nello specifico i suoi polifenoli, sembrano possedere:

  • proprietà antibatteriche nei confronti di patogeni ad azione cariogena, ad es. Streptococcus mutans, come nel caso della EGCG del tè verde;
  • azione inibitoria sulle amilasi sia salivare che batterica (sembra che le tearubigine e teaflavine del tè nero siano più efficaci delle catechine del tè verde);
  • azione inibitoria sulla produzione di acidi nella cavità orale.

Tutte queste caratteristiche rendono il tè verde ed il tè nero bevande con una potenziale attività anticariogena.

Bibliografia

Tè: coltivazione, lavorazione e preparazione

Il tè: dalla pianta alla tazza per la nostra salute

Il è un infuso di foglie essiccate di Camellia sinensis, pianta appartenente alla famiglia delle Theaceae.
La bevanda ha origini molto antiche, risalenti a quasi 4000 anni fa, ed è una delle più consumate nel mondo, in particolare in Asia, con un apporto procapite stimato di circa 0,12 L/d. Dato il suo elevato consumo, anche piccoli effetti sulla salute delle persone possono avere grandi effetti sulla salute pubblica.

Coltivazione della pianta del tè: Camellia sinensis

Piantagione di Tè
Fig. 1 – Piantagione di Tè

Camellia sinensis è una pianta sempre verde originaria del Sud, Est, e Sud-Est asiatico, che attualmente viene coltivata in almeno 30 paesi, principalmente con clima sub-tropicale o tropicale anche se ci sono varietà coltivate in Cornovaglia in Europa o allo stato di Washington negli USA.
In natura, se indisturbata, può crescere fino a 15-20 metri, mentre nelle piantagioni è tenuta, per facilitare la coltivazione e la raccolta delle foglie, ad un’altezza inferiore al metro e mezzo, quindi come un piccolo albero o cespuglio.
La sua coltivazione si può spingere anche in montagna, fino a 1500-2000 metri di altitudine; molti delle varietà più pregiate sono ottenute proprio da coltivazioni montane in quanto la pianta crescendo più lentamente acquisisce più aromi.
Attualmente le due varianti maggiormente coltivate sono:

  • Camellia sinensis var. sinensis, originaria della Cina;
  • Camellia sinensis var. assamica, originaria dell’India.

Lavorazione delle foglie del tè

Per la produzione di tutti i tipi di tè reperibili in commercio vengono utilizzate le foglie fresche di Camellia sinensis. Nella raccolta sono generalmente scelte quelle più giovani poiché le più vecchie sono considerate di qualità inferiore.
Ciò che differenzia i diversi tipi di tè, ad es. il tè verde, l’oolong e quello nero, è la lavorazione che subiscono foglie, lavorazione che darà luogo a differenti gradi di ossidazione delle sostanze presenti, in particolare delle catechine, un sottogruppo di flavonoidi e le principali responsabili degli effetti benefici del tè verde.
Le caratteristiche organolettiche della bevanda sono influenzate, oltre che dalla lavorazione delle foglie, anche dal cultivar, dalle caratteristiche del suolo dove è coltivata la pianta e dai metodi di coltivazione, dall’altitudine, dal clima e dal periodo dell’anno in cui avviene la raccolta delle foglie.

Come preparare un buon tè

  • Data la delicatezza del prodotto è bene conservare la confezione in un luogo fresco, asciutto e privo di profumi in grado di alterarne l’aroma.
  • Utilizzare acqua fresca e portarla ad una temperatura di 95-100°C per il tè nero, e di circa 90 °C per il tè verde.
  • Per non alterare il sapore della bevanda è bene utilizzare una teiera di ceramica o porcellana, evitando quelle di acciaio. Per il lavaggio della stessa evitare i detersivi preferendo acqua e bicarbonato.
  • Per prevenire brusche variazione di temperatura dell’acqua durante l’infusione, è consigliabile preriscaldare la teiera versandovi un po’ d’acqua molto calda. Di seguito svuotarla e aggiungere l’acqua per il filtri/foglie (circa 200-250 mL/filtro).
  • Quanti filtri/g di foglie utilizzare? In genere un filtro (da circa 1,5-2 g) per persona; con il tè sfuso, un cucchiaino per persona.
    Se lo si prepara per più persone aggiungere un filtro/cucchiaino in più rispetto al numero delle persone.
  • Il tempo di infusione non dovrebbe superare i 10 minuti per evitare lo sviluppo di sapori amari; per il tè nero dovrebbe essere di 3-4 minuti, per quello verde 2-3 minuti.
    Se si usa tè in filtri, è bene toglierli al termine del tempo di infusione.
    Circa il 30% della materia presente nelle foglie viene estratta nell’acqua.
Bibliografia

Flavonoli: definizione, struttura e cibi

Flavonoli: contenuti in breve

Che cosa sono i flavonoli?

I flavonoli sono polifenoli appartenenti alla classe dei flavonoidi.
Sono molecole prive di colore che si accumulano principalmente nei tessuti esterni ed aerei, quindi pelle e foglie, di frutta e verdura, poiché la loro biosintesi è stimolata dalla luce solare. Sono praticamente assenti nella polpa.

Sono i flavonoidi più diffusi nella frutta e verdura, dove sono presenti generalmente in concentrazioni relativamente basse.
Data la loro diffusione in natura e nei cibi consumati dall’uomo, tali molecole devono essere tenute in considerazione quando si va ad analizzare l’effetto positivo sulla salute associato al consumo di frutta e verdura. Il loro effetto è probabilmente legato alla loro capacità di:

  • agire come antiossidanti;
  • agire come agenti ad azione antiinfiammatoria;
  • agire come fattori antitumorali;
  • modulare diverse vie di segnalazione cellulare; un esempio è l’azione della quercetina, il flavonolo più diffuso, sulla attività ossidante delle MAPK indotta dallo stress.

⇑ Torna all’inizio ⇑

Struttura chimica dei flavonoli

Chimicamente si distinguono da molti altri flavonoidi in quanto presentano un doppio legame tra le posizioni 2 e 3 e un ossigeno in posizione 4 dell’anello C, al pari dei flavoni da cui però differiscono per la presenza di un gruppo ossidrilico in posizione 3. Dunque si può dire lo scheletro dei flavonoli è un 3-idrossiflavone.

Struttura di Base dei Flavonoli
Fig. 1 – 3-Idrossiflavone

Il gruppo ossidrilico in posizione 3 può legare uno zucchero ossia può essere glicosilato.
Al pari di molti altri flavonoidi, la maggior parte di essi si trova nella frutta e verdura, e nei prodotti derivati, in forma glicosilata. Lo zucchero associato ai flavonoli è spesso rappresentato dal glucosio o dal ramnosio, ma possono essere coinvolti anche altri zuccheri, come:

  • galattosio;
  • arabinosio;
  • xilosio;
  • acido glucuronico.
Flavonoli
Fig. 2 – Flavonoli

I flavonoli sono rappresentati principalmente dai glicosidi di:

  • quercetina;
  • campferolo;
  • miricetina;
  • isoramnetina.

I più diffusi sono i derivati glicosilati di quercetina e campferolo; in natura queste due molecole hanno rispettivamente almeno 279 e 347 diverse combinazioni glicosidiche.
Va infine sottolineato che il residuo di zucchero influenza la biodisponibilità del flavonolo.

⇑ Torna all’inizio ⇑

Cibi ricchi di flavonoli

Le fonti principali nell’alimentazione umana sono:

  • frutta;
  • verdura;
  • bevande quali il tè ed il vino rosso.

La fonte più ricca è rappresentata dai capperi, che ne contengono fino a 490 mg/100 g di peso fresco, ma si trovano abbondanti anche nelle cipolle, nel cavolo riccio, broccoli, porri, frutti di bosco (ad es. nei mirtilli), nell’uva e in alcune erbe e spezie, come ad es. l’aneto (Anethum graveolens). In queste fonti il loro contenuto varia da 10 a 100 mg/100 g di peso fresco.
Anche il cacao, il tè sia verde che nero, ed il vino rosso ne sono fonti. Nel vino, insieme ad altri polifenoli  come le catechine, le proantocianidine e polifenoli a basso peso molecolare, concorrono al carattere astringente della bevanda.

⇑ Torna all’inizio ⇑

I principali flavonoli nei cibi

I principali flavonoli presenti negli alimenti, in ordine decrescente di abbondanza, sono la quercetina, il kempferolo, la miricetina e la isoramnetina

⇑ Torna all’inizio ⇑

Quercetina

L’alimento più ricco di quercetina è rappresentato dai capperi, seguiti da cipolle, asparagi, lattuga e frutti di bosco; in molta altra frutta e verdura è presente in quantità minori, attorno a 0,1-5 mg/100 g di peso fresco.
Questo flavonolo è presente anche nel cacao e potrebbe essere uno dei suoi principali fattori di protezione nei confronti dell’ossidazione delle LDL.
Insieme agli isoflavoni, i glicosidi della quercetina sono i polifenoli meglio assorbiti, seguiti dai flavanoni e dalle catechine (al contrario dei derivati dell’acido gallico delle catechine che sono tra i polifenoli meno assorbiti, insieme con gli antociani e le proantocianidine).

⇑ Torna all’inizio ⇑

Campferolo

Fonti caratteristiche di campferolo sono gli ortaggi, come indivia, cavolo e spinaci, con concentrazioni di circa 0,1-26,7 mg/100 g peso fresco, e alcune spezie, come erba cipollina, dragoncello, e finocchio, con concentrazioni di circa 6,5-19 mg/100 g di peso fresco.
I frutti sono una fonte povera della molecola, con un contenuto inferiore a 0,1 mg/100 g di peso fresco.

⇑ Torna all’inizio ⇑

Miricetina

La miricetina è il terzo flavonolo più abbondante e si trova in alcune spezie, come prezzemolo, origano e finocchio con concentrazioni di circa 2-19,8 mg/100 g di peso fresco, ma anche nel tè, 0,5-1,6 mg/100 ml, e nel vino rosso, 0-9,7 mg/100 ml.
Nella frutta è presente in elevate concentrazioni solo nei frutti di bosco, mentre nella maggior parte dell’altra frutta e nella verdura è presente con un contenuto inferiore a 0,2 mg/100 g di peso fresco.

⇑ Torna all’inizio ⇑

Isoramnetina

Un quarto flavonolo, meno abbondante rispetto ai precedenti, è la isoramnetina, presente solo in alcuni alimenti come ad es. alcune spezie quali: finocchio 9,3 mg/100 g di peso fresco, erba cipollina 5,0-8,5 mg/100 g di peso fresco, dragoncello 5 mg/100 g di peso fresco.
Nella frutta e verdura è presente solo nelle mandorle, dove varia tra 1,2 e 10,3 mg/100 g di peso fresco, nelle pere e cipolle.

⇑ Torna all’inizio ⇑

Bibliografia

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Han X., Shen T. and Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci 2007;9:950-988. doi:10.3390/i8090950

Manach C., Scalbert A., Morand C., Rémésy C., and Jime´nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-47 [Abstract]

Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010;2:1231-46. doi:10.3390/nu2121231