Tag Archives: carotenoids

Chemical composition of olive oil

Olive oil constituents

Olive Oil
Fig. 1 – EVOO

From a chemical point of view, we can identify in the olive oil two fractions, depending on the behavior in the presence of heating and strong alkaline solutions (concentrated solutions of KOH or NaOH):

  • the saponifiable fraction, which represents 98-99% of the total weight, is composed of substances that form soaps in the above conditions;
  • the unsaponifiable fraction, which represents the remaining 1-2% of the total weight, is composed of substances that fail to form soaps in the above conditions.

Saponifiable fraction of olive oil

It is composed of saturated and unsaturated fatty acids, esterified almost entirely to glycerol to form triglycerides (or triacylglycerols). To a much lesser extent, diglycerides (or diacylglycerols), monoglycerides (monoacylglycerols), and free fatty acids are also found.
Unsaturated fatty acids make up 75 to 85% of the total fatty acids. Oleic (O) and linoleic (L) acids are the most abundant ones; palmitoleic, eptadecenoic, gadoleic and alpha-linolenic (Ln) acids are present in lower/trace amounts.

Oleic Acid
Fig. 2 – IOOC and Fatty Acids

Oleic acid is the major fatty acid in olive oils. According to the rules laid down by the International Olive Oil Council (IOOC), its concentration must range from 55% to 83% of total fatty acids.
Linoleic acid is the most abundant polyunsaturated fatty acid in olive oil; its concentration must vary between 2.5% and 21% (IOOC). Because of its high degree of unsaturation, it is subject to oxidation; this means that an oil high in linoleic acid becomes rancid easily, and thus it may be stored for a shorter time.
In a Mediterranean-type diet, olive oil is the main source of fat: therefore, oleic acid, among monounsaturated fatty acids, and linoleic acid, among polyunsaturated fatty acids, are the most abundant fatty acids.
alpha-Linolenic acid must be present in very low amount, according to the IOOC standards ≤1%. It is an omega-3 polyunsaturated fatty acid, which may have health benefits. However, because of to its high degree of unsaturation (higher than that of linoleic acid), it is very susceptible to oxidation, and therefore it promotes rancidity of the olive oil that contains it.
Saturated fatty acids make up 15 to 25% of the total fatty acids.
Palmitic (P) (7.5-20%) and stearic (S) acids (0.5-5%) are the most abundant saturated fatty acids; myristic, heptadecanoic, arachidic, behenic and lignoceric acids may be present in trace amounts.

The presence of fatty acids that should be absent or present in amounts different than those found is a marker of adulteration with other vegetable oils. On this regard, particular attention is paid to myristic, arachidic, behenic, lignoceric, gadoleic and alpha-linolenic acids, whose limits are set by IOOC.

Fatty acid composition is influenced by several factors.

  • The climate.
  • The latitude.
  • The zone of production.
    Italian, Spanish and Greek olive oils are high in oleic acid and low in palmitic and linoleic acids, while Tunisian olive oils are high in palmitic and linoleic acids but lower in oleic acid. Therefore, oils can be divided into two groups:

one rich in oleic acid and low in palmitic and linoleic acids;
the other high in palmitic and linoleic acids and low in oleic acid.

  • The cultivar.
  • The degree of olive ripeness at the time of oil extraction.
    It should be noted that oleic acid is formed first in the fruit, and data seem to indicate a competitive relationship between oleic acid and palmitic, palmitoleic, and linoleic acids.

Triglycerides of olive oil

Olive Oil
Fig. 3 – The sn Positions of Triglycerides

As previously said, fatty acids in olive oil are almost entirely present as triglycerides.
In small percentage, they are also present as diglycerides, monoglycerides, and in free form.
During triglyceride biosynthesis, thanks to the presence of specific enzymes, only about 2% of glycerol binds palmitic acid in the sn-2 position (also the percentage of stearic acid in the sn-2 position is very low); for the most part, the sn-2 position is occupied by oleic acid.
On the contrary, if we consider oils that have undergone a nonenzymatic esterification, the percentage of palmitic acid in the sn-2 position increases significantly.
Note: sn = stereospecific numbering

Among triglycerides present in significant proportions in olive oil, there are:

  • OOO: 40-59%;
  • POO: 12-20%;
  • OOL: 12.5-20%;
  • POL:  5.5-7%;
  • SOO: 3- 7%.

POP, POS, OLnL, OLnO, PLL, PLnO are present in smaller amounts.
Trilinolein (LLL) is a triglyceride that contains three molecules of linoleic acid. Its low content is an indicator of an oil of good quality.
Triglycerides containing three saturated fatty acids or three molecules of alpha-linolenic acid have not been reported.

Diglycerides and monoglycerides of olive oil

Their presence is due to an incomplete synthesis and/or a partial hydrolysis of triglycerides.
The content of diglycerides in virgin olive oil ranges from 1% to 2.8%. 1,2-Diglycerides prevail in fresh olive oil, representing over 80% of the diglycerides. During oil storage, isomerization occurs with a progressive increase of the more stable 1-3 isomers, which after about 10 months become the major isomers.
Therefore, the ratio 1,2/1,3-diglycerides may be used as an indicator of the age of the oil.
Monoglycerides are present in amounts lower than diglycerides, <0.25%, with 1-monoglycerides far more abundant than 2-monoglycerides.

Unsaponifiable fractions of olive oil

It is composed of a large number of different molecules, very important from a nutritional point of view, as they contribute significantly to the health effects of olive oil.
Furthermore, they are responsible for the stability and the taste of olive oil, and are also used to detect adulteration with other vegetable oils.
This fraction includes tocopherols, sterols, polyphenols, pigments, hydrocarbons, aromatic and aliphatic alcohol, triterpene acids, waxes, and minor constituents.
Their content is influenced by factors similar to those seen for fatty acid composition, such as:

  • the cultivar;
  • the degree of ripeness of the olive;
  • the zone of production;
  • the crop year and olive harvesting practices;
  • the storage time of olives;
  • the oil extraction process;
  • the storage conditions of the oil.

It should be noted that many of these compounds are not present in refined olive oils, as they are removed during the refining processes.


They make up 18 to 37% of the unsaponifiable fraction.
They are a very heterogeneous group of molecules with nutritional and organoleptic properties  (for example, oleuropein and hydroxytyrosol give oil its bitter and pungent taste).
For a more extensive discussion, see: ” Polyphenols in olive oil: variability and composition.”


Olive Oil
Fig. 4 – Squalene

They make up 30 to 50% of the unsaponifiable fraction.
Squalene and beta-carotene are the main molecules.
Squalene, isolated for the first time from shark liver, is the major constituent of the unsaponifiable fraction, and constitutes more than 90% of the hydrocarbons. Its concentration ranges from 200 to 7500 mg/kg of olive oil.
It is an intermediate in the biosynthesis of the four-ring structure of steroids, and it seems to be responsible of several health effects of olive oil.
In the hydrocarbon fraction of virgin olive oil, n-paraffins, diterpene and triterpene hydrocarbons, isoprenoidal polyolefins are also found.
Beta-carotene acts both as antioxidant, protecting oil during storage, and as dye (see below).


They are important lipids of olive oil, and are:

  • linked to many health benefits for consumers;
  • important to the quality of the oil;
  • widely used for checking its genuineness.
    On this regard, it is to underline that sterols are species-specific molecules; for example, the presence of high concentrations of brassicasterol, a sterol typically found in Brassicaceae (Cruciferae) family, such as rapeseed, indicates adulteration of olive oil with canola oil.

Four classes of sterols are present in olive oil: common sterols, 4-methylsterols, triterpene alcohols, and triterpene dialcohols. Their content ranges from 1000 mg/kg, the minimum value required by the IOOC standard, to 2000 mg/kg. The lowest values are found in refined oils because of the refining processes may cause losses up to 25%.

Common sterols or 4α-desmethylsterols
Olive Oil
Fig. 5 – beta-Sitosterol

Common sterols are present mainly in the free and esterified form; however they have been also found as lipoproteins and sterylglucosides.
The main molecules are beta-sitosterol, which makes up 75 to 90% of the total sterol, Δ5-avenasterol, 5 to  20%, and campesterol, 4%. Other components found in lower amounts or traces are, for example, stigmasterol, 2%, cholesterol, brassicasterol, and ergosterol.


They are intermediates in the biosynthesis of sterols, and are present both in the free and esterified form. They are present in small amounts, much lower than those of common sterols and triterpene alcohols, varying between 50 and 360 mg/kg. The main molecules are obtusifoliol, cycloeucalenol, citrostadienol, and gramisterol.

Triterpene alcohols or 4,4-dimethylsterols

They are a complex class of sterols, present both in the free and esterified form. They are found in amounts ranging from 350 to 1500 mg/kg.
The main components are beta-amyrin, 24-methylenecycloartanol, cycloartenol, and butyrospermol; other molecules present in lower/trace amounts are, for example, cyclosadol, cyclobranol, germanicol, and dammaradienol.

Triterpene dialcohols

The main triterpene dialcohols found in olive oil are erythrodiol and uvaol.
Erythrodiol is present both in the free and esterified form; in virgin olive oil, its level varies between 19 and 69 mg/kg, and the free form is generally lower than 50 mg/kg.


They make up 2 to 3% of the unsaponifiable fraction, and include vitamin E.
Of the eight E-vitamers, alpha-tocopherol represents about 90% of tocopherols in virgin olive oil. It is present in the free form and in very variable amount, but on average higher than 100 mg/kg of olive oil. Thanks to its in vivo antioxidant properties, its presence is a protective factor for health. Alpha-tocopherol concentration seems to be related to the high levels of chlorophylls and to the concomitant requirement for deactivation of singlet oxygen.
Beta-tocopherol, delta-tocopherol, and gamma-tocopherol are usually present in low amounts.


In this group we find chlorophylls and carotenoids.
In olive oil, chlorophylls are present as phaeophytins, mainly  phaeophytin a (i.e. a chlorophyll from which magnesium has been removed and substituted with two hydrogen ions), and confer the characteristic green color to olive oil. They are photosensitizer molecules that contribute to the photooxidation of olive oil itself.
Beta-carotene and lutein are the main carotenoids in olive oil. Several xanthophylls are also present, such as antheraxanthin, beta-cryptoxanthin, luteoxanthin, mutatoxanthin, neoxanthin, and violaxanthin.
Olive oil’s color is the result of the presence of chlorophylls and carotenoids and of their green and yellow hues. Their presence is closely related.

 Triterpene acids

They are important components of the olive, and are present in trace amounts in the oil.
Oleanolic and maslinic acids are the main triterpene acids in virgin olive oil: they are present in the olive husk, from which they are extracted in small amount during processing.

Aliphatic and aromatic alcohols

Fatty alcohols and diterpene alcohols are the most important ones.
Aliphatic alcohols have a number of carbon atoms between 20 and 30, and are located mostly inside the olive stones, from where they are partially extracted by milling.

Fatty alcohols

They are linear saturated alcohols with more than 16 carbon atoms.
They are found in the free and esterified form and are present, in virgin olive oil, in amount not generally higher than 250 mg/kg.
Docosanol (C22), tetracosanol (C24), hexacosanol (C26), and octacosanol (C28) are the main fatty alcohols in olive oil, with tetracosanol and hexacosanol present in larger amounts.
Waxes, which are minor constituents of olive oil, are esters of fatty alcohols with fatty acids, mainly of palmitic acid and oleic acid. They can be used as a criterion to discriminate between different types of oils; for example, they must be present in virgin and extra virgin olive oil at levels <150 mg/kg, according to the IOOC standards.

 Diterpene alcohols

Geranylgeraniol and phytol are two acyclic diterpene alcohols, present in the free and esterified form. Among esters present in the wax fraction of extra virgin olive oil, oleate, eicosenoate , eicosanoate, docosanoate, and tetracosanoate have been found, mainly as phytyl derivatives.

Volatile compounds

More than 280 volatile compounds have been identified in olive oil, such as hydrocarbons, the most abundant fraction, alcohols, aldehydes, ketones, esters, acids, ethers and many others. However, only about 70 of them are present at levels higher than the perception threshold beyond which they may contribute to the aroma of virgin olive oil.

Minor components

Phospholipids are found among the minor components of olive oil; the main ones are phosphatidylserine, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol.
In the unfiltered oils, trace amounts of proteins may be found.


Gunstone F.D. Vegetable oils in food technology: composition, properties and uses. 2th. Edition. Wiley J. & Sons, Inc., Publication, 2011

Pasqualone A., Sikorska E., Gomes T. Influence of the exposure to light on extra virgin olive oil quality during storage. Eur Food Res Technol 2005;221:92-8 [Abstract]

Servili M., Sordini B., Esposto S., Urbani S., Veneziani G., Di Maio I., Selvaggini R. and Taticchi A. Biological activities of phenolic compounds of extra virgin olive oil. Antioxidants 2014;3:1-23 [Abstract]

Human health and carotenoids

Benefits of carotenoids for human health

Carotenoids belong to the category of bioactive compounds taken up with diet, that is, molecules able to provide protection against many diseases such as cardiovascular diseases, cancer and macular degeneration. They are also important for the proper functioning of the immune system.
Among the mechanisms that seem to be at the basis of their human health-promoting effects have been reported (Olson, 1999, see References):

  • the capability to quench singlet oxygen (see above);
  • the scavenging of peroxyl radicals and reactive nitrogen species;
  • the modulation of carcinogen metabolism;
  • the inhibition of cell proliferation;
  • the enhancement of the immune response;
  • a filtering action of blue light;
  • the enhancement of cell differentiation;
  • stimulation of cell-to-cell communication

Carotenoids, antioxidant activity and human health

Human Health and Carotenoids
Fig. 1 – Free Radical

Carotenoids, with the adaptation of organisms to aerobic environment, and therefore to the presence of oxygen, have offered protection against oxidative damage from free radicals, particularly by singlet oxygen, a powerful oxidizing agent (see also below).
Carotenoids stabilize singlet oxygen acting both chemical and physical point of view:

  • chemical action involves the union between the two molecules;
  • in physical action, the radical transfers its excitation energy to the carotenoid. The result is a low energy free radical and an excited carotenoid; later, the energy acquired by the carotenoid is released as heat to the environment, and the molecule, that remains intact, is ready to carry out another cycle of stabilization of singlet oxygen, and so on.

The capability of carotenoids to quench singlet oxygen is due to the conjugated double-bond system present in the molecule, and the maximum protection is given by those molecules that have nine or more double bonds (moreover, the presence of oxygen in the molecule, as in xanthophylls, seems to have a role).
Carotenoids are involved not only in singlet oxygen quenching, but also in the scavenging of other reactive species both of oxygen, as peroxyl radicals (therefore contributing to the reduction of lipid peroxidation) and nitrogen. These reactive molecules are generated during the aerobic metabolism but also in the pathological processes.

Lycopene, xanthophylls and human health

Lycopene, a carotene, canthaxanthin and astaxanthin, two xanthophylls present in foods of animal origin, are better antioxidants than beta-carotene but also than zeaxanthin that, with lutein, is involved in prevention of age-related macular degeneration.
Lycopene, in addition to act on oxygen free radicals, acts as antioxidant also on the radicals of vitamin C and vitamin E, that are generated during the antioxidant processes in which these vitamins are involved, “repairing them”.
Finally, lycopene exerts its antioxidant action also indirectly, inducing the synthesis of enzymes involved in the protection against the action of oxygen free radicals and other electrophilic species; these enzymes are quinone reductase, glutathione S-transferase and superoxide dismutase (they are part of the enzymatic antioxidant system).

Vitamin A and human health

Human Health and Vitamin A
Fig. 2 – Provitamin A Activity

Vitamin A, whose deficiency affects annually more than 100 million children worldwide, causing more than a million deaths and half million cases of blindness, is a well-known carotenoid derivative with many biological actions, being essential for reproduction, growth, vision, immune function and general human health.
In the human diet, the major sources of vitamin A are the preformed vitamin, which is found in foods of animal origins (meat, milk, eggs, etc), and provitamin A carotenoids, present in fruits and vegetables. In economically deprived countries, fruits and vegetables are the main source of vitamin A being less expensive than food of animal origin.
Of the more than 750 different carotenoids identified in natural sources, only about 50 have provitamin A activity, and among these, beta-carotene (precisely, all-trans-beta-carotene isomer) is the main precursor of the vitamin A.
Among the other carotenoids precursors of vitamin A, alpha-carotene, gamma-carotene, beta-cryptoxanthin, alpha-cryptoxanthin, and beta-carotene-5,6-epoxide have about half the bioactivity of beta-carotene.
Spinach, carrots, pumpkins, sweet potatoes (yellow) are example of vegetables rich in beta-carotene and other provitamin A carotenoids.
Acyclic carotenes, such as lycopene (the main carotenoid in the human diet), and xanthophylls, except those mentioned above (beta-cryptoxanthin, alpha-cryptoxanthin, and beta-carotene-5,6-epoxide), cannot be converted to vitamin A.


de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Johnson E.J. The role of carotenoids in human health. Nutr Clin Care 2002;5(2):56-65 [Abstract]

Olson, J.A. 1999. Carotenoids. p. 525-541. In: Shils M.E., Olson J.A., Shike M., Ross A.C. “Modern nutrition in health and disease” 9th ed., by Lippincott, Williams & Wilkins, 1999

Ross A.B., Thuy Vuong L., Ruckle J., Synal H.A., Schulze-König T., Wertz K., Rümbeli R., Liberman R.G., Skipper P.L., Tannenbaum S.R., Bourgeois A., Guy P.A., Enslen M., Nielsen I.L.F., Kochhar S., Richelle M., Fay L.B., and Williamson G. Lycopene bioavailability and metabolism in humans: an accelerator mass spectrometry study. Am J Clin Nutr 2011;93:1263-73 [Abstract]


Functions of carotenoids in plants and foods

Through the course of evolution, carotenoids, thank to their unique physical and chemical properties, have proven to be highly versatile molecules, being able to perform many functions in many different organisms, like plants.

Carotenoids in photosynthesis

Carotenoids, in the early stages of the emergence of single-celled photosynthetic organisms, are probably been used for light harvesting at wavelengths different from those covered by chlorophyll. Therefore carotenoids, acting as light absorbing accessory pigments, have allowed to expand the range of solar radiation absorbed and so utilized for photosynthesis, energy that is then transferred to chlorophyll itself.
The major carotenoids involved in light harvesting, that accumulate in green plant tissues, are beta-carotene, lutein, neoxanthin, and violaxanthin, that absorb light energy in the 400- to 500-nm range.
Moreover, they protect chlorophyll from photooxidation (in humans, they may contribute to the protection of photo-oxidative damage caused by UV rays, thus acting as a endogenous photo-protective agents).

Carotenoids and autumn leaf color

Carotenoids and Plants: Autumn Leaf Color
Fig. 1 – Carotenoids and Autumn Leaf Color

Leaf color of deciduous plants in different seasons, green, yellow, orange or red, is due to the presence in them of natural pigments.
In spring and summer, the predominant pigment present in the leaf is chlorophyll, and therefore the color is green.
During the fall, the color changes from green to yellow, orange or red, depending on the type of plant: this is a consequence of the change, both qualitative and quantitative, in the pigment content.
In fact, as a result of the decrease of the temperature and daylight hours, the production of chlorophyll is interrupted and that already present is demolished into colorless metabolites. In this way the predominant pigments become carotenoids (yellow-orange), molecules much more stable than the chlorophyll, which remain in the leaf coloring it (it do not seem to be synthesized de novo), and anthocyanins (red-purple), which, unlike carotenoids, are not present during the growing season, but are synthesized in autumn, just before leaf fall. Therefore, it can be concluded that the red-purple color assumed from the leaves of certain plants is not a side effect of leaf senescence but results from anthocyanins de-novo synthesis.
Depending on the prevalence of carotenoids or anthocyanins, leaf color changes from green to yellow/orange, as in Ginkgo biloba (yellow), or red-purple as in some maples.

And plants with non green leaves?
Their color is not due to the absence of chlorophyll but the presence of very high amounts of other pigments, typically carotenoids and anthocyanins, that “cover” the chlorophyll, determining the color of the leaf.

Some functions of apocarotenoids in plants and foods

These oxygenated carotenoids, containing fewer than 40 carbon atoms, have many functions in plants and animals and are also important for the aroma and flavor of foods.
Some of their main functions include the following.

  • Apocarotenoids have significant roles in the response signals involved in the development and in the response to the environment (for example abscisic acid).
  • They can act as visual or volatile signals to attract pollinators.
  • They are important in the defense mechanisms of plants.
  • They have a role in regulating plant architecture.
  • An apocarotenal, trans-beta-apo-8′-carotenal, found in citrus fruits and spinach, with a low provitamin A activity, is used in pharmaceuticals and cosmetics, and is also a food additive (E160e) legalized by the European Commission for human consumption.
  • Apocarotenoids make an important contribution to the nutritional quality and flavor of many types of foods such as fruits, wine and tea. Two natural apocarotenoids, crocetin and bixina, have economic importance as they are used as pigments and aroma in foods.
  • Finally, a broad range of apocarotenals derive from oxidative reactions that occur in food processing; these molecules are intermediates in the formation of smaller molecules, important for the color and flavor of the food.

Archetti, M., Döring T.F., Hagen S.B., Hughes N.M., Leather S.R., Lee D.W., Lev-Yadun S., Manetas Y., Ougham H.J. Unravelling the evolution of autumn colours: an interdisciplinary approach. Trends Ecol Evol 2009;24(3):166-73 [Abstract]

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Carotenoids: definition, structure and classification

What are carotenoids?

A Good Source of Carotenoids: Carrots
Fig. 1 – Carrots

Carotenoids are soluble-fat pigments found throughout nature.
Carotenoids were discovered during the 19th century.

  • In 1831 Wachen proposed the term “carotene” for a pigment crystallized from carrot roots;
  • Berzelius called the more polar yellow pigments extracted from autumn leaves “xanthophylls” (originally phylloxanthins), from Greek words xanthos, meaning yellow, and phyllon, meaning leaf;
  • Tswett separated many pigments and called them “carotenoids.”

They occur in the chromoplasts of plants and some other photosynthetic organisms such as algae and in some types of fungi and bacteria; they are also produced by some invertebrates (Aphids).
There are more than 750 different carotenoids ranging in color from red (such as lycopene), to orange (such as alpha-carotene, beta-carotene, and gamma-carotene) or yellow (such as lutein, alfa-cryptoxanthin or violaxanthin); more than 100 have been found in fruits and vegetables.
In some green plants and in their parts, generally the darker the green color, the higher the carotenoid content: for example, carotenoid content in pale green cabbage is less than 1% of that in dark green one.
Fruit carotenoids are very different, and those present in ripe fruits may be different from those present in unripe fruits.
They also occur extensively in microorganisms and animals.
In plants, microorganism and animals carotenoids have diverse and important functions and actions.

Chemical structure of carotenoids

Carotenoids are a class of hydrocarbon compounds consisting of 40 carbon atoms (tetraterpenes), with a structure characterized by an extensive conjugated double-bond system that determines the color (it serves as a light-absorbing chromophore): as the number of conjugated double-bond increases, color changes from pale yellow, to orange, to red.
In nature, they exist primarily in the more stable all-trans isomeric configuration, even though small amounts of cis isomers do occur too (they can be produced from all-trans forms also during processing).
Traditionally, carotenoids have been given trivial names derived from the biological source from which they are extracted. However, a semisystematic scheme exists: it allows carotenoids to be named in a way that describes and defines their structure.

Classification of carotenoids

Depending on the presence or absence of oxygen in the molecule, they can be divided into:

  • xanthophylls, which contain oxygen, such as:

Astaxanthin (red)
Bixin, E160b
Canthaxanthin (red), E161g
Capsanthin, E160c
Capsorubin, E160c
alfa-Cryptoxanthin (yellow)
beta-Cryptoxanthin (orange)
Lutein (yellow), E161b
Lutein-5,6-epoxide or taraxanthin
Violaxanthin (yellow)
Zeaxanthin (yellow-orange)

  • carotenes, which lack oxygen, as such:

alfa-Carotene (orange)
beta-Carotene (orange), E160a
gamma-Carotene (orange)
Lycopene (red), E160d
Phytoene (colorless)

Depending on chemical structure they can be divided into:

  • acyclic carotenes: formed by a linear carbon chain such as:

Phytoene (colorless)
Lycopene (red), E160d

  • cyclic carotenes: containing one or two cyclic structures such as:

alfa-Carotene (orange)
beta-Carotene (orange), E160a
gamma-Carotene (orange)

  • hydroxycarotenoids (or carotenols): containing at least an hydroxyl group (xanthophylls) such as:

alfa-Cryptoxanthin (yellow)
beta-Cryptoxanthin (orange)
Lutein (yellow), E161b
Zeaxanthin (yellow-orange)

  • epoxycarotenoids: containing at least an epoxic group (xanthophylls) such as:

Violaxanthin (yellow)

  • uncommon or species-specific carotenoids such as:

Bixin, E160b
Capsanthin, E160c
Capsorubin, E160c

Note: although green leaves contain unesterified hydroxycarotenoids, most carotenols in ripe fruits are esterified with fatty acids. However, those of some fruits, particularly those that remain green when ripe (example kiwi fruit) undergo no or limited esterification.


Apocarotenoids are a class of carotenoids containing less than 40 carbon atoms, very widespread in nature and with extremely different structures.
They derive from 40 carbon atom carotenoids by oxidative cleavage that can occurs through non-specific mechanisms, such as photo-oxidation, or through the action of specific enzymes (these enzymatic activities, identified in plants, animals and microorganisms, are collectively referred to as carotenoid cleavage dioxygenases).
Some of the most well-known

  • vitamin A
  • abscisic acid
  • bixin, E160b
  • crocetin
  • trans-β-apo-8′-carotenal, E160e

Boileau A.C., Merchen N.R., Wasson K., Atkinson C.A. and Erdman Jr J.W. cis-Lycopene is more bioavailable than trans-lycopene in vitro and in vivo in lymph-cannulated ferrets. J Nutr 1999;129:1176-1181 [Abstract]

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Engelmann N.J., Clinton S.K., and Erdman Jr J.W. Nutritional aspects of phytoene and phytofluene,carotenoid precursors to lycopene. Adv Nutr 2011:2;51-61 [Abstract]

Olempska-Beer Z. Lycopene (synthetic): chemical and technical assessment (CTA). Office of Food Additive Safety, Center for Food Safety and Applied Nutrition. U.S. Food and Drug Administration. College Park, Maryland, USA [PDF]

Periago M.J., Bravo S., García-Alonso F.J., and Rincón F. Detection of key factors affecting lycopene in vitro accessibility. J Agr Food Chem 2013;61(16):3859-3867 [Abstract]

Ross A.B., Thuy Vuong L., Ruckle J., Synal H.A., Schulze-König T., Wertz K., Rümbeli R., Liberman R.G., Skipper P.L., Tannenbaum S.R., Bourgeois A., Guy P.A., Enslen M., Nielsen I.L.F., Kochhar S., Richelle M., Fay L.B., and Williamson G. Lycopene bioavailability and metabolism in humans: an accelerator mass spectrometry study. Am J Clin Nutr 2011;93:1263-73 [Abstract]

Wang X-D. Lycopene metabolism and its biological significance. Am J Clin Nutr 2012:96;1214S-1222S [Abstract]