Archivi tag: antociani o antocianine

Acidi idrossicinnamici: definizione, struttura, biosintesi, alimenti

Acidi idrossicinnamici: contenuti in breve

Che cosa sono gli acidi idrossicinnamici?

Gli acidi idrossicinnamici o idrossicinnamati sono composti fenolici che fanno parte del gruppo dei polifenoli non flavonoidi.
Sono presenti praticamente in tutte le parti della frutta e verdura anche se le concentrazioni maggiori si ritrovano nelle porzioni esterne dei frutti maturi, concentrazioni che si riducono nel corso della maturazione, mentre il contenuto totale aumenta grazie all’aumentare delle dimensioni del frutto.

Il loro consumo con i cibi è stato associato ad un effetto di prevenzione dello sviluppo di malattie croniche come:

  • le malattie cardiovascolari;
  • il cancro;
  • il diabete di tipo 2.

Questi effetti sembra non siano dovuti solamente al loro notevole potere antiossidante (potere che variare in base al pattern metilazione, e soprattutto di idrossilazione dell’anello aromatico), ma anche ad altri meccanismi d’azione come ad es. la riduzione dell’assorbimento intestinale del glucosio o la modulazione della secrezione di alcuni ormoni intestinali.

⇑ Torna all’inizio ⇑

Struttura chimica degli acidi idrossicinnamici

La struttura chimica di base è composta da un anello benzenico cui è legata una catena di tre atomi di carbonio, struttura che è indicata anche come C6-C3. Pertanto possono essere inseriti nel gruppo dei fenilpropanoidi.

Acidi Idrossicinnamici
Fig. 1 – Struttura di Base degli Idrossicinnamati

Gli idrossicinnamati più comuni sono:

  • l’acido caffeico o acido 3,4-diidrossicinnamico;
  • l’acido ferulico o acido 4-idrossi-3-metossicinnamico;
  • l’acido sinapico o acido 4-idrossi-3,5-dimetossicinnamic
  • l’acido p-cumarico o acido 4-cumarico o acido 4-idrossicinnamico.

In natura si trovano associati ad altre molecole, in genere in forma di derivati glicosilati o di esteri dell’acido chinico, tartarico e shikimico (o acido scichimico). Inoltre sono state identificate diverse centinaia di antociani acilati con gli idrossicinnamati sopracitati (in ordine decrescente con l’acido p-cumarico, oltre 150, acido caffeico, circa 100, acido ferulico, circa 60, e acido sinapico, circa 25).
Raramente sono presenti in forma libera, tranne che nei cibi lavorati che abbiano subito congelamento, fermentazione o sterilizzazione. Ad esempio, una conservazione eccessivamente lunga delle arance rosse  provoca una idrolisi massiva dei derivati idrossicinnamici a dare acidi liberi, e questo a sua volta potrebbe portare alla formazione di composti maleodoranti quali i vinil-fenoli, indicatori di una senescenza troppo avanzata del frutto.

⇑ Torna all’inizio ⇑

Biosintesi degli acidi idrossicinnamici

La biosintesi degli idrossicinnamati consiste in una serie di reazioni successive a quella catalizzata dalla  fenilalanina ammonio liasi (PAL, acronimo dell’inglese phenylalanine ammonia lyase), reazione che deaminando la fenilalanina a dare acido trans-cinnamico lega l’aminoacido aromatico agli acidi idrossicinnamici e alle loro forme attivate.

Acidi Idrossicinnamici
Fig. 2 – Biosintesi degli Idrossicinnamati

Nel primo passaggio viene introdotto un gruppo ossidrilico in posizione 4 dell’anello aromatico dell’acido trans-cinnamico a dare l’acido p-cumarico (reazione catalizzata dalla acido cinnamico 4-idrossilasi). L’addizione di un secondo gruppo ossidrilico in posizione 3 dell’anello dell’acido p-cumarico porta alla formazione di acido caffeico (reazione catalizzata dalla p-cumarato 3-idrossilasi o fenolasi), mentre la O-metilazione del gruppo ossidrilico in posizione 3 produce acido ferulico (reazione catalizzata dalla catecol-O-metiltranferasi). L’acido ferulico a sua volta è convertito in acido sinapico attraverso due reazione: una idrossilazione in posizione 5 a dare l’acido 5-idrossiferulico (reazione catalizzata dalla ferulato 5-idrossilasi), e la successiva O-metilazione dello stesso ossidrile (reazione catalizzata ancora dalla catecol-O-metiltranferasi).
Gli idrossicinnamati non sono presenti in quantità elevate in quanto sono rapidamente convertiti in esteri del coenzima A (CoA) o in esteri del glucosio, nelle reazioni catalizzate da idrossicinnamato:CoA ligasi o da O-glucosiltransferasi. Questi intermedi attivati rappresentano punti di ramificazione in quanto in grado di partecipare ad un’ampia gamma di reazioni successive, quali la condensazione con il malonil-CoA a dare flavonoidi, o la riduzione NADPH-dipendente a dare lignani (che saranno di seguito utilizzati nella sintesi della lignina).

⇑ Torna all’inizio ⇑

Acidi idrossicinnamici nei cibi

Tra le fonti più ricche si ritrovano kiwi, mirtilli, prugne, ciliegie, mele, pere, cicoria, carciofi, carote, lattuga, melanzane, grano e caffè.

⇑ Torna all’inizio ⇑

Acido caffeico

In genere, sia in forma libera che legata ad altre molecole, è l’acido idrossicinnamico più abbondante nella verdura e nella maggior parte della frutta, dove rappresenta il 75-100% del totale degli idrossicinnamati.

Acidi Idrossicinnamici
Fig. 3 – Acido Caffeico

Le fonti più ricche sono il caffè, inteso come bevanda, le carote, la lattuga, le patate, anche quelle dolci, ma anche frutti di bosco quali mirtilli, mirtilli rossi e more.
Fonti minori sono rappresentate da uva e prodotti derivati, succo d’arancia, mele, prugne, pesche, e pomodori.
L’acido caffeico e il chinico si legano a formare l’acido clorogenico, presente in molti tipi di frutta ed in concentrazione elevata nel caffè.

⇑ Torna all’inizio ⇑

Acido ferulico

E’ l’acido idrossicinnamico più abbondante nei cereali, che ne sono anche la fonte alimentare principale.

Acidi Idrossicinnamici
Fig. 4 – Acido Ferulico

Nel grano il contenuto è compreso tra 0,8 e 2 g/kg di peso secco, che rappresenta fino al 90% del totale dei polifenoli. Si ritrova quasi esclusivamente, fino al 98% del totale, nelle parti più esterne del chicco, ossia lo strato aleuronico ed il pericarpo, e quindi il suo contenuto nelle farine dipende dal loro livello di raffinazione, mentre la principale fonte è ovviamente rappresentata dalla crusca. La molecola è presente principalmente nella forma trans, esterificata con arabinoxilani e emicellulose. Infatti solamente il 10% si ritrova in forma libera solubile nella crusca.
Nei cereali sono state ritrovati anche dimeri che formano strutture a ponte tra le catene di emicellulosa.
Nei frutti e nella verdura è molto meno comune dell’acido caffeico. Le principali fonti sono asparagi, melanzane e broccoli, mentre concentrazioni più basse sono state ritrovate nelle more, mirtilli, mirtilli rossi, mele, carote, patate, barbabietole, caffè e succo d’arancia.

⇑ Torna all’inizio ⇑

Acido sinapico

Le quantità più elevate si ritrovano nella buccia e nei semi degli agrumi (il contenuto del succo d’arancia è decisamente più basso); buoni valori sono presenti anche nel cavolo cinese (o cavolo di Pechino), e in alcune varietà di mirtilli rossi.

Acidi Idrossicinnamici
Fig. 5 – Acido Sinapico

⇑ Torna all’inizio ⇑

Acido p-cumarico

Elevate quantità sono presenti nelle melanzane, le più ricche, nei broccoli ed asparagi; altre fonti sono le ciliegie dolci, le prugne, i mirtilli, anche rossi, la buccia ed i semi degli agrumi, ed il succo d’arancia.

Acidi idrossicinnamici
Fig. 6 – Acido p-Cumarico

⇑ Torna all’inizio ⇑

Bibliografia

Andersen Ø.M., Markham K.R. Flavonoids: chemistry, biochemistry, and applications. CRC Press Taylor & Francis Group, 2006

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Manach C., Scalbert A., Morand C., Rémésy C., and Jime´nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-47 [Abstract]

Preedy V.R. Coffee in health and disease prevention. Academic Press, 2014  [Google eBook]

Zhao Z.,  Moghadasian M.H. Bioavailability of hydroxycinnamates: a brief review of in vivo and in vitro studies. Phytochem Rev 2010;9(1):133-145. doi:10.1007/s11101-009-9145-5

Polifenoli dell’uva e del vino: composizione chimica e attività biologiche

Polifenoli dell’uva e del vino: contenuti in breve

Il consumo di uva e prodotti derivati, in primis il vino rosso ma solo durante i pasti, è stato associato a numerosi effetti positivi sulla salute, che non si limitano al solo effetto antiossidante/antiradicalico, ma includono anche un’azione:

  • antiinfiammatoria;
  • cardioprotettiva;
  • anticancerosa;
  • antimicrobica;
  • neuroprotettiva
Polifenoli dell'Uva
Fig. 1 – Uva Rossa

Nell’uva sono presenti numerosi nutrienti quali zuccheri, vitamine, sali minerali, fibre e fitochimici. Tra questi ultimi, i polifenoli si sono dimostrati i composti più importanti nel determinare gli effetti positivi del frutto e dei prodotti derivati.
L’uva è infatti uno dei frutti più ricchi in polifenoli, la cui composizione è fortemente influenzata da diversi fattori quali la varietà o cultivar, le condizioni ambientali in cui avviene la maturazione, eventuali malattie quali infezioni fungine, come anche la lavorazione che subisce.
Al momento le specie di vite principalmente coltivate a livello mondiali sono: l’europea, Vitis vinifera, le nordamericane, Vitis labrusca e Vitis rotundifolia, ed ibridi francesi.
Nota: l’uva in realtà non è un frutto ma un’infruttescenza ossia un raggruppamento di frutti: il grappolo. A sua volta il grappolo è composto dal peduncolo, dal raspo o graspo, dai pedicelli, e dalle bacche o acini o chicchi.

⇑ Torna all’inizio ⇑

Quali sono i polifenoli dell’uva e del vino?

I polifenoli sono presenti sia in quantità che in varietà decisamente maggiori nell’uva rossa, e quindi nel vino rosso, rispetto a quella bianca. Questo, secondo molti ricercatori, sarebbe alla base dei maggiori benefici sulla salute derivanti al consumo di uva/vino rosso rispetto a quella bianca ed i suoi derivati.
I polifenoli dell’uva e del vino sono una complessa miscela di composti flavonoidi, il gruppo più abbondante, e non flavonoidi.
Tra i flavonoidi si ritrovano:

Tra i polifenoli non flavonoidi:

La maggior parte dei flavonoidi presenti nel vino derivano dallo strato epidermico della buccia, mentre il 60-70% del totale dei polifenoli è presente nel vinacciolo. Da notare che oltre il 70% dei polifenoli dell’uva non sono estratti e rimangono nella vinaccia.
Le complesse interazioni chimiche che si stabiliscono tra questi composti, e tra di loro e gli altri composti di natura differente presenti nell’uva e nel vino, sono probabilmente essenziali nel determinare sia la qualità delle uve e del vino che l’ampio spettro di effetti terapeutici propri di questi alimenti.
Nel vino la miscela di polifenoli svolge importanti funzioni essendo in gradi di influenzare:

  • il gusto amaro;
  • l’astringenza;
  • il colore rosso, di cui sono tra i maggiori responsabili;
  • la sensibilità all’ossidazione, essendo sostanze facilmente ossidabili quando esposte all’aria.

Infine sono un conservante importante per il vino stesso e la base per un lungo invecchiamento.

⇑ Torna all’inizio ⇑

Polifenoli dell’uva e del vino: antociani o antocianine

Sono flavonoidi ampiamente presenti nella frutta e verdura.
Nell’uva si accumulano in modo principale nella buccia (nei primi strati esterni del tessuto ipodermico), cui conferiscono il colore, avendo tonalità che variano dal rosso al blu. In alcune varietà, dette “teinturier”, si accumulano anche nella polpa dell’acino.
Esiste una stretta correlazione tra la sintesi degli antociani e lo sviluppo dell’acino. Quando l’acino raggiunge l’invaiatura, ossia il momento in cui termina la sua crescita, ha inizio la loro sintesi, che determina anche il cambiamento di colore dell’acino stesso che diventa viola. La sintesi raggiunge il massimo livello alla maturazione completa dell’acino.
Tra i flavonoidi del vino sono uno degli antiossidanti più potenti.
Ogni specie e varietà d’uva ha una composizione unica in antocianine. Inoltre nelle uve di Vitis vinifera, a seguito di una mutazione a carico del gene che codifica per 5-O-glucosiltransferasi, mutazione che determina la sintesi di un enzima inattivo, sono prodotti solo 3-monoglucosidi, mentre nelle uve derivanti da altre specie avviene anche la glicosilazione in posizione 5. Interessante notare che i derivati 3-glucosidici sono colorati più intensamente dei 3,5-diglucosidi.

Polifenoli dell'Uva
Fig. 2 – Malvidina-3-glucoside

Nell’uva e nel vino rosso i più abbondanti sono i 3-monoglucosidi della malvidina, la più abbondante sia nell’uva che nel vino, e della petunidina, delfinidina, peonidina, cianidina.
L’idrossile in posizione 6 del glucosio può a sua volta essere acilato con un gruppo acetilico, caffeico o cumarico, acilazione che ne aumenta ulteriormente la stabilità.
Le antocianidine, ossia le forme non coniugate, non sono presenti ne nell’uva ne nel vino, se non in tracce.
Gli antociani sono scarsamente presenti nelle uve bianche, e dunque nel vino bianco.
La composizione in antociani del vino è fortemente influenzata sia dal tipo di cultivar che dalle tecniche di vinificazione, ritrovandosi nel vino in conseguenza di processi di estrazione dalla buccia dovuti alla macerazione delle uve. Di conseguenza vini derivanti da varietà simili di uve possono avere composizioni in antocianine molto diverse.
Insieme alla proantocianidine, sono i polifenoli più importanti nel determinare alcune importanti proprietà organolettiche del vino rosso, in quanto sono i principali responsabili dell’astringenza, amarezza, stabilità chimica nei confronti dell’ossidazione, come anche del colore del vino giovane.
Riguardo al colore va sottolineato che con il tempo la loro concentrazione si riduce, mentre il colore è dovuto sempre più alla formazione di pigmenti polimerici prodotti della condensazione degli antociani sia tra di loro che  con altre molecole.
Nel corso dell’invecchiamento del vino gli antociani e le proantocianidine possono interagire a dare molecole con struttura complessa che possono parzialmente precipitare.

⇑ Torna all’inizio ⇑

Polifenoli dell’uva e del vino: flavanoli o catechine

Sono, insieme ai tannini condensati, i flavonoidi più abbondanti, rappresentando fino al 50% del totale dei polifenoli nelle uve bianche e dal 13% al 30% in quelle rosse.
Il loro livello nel vino dipende dal tipo di cultivar.

Polifenoli dell'uva
Fig. 3- Catechina

In genere il flavanolo più abbondante nel vino è la catechina, ma si ritrovano anche epicatechina ed epicatechina-3-gallato.

⇑ Torna all’inizio ⇑

Polifenoli dell’uva e del vino: proantocianidine o tannini condensati

Polifenoli dell'Uva
Fig. 4 – Procianidina C1

Formate da unità di catechine, sono presenti nella buccia, nel vinacciolo e nel raspo del grappolo d’uva in forma di:

  • dimeri, di cui i più comuni sono le proacianidine B1-B4, ma possono essere presenti anche le procianidine B5-B8;
  • trimeri, e tra questi la procianidina C1 è la più abbondante;
  • tetrameri;
  • polimeri, formati fino da 8 monomeri.

Il loro livello nel vino dipende dalle tecniche di vinificazione e dalla varietà dell’uva e, al pari degli antociani, sono molto più abbondanti nei vini rossi, in particolare in quelli invecchiati, rispetto ai bianchi.
Inoltre, come detto in precedenza, insieme agli antociani, i tannini condensati sono importanti nel determinare alcune proprietà organolettiche del vino.

⇑ Torna all’inizio ⇑

Polifenoli dell’uva e del vino: flavonoli

Sono presenti in una grande varietà di frutta e verdura, anche se in basse concentrazioni.
Nell’uva sono il terzo gruppo di flavonoidi più abbondanti, dopo proantocianidine e catechine.
Si ritrovano principalmente nell’epidermide esterna della buccia, dove agiscono come agenti protettivi nei confronti della radiazione UV-A e UV-B, ed hanno un ruolo di copigmentazione insieme agli antociani.
La loro sintesi inizia nel germoglio; la concentrazione più elevata è raggiunta poche settimane dopo l’invaiatura, per poi ridursi quando il chicco aumenta di dimensioni. Il loro contenuto totale è molto variabile, con le varietà rosse spesso più ricche rispetto a quelle bianche.
Nell’uva sono presenti come 3-glucosidi. Il loro profilo dipende dal tipo di uva e cultivar:

  • nell’uva bianca si ritrovano i derivati della quercetina, campferolo ed isoramnetina;
  • i derivati della miricetina, laricitrina e siringetina si ritrovano, insieme ai precedenti, solo in quella rossa, a causa della mancata espressione nell’uva bianca del gene che codifica per la flavonoide-3’,5’-idrossilasi.
Polfenoli dell'Uva
Fig. 5 – Quercetina-3-glucoside

In generale i 3-glucosidi ed i 3-glucoronidi della quercetina sono i principali flavonoli nella maggior parte delle uve. Nelle uve moscate invece i più rappresentati sono la quercetina-3-ramnoside e la quercetina aglicone.
A differenza dell’uva, nel vino e nel succo d’uva i flavonoli sono presenti anche come agliconi, in conseguenza dell’idrolisi acida che si verifica durante la lavorazione e la conservazione. Si ritrovano nel vino in quantità variabile, e i principali sono i glicosidi della miricetina e quercetina, che da soli rappresentano il 20-50% del totale dei flavonoli del vino rosso.

⇑ Torna all’inizio ⇑

Polifenoli dell’uva e del vino: idrossicinnamati

Gli acidi idrossicinnamici sono la principale classe di polifenoli non flavonoidi nell’uva ed i principali polifenoli del vino bianco.
I più importanti sono gli acidi p-cumarico, caffeico, sinapico e ferulico, presenti nel vino in forma di esteri con l’acido tartarico.

Polifenoli dell'Uva
Fig. 6 – Acido Ferulico

Sono molecole dotate di attività antiossidante e in alcune cultivar bianche di Vitis vinifera, assieme ai flavonoli, sono i principali polifenoli responsabili dell’assorbimento della radiazione ultravioletta a livello dell’acino.

⇑ Torna all’inizio ⇑

Polifenoli dell’uva e del vino: stilbeni

ono fitoalessine che, al contrario dei flavonoidi che sono presenti in tutte le piante superiori, sono prodotti in basse concentrazioni solo da poche specie edibili, tra cui la vite.
Insieme agli altri polifenoli dell’uva e del vino anche gli stilbeni, ed in particolare il resveratrolo, sono stati associati agli effetti benefici sulla salute conseguenti al consumo della bevanda.

Polifenoli dell'Uva
Fig. 7 – trans-Resveratrolo

Il loro contenuto aumenta dall’invaiatura sino alla maturazione del chicco, ed è influenzato dal tipo di cultivar, dal clima, dalle tecniche di vinificazione e dalla pressione fungina.
I principali stilbeni presenti nell’uva e nel vino sono:

  • cis– e trans-resveratrolo (3,5,4’-triidrossistilbene);
  • piceide o resveratrolo-3-glucopiranoside e astringina o  3’-idrossi trans-piceide;
  • piceatannolo;
  • dimeri ed oligomeri del resveratrolo, detti viniferine, di cui le più importanti sono:

α-viniferina, un trimero;
β-viniferina, un tetramero ciclico;
γ-viniferina, un oligomero altamente polimerizzato;
ε-viniferina, un dimero ciclico.

Nell’uva sono state identificati in tracce anche altre forme isomeriche e glicosilate del resveratrolo e del piceatannolo, come il resveratroloside, l’opeafenolo, il resveratrolo di- e triglucoside.
La glicosilazione degli stilbeni è importante per la conservazione, il trasporto, la modulazione dell’attività antifungina e la protezione dalla degradazione ossidativa del vino.
La sintesi di dimeri ed oligomeri del resveratrolo, prodotti sia nell’uva che nel vino, rappresenta un meccanismo di difesa nei confronti di attacchi esogeni, o al contrario è il risultato dell’azione di enzimi extracellulari rilasciati da patogeni nel tentativo di eliminare composti tossici indesiderati.

⇑ Torna all’inizio ⇑

Polifenoli dell’uva e del vino: idrossibenzoati

I derivati dell’acido idrossibenzoico sono componenti minori dell’uva e del vino.
Nell’uva i principali sono gli acidi gentisico, gallico, p-idrossibenzoico e protocatechico.

Polifenoli dell'Uva
Fig. 8 – Acido Gallico

A differenza degli idrossicinnamati, che nel vino sono presenti come esteri con l’acido tartarico, si ritrovano in forma libera.
Insieme ai flavonoli, proantocianidine, catechine ed idrossicinnamati sono tra i responsabili dell’astringenza del vino.

⇑ Torna all’inizio ⇑

Bibliografia

Andersen Ø.M., Markham K.R. Flavonoids: chemistry, biochemistry, and applications. CRC Press Taylor & Francis Group, 2006

Basli A, Soulet S., Chaher N., Mérillon J.M., Chibane M., Monti J.P.,1 and Richard T. Wine polyphenols: potential agents in neuroprotection. Oxid Med Cell Longev 2012. doi:10.1155/2012/805762

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Flamini R., Mattivi F.,  De Rosso M., Arapitsas P. and Bavaresco L. Advanced knowledge of three important classes of grape phenolics: anthocyanins, stilbenes and flavonols. Int J Mol Sci 2013;14:19651-19669. doi:10.3390/ijms141019651

Georgiev V., Ananga A. and Tsolova V. Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients 2014;6: 391-415. doi:10.3390/nu6010391

Guilford J.M. and Pezzuto J.M. Wine and health: a review. Am J Enol Vitic 2011;62(4):471-486. doi:10.5344/ajev.2011.11013

He S., Sun C. and Pan Y. Red wine polyphenols for cancer prevention. Int J Mol Sci 2008;9:842-853. doi:10.3390/ijms9050842

Xia E-Q., Deng G-F., Guo Y-J. and Li H-B. Biological activities of polyphenols from grapes. Int J Mol Sci 2010;11-622-646. doi:10.3390/ijms11020622

Waterhouse A.L. Wine phenolics. Ann N Y Acad Sci 2002;957:21-36. doi:10.1111/j.1749-6632.2002.tb02903.x

Polifenoli dell’olio d’oliva: variabilità e composizione chimica

Polifenoli dell’olio d’oliva: contenuti in breve

Polifenoli dell’olio d’oliva: influenze ambientali ed estrattive

Polifenoli dell'Olio d'Oliva
Fig. 1 – Olive

L’olio di oliva, che si ottiene dalla spremitura delle olive o drupe, il frutto della pianta dell’olivo (Olea europaea), è la principale fonte di grassi della Dieta Mediterranea e un’ottima fonte di polifenoli.
I polifenoli, molecole con proprietà antiossidanti, sono presenti nella polpa dell’oliva e, a seguito della spremitura, passano nell’olio.
La concentrazione dei polifenoli dell’olio di oliva è il risultato di una complessa interazione tra vari fattori, sia ambientali che legati al processo di estrazione dell’olio stesso, quali:

  • il luogo di coltivazione;
  • il cultivar (la varietà);
  • il grado di maturazione delle olive al momento del raccolto.
    Il loro livello di solito si riduce con l’eccessiva maturazione delle drupe, anche se ci sono delle eccezioni a queste regole. Ad esempio le olive coltivate nei climi più caldi, a dispetto della loro maturazione più veloce, producono oli più ricchi in polifenoli.
  • il clima;
  • il processo di estrazione. A questo riguardo c’è da sottolineare il fatto che nell’olio d’oliva raffinato il contenuto in polifenoli non è significativo.

Ogni variazione nella concentrazione dei differenti polifenoli dell’olio influenza il gusto, le proprietà nutrizionali e la stabilità dell’olio di oliva stesso. Ad esempio, l’idrossitirosolo e l’oleuropeina (vedi sotto), conferiscono all’olio extravergine di oliva un sapore pungente ed amaro.

⇑ Torna all’inizio ⇑

Classi di polifenoli dell’olio d’oliva

Tra i polifenoli dell’olio d’oliva sono presenti sia molecole con struttura semplice, come gli acidi fenolici e gli alcool fenolici, che complessa, quali i flavonoidi, i secoiridoidi ed i lignani.

⇑ Torna all’inizio ⇑

Flavonoidi

I flavonoidi comprendono glicosidi dei flavonoli (rutina o quercetina-3-rutinoside), dei flavoni (luteolina-7-glicoside), e degli antociani (glicosidi della delfinidina).

⇑ Torna all’inizio ⇑

Acidi fenolici ed alcol fenolici

Tra gli acidi fenolici, i primi polifenoli con struttura semplice ad essere osservati nell’olio d’oliva, si ritrovano:

  • gli acidi idrossibenzoici, come l’acido gallico, l’acido protocatecuico, e  l’acido 4-idrossibenzoico (tutti con struttura C6-C1);
  • gli acidi idrossicinnamici, come gli acidi caffeico, vanillico, siringico, p-cumarico e o-cumarico (tutti con struttura C6-C3).

Tra gli alcoli fenolici, i più abbondanti sono l’idrossitirosolo (3,4-diidrossifeniletanolo), e il tirosolo [2-(4-idrossifenil)-etanolo].

⇑ Torna all’inizio ⇑

Idrossitirosolo

L’idrossitirosolo può essere presente sia libero che esterificato con l’acido elenoico a dare oleuropeina ed il suo aglicone, sia come componente della molecola verbascoside. Inoltre si può ritrovare in diverse forme glicosidiche, a seconda del gruppo ossidrile cui si va a legare il glucoside.

Polifenoli dell'Olio di Oliva
Fig. 2 – Idrossitirosolo

E’ uno dei principali composti fenolici presente nelle olive, nell’olio extravergine di oliva e nelle acque di vegetazione.
In natura, la sua concentrazione, come quella del tirosolo, aumenta durante la maturazione del frutto, in parallelo con l’idrolisi di composti con peso molecolare più elevato, mentre il contenuto totale dei composti fenolici e dell’alfa-tocoferolo diminuisce. Può quindi essere considerato come un indicatore del grado di maturazione delle olive.
Nell’olio extravergine di oliva fresco l’idrossitirosolo per la maggior parte si trova impegnato in un legame in forma esterifica, mentre con il passare del tempo, grazie a reazioni di idrolisi, la forma non esterificata diventa quella prevalente.
Infine, la sua concentrazione si correla con la stabilità dell’olio.

⇑ Torna all’inizio ⇑

Secoiridoidi

Sono i polifenoli dell’olio d’oliva con struttura più complessa, e sono il prodotto del metabolismo secondario dei terpeni.
Sono composti che legano uno zucchero e sono caratterizzati dalla presenza nella loro struttura di acido elenolico (sia nella sua forma glucosidica che agliconica), la molecola comune ai glicosidi secoiroidi della famiglia delle Oleaceae.
A differenza dei tocoferoli, flavonoidi, ed acidi ed alcol fenolici che di ritrovano in molta frutta e verdura appartenente a famiglie botaniche differenti, i secoiridoidi sono presenti soltanto nelle piante della famiglia delle Oleaceae.
I principali secoiridoidi sono l’oleuropeina, la demetiloleuropeina, il ligstroside e la nuzenide.
In particolare, l’oleuropeina e la demetiloleuropeina (come la verbascoside) sono abbondanti nella polpa, ma si ritrovano anche nelle altre parti del frutto. La nuzenide è presente solo nei semi.

⇑ Torna all’inizio ⇑

Oleuropeina

L’oleuropeina, il secoiridoide più importante ed il principale tra i polifenoli dell’olio d’oliva, è l’estere tra l’idrossitirosolo e l’acido elenoico.

Polifenoli dell'Olio d'Oliva
Fig. 3 – Oleuropeina

E’ presente in quantità molto elevate nelle foglie dell’olivo, come anche in tutte le parti del frutto, buccia, polpa e nocciolo compreso.
Si accumula nell’oliva durante la fase di crescita, sino a raggiungere il 14% del peso netto; quando il frutto diventa più verde, la sua quantità si riduce. Infine, quando la drupa vira verso il marrone scuro, colore dovuto alla presenza di antociani, la riduzione nella concentrazione della oleuropeina diventa più evidente. E’ stato inoltre dimostrato che nelle cultivar verdi il suo contenuto è maggiore rispetto alle cultivar nere.
Nel corso della riduzione dei livelli di oleuropeina e di altri secoiridoidi, è possibile osservare un aumento di composti come i flavonoidi, i verbascosidi, ed i fenoli semplici. La riduzione del suo contenuto è accompagnata anche da un aumento dei suoi prodotti secondari glicosilati, che raggiungono i valori massimi nelle olive nere.

⇑ Torna all’inizio ⇑

Lignani

Polifenoli dell'Olio d'Oliva
Fig. 4 – Lignani

Un altro gruppo di polifenoli dell’olio d’oliva sono i lignani, in particolare (+)-1-acetossipinoresinolo e (+)-pinoresinolo.
Il (+)-pinoresinolo è un composto comune della frazione lignana di diverse piante come il sesamo (Sesamun indicum) e i semi della specie Forsithia, appartenente alla famiglia delle Oleaceae. E’stato ritrovato anche nel nocciolo delle olive.
Il (+)-1-acetossipinoresinolo e (+)-1-idrossipinoresinolo, ed i loro glicosidi, sono stati ritrovati nella corteccia dell’oliva (Olea europeae).
I lignani non sono presenti nel pericarpo delle drupe, ne nei rametti e foglie che possono accidentalmente essere spremuti insieme alle olive.
Pertanto, come riescano a passare nell’olio divenendone una delle frazioni fenoliche più importanti non è ancora noto.
(+)-1-acetossipinoresinolo e (+)-pinoresinolo non sono presenti negli oli di semi, e sono virtualmente assenti dagli oli di oliva vergini raffinati, mentre nell’olio extravergine di oliva possono raggiungere una concentrazione di 100 mg/kg.
Come per i fenoli semplici ed i secoiridoidi, esiste una notevole variazione nella loro concentrazione tra gli oli di oliva di varia origine, variabilità probabilmente legata alle differenze tra le zone di produzione, clima, varietà di olive e tecniche di produzione dell’olio.

⇑ Torna all’inizio ⇑

Bibliografia

Cicerale S., Lucas L. and Keast R. Biological activities of phenolic compounds present in virgin olive oil. Int. J. Mol. Sci. 2010;11: 458-479. doi:10.3390/ijms11020458

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Manach C., Scalbert A., Morand C., Rémésy C., and Jime´nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-47 [Abstract]

Owen R.W., Mier W., Giacosa A., Hull W.E., Spiegelhalder B. and Bartsch H. Identification of lignans as major components in the phenolic fraction. Clin Chem 2000;46:976-988 [Abstract]

Tripoli E., Giammanco M., Tabacchi G., Di Majo D., Giammanco S. and La Guardia M. The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health. Nutr Res Rev 2005:18;98-112. doi:10.1079/NRR200495

Antocianine: alimenti, assorbimento, microbiota del colon

Antocianine: contenuti in breve

Antocianine nei cibi

Antocianine
Fig. 1 – Cileigie

Insieme con le catechine e le proantocianidine, le antocianine o  antociani ed i loro prodotti di ossidazione sono i flavonoidi più abbondanti nella dieta umana. Le antocianine si ritrovano:

  • in certe varietà di cereali pigmentati, come il riso nero o il mais viola;
  • in alcune verdure a foglia e a radice come melanzane, cavoli rossi, cipolle rosse e ravanelli, nei fagioli;
  • ma soprattutto nella frutta rossa.

Anche nel vino rosso sono presenti antociani (200-350 mg/L) che, nel corso dell’invecchiamento del vino stesso, sono trasformate in varie molecole complesse. Il contenuto nei cibi è generalmente proporzionale all’intensità del colore del frutto o verdura: aumenta nel corso della maturazione e raggiunge valori fino a 2-4 g/kg di peso fresco nel ribes nero e mirtilli rossi americani (cranberries). Questi polifenoli si trovano principalmente nella buccia, tranne che in certi tipi di frutta rossa, come ciliegie e frutti di bosco rossi (ad es. le fragole), dove sono presenti sia nella buccia che nella polpa. Gli antociani più comuni nei cibi sono i glicosidi della cianidina.

⇑ Torna all’inizio ⇑

Antocianine nella frutta

  • I frutti di bosco sono la principale fonte di antocianine, con valori variabili tra 66,8 e 947,5 mg/100 g di peso fresco.
  • Altri frutti, come l’uva rossa, le ciliegie e le prugne hanno contenuti variabili tra 2 e 150 mg/100 g di peso fresco.
  • Infine in frutti come pesche, nettarine ed alcuni tipi di pere e mele sono scarsamente presenti, con un contenuto inferiori a 10 mg/100 g peso fresco.

Il mirtillo rosso americano (cranberry), oltre ad avere un contenuto notevolmente elevato di antociani, è uno dei rari alimenti che contiene glicosidi delle sei antocianidine più comunemente trovate nei cibi: cianidina, peonidina, malvidina, pelargonidina, delfinidina, e petunidina. Gli antociani predominanti sono i 3-O-galattosidi e 3-O-arabinosidi della cianidina e peonidina; sono stati rilevati un totale di 13 antociani, principalmente in forma di 3-O-monoglicosi.

⇑ Torna all’inizio ⇑

Assorbimento intestinale delle antocianine

Fino a poco tempo fa si riteneva che gli antociani, insieme alle proantocianidine e ai derivati dell’acido gallico delle catechine, fossero i polifenoli meno ben assorbiti dall’intestino, con un tempo di comparsa nel plasma coerente con l’assorbimento sia nello stomaco che nell’intestino tenue. In realtà, alcuni studi hanno rivelato che la loro biodisponibilità è stata sottovalutata dal momento che tutti i loro metaboliti potrebbero non essere ancora stati identificati. A questo riguardo va sottolineato che solo una piccola parte delle antocianine presenti negli alimenti è assorbita come tale o come prodotti di idrolisi in cui lo zucchero è stato rimosso. Quindi, una grande quantità di questi polifenoli ingeriti entra nel colon, dove possono anche subire reazioni di glucuronidazione, solfatazione, metilazione ed ossidazione.

⇑ Torna all’inizio ⇑

Antocianine e microbiota del colon

Gli studi che esaminano il metabolismo degli antociani da parte del microbiota del colon sono pochi. Entro due ore sembra che tutti siano privati della loro componente zuccherina, liberando quindi antocianidine. Le antocianidine sono molecole chimicamente instabili nel pH neutro del colon che possono essere metabolizzate dalla microflora del colon o semplicemente essere degradate chimicamente con produzione di una serie di nuove molecole non ancora completamente identificate ma che comprendono acidi fenolici come:

  • acido gallico;
  • acido protocatecuico;
  • acido siringico;
  • acido vanillico;
  • floroglucinolo (1,3,5-triidrossibenzene).

Queste molecole, grazie alla loro maggiore stabilità sia chimica che microbica, potrebbero essere le principali responsabili delle attività antiossidanti e degli altri effetti fisiologici osservati in vivo ed attribuiti agli antociani.

⇑ Torna all’inizio ⇑

Bibliografia

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

de Pascual-Teresa S., Moreno D.A. and García-Viguera C. Flavanols and anthocyanins in cardiovascular health: a review of current evidence. Int J Mol Sci 2010;11:1679-1703. doi:10.3390/ijms11041679

Escribano-Bailòn M.T., Santos-Buelga C., Rivas-Gonzalo J.C. Anthocyanins in cereals. J Chromatogr A 2004:1054;129-141. doi:https://doi.org/10.1016/j.chroma.2004.08.152

Han X., Shen T. and Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci 2007;9:950-988. doi:10.3390/i8090950

Manach C., Scalbert A., Morand C., Rémésy C., and Jime´nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-47 [Abstract]

Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010;2:1231-1246. doi:10.3390/nu2121231

Flavonoli: definizione, struttura e cibi

Flavonoli: contenuti in breve

Che cosa sono i flavonoli?

I flavonoli sono polifenoli appartenenti alla classe dei flavonoidi.
Sono molecole prive di colore che si accumulano principalmente nei tessuti esterni ed aerei, quindi pelle e foglie, di frutta e verdura, poiché la loro biosintesi è stimolata dalla luce solare. Sono praticamente assenti nella polpa.

Sono i flavonoidi più diffusi nella frutta e verdura, dove sono presenti generalmente in concentrazioni relativamente basse.
Data la loro diffusione in natura e nei cibi consumati dall’uomo, tali molecole devono essere tenute in considerazione quando si va ad analizzare l’effetto positivo sulla salute associato al consumo di frutta e verdura. Il loro effetto è probabilmente legato alla loro capacità di:

  • agire come antiossidanti;
  • agire come agenti ad azione antiinfiammatoria;
  • agire come fattori antitumorali;
  • modulare diverse vie di segnalazione cellulare; un esempio è l’azione della quercetina, il flavonolo più diffuso, sulla attività ossidante delle MAPK indotta dallo stress.

⇑ Torna all’inizio ⇑

Struttura chimica dei flavonoli

Chimicamente si distinguono da molti altri flavonoidi in quanto presentano un doppio legame tra le posizioni 2 e 3 e un ossigeno in posizione 4 dell’anello C, al pari dei flavoni da cui però differiscono per la presenza di un gruppo ossidrilico in posizione 3. Dunque si può dire lo scheletro dei flavonoli è un 3-idrossiflavone.

Struttura di Base dei Flavonoli
Fig. 1 – 3-Idrossiflavone

Il gruppo ossidrilico in posizione 3 può legare uno zucchero ossia può essere glicosilato.
Al pari di molti altri flavonoidi, la maggior parte di essi si trova nella frutta e verdura, e nei prodotti derivati, in forma glicosilata. Lo zucchero associato ai flavonoli è spesso rappresentato dal glucosio o dal ramnosio, ma possono essere coinvolti anche altri zuccheri, come:

  • galattosio;
  • arabinosio;
  • xilosio;
  • acido glucuronico.
Flavonoli
Fig. 2 – Flavonoli

I flavonoli sono rappresentati principalmente dai glicosidi di:

  • quercetina;
  • campferolo;
  • miricetina;
  • isoramnetina.

I più diffusi sono i derivati glicosilati di quercetina e campferolo; in natura queste due molecole hanno rispettivamente almeno 279 e 347 diverse combinazioni glicosidiche.
Va infine sottolineato che il residuo di zucchero influenza la biodisponibilità del flavonolo.

⇑ Torna all’inizio ⇑

Cibi ricchi di flavonoli

Le fonti principali nell’alimentazione umana sono:

  • frutta;
  • verdura;
  • bevande quali il tè ed il vino rosso.

La fonte più ricca è rappresentata dai capperi, che ne contengono fino a 490 mg/100 g di peso fresco, ma si trovano abbondanti anche nelle cipolle, nel cavolo riccio, broccoli, porri, frutti di bosco (ad es. nei mirtilli), nell’uva e in alcune erbe e spezie, come ad es. l’aneto (Anethum graveolens). In queste fonti il loro contenuto varia da 10 a 100 mg/100 g di peso fresco.
Anche il cacao, il tè sia verde che nero, ed il vino rosso ne sono fonti. Nel vino, insieme ad altri polifenoli  come le catechine, le proantocianidine e polifenoli a basso peso molecolare, concorrono al carattere astringente della bevanda.

⇑ Torna all’inizio ⇑

I principali flavonoli nei cibi

I principali flavonoli presenti negli alimenti, in ordine decrescente di abbondanza, sono la quercetina, il kempferolo, la miricetina e la isoramnetina

⇑ Torna all’inizio ⇑

Quercetina

L’alimento più ricco di quercetina è rappresentato dai capperi, seguiti da cipolle, asparagi, lattuga e frutti di bosco; in molta altra frutta e verdura è presente in quantità minori, attorno a 0,1-5 mg/100 g di peso fresco.
Questo flavonolo è presente anche nel cacao e potrebbe essere uno dei suoi principali fattori di protezione nei confronti dell’ossidazione delle LDL.
Insieme agli isoflavoni, i glicosidi della quercetina sono i polifenoli meglio assorbiti, seguiti dai flavanoni e dalle catechine (al contrario dei derivati dell’acido gallico delle catechine che sono tra i polifenoli meno assorbiti, insieme con gli antociani e le proantocianidine).

⇑ Torna all’inizio ⇑

Campferolo

Fonti caratteristiche di campferolo sono gli ortaggi, come indivia, cavolo e spinaci, con concentrazioni di circa 0,1-26,7 mg/100 g peso fresco, e alcune spezie, come erba cipollina, dragoncello, e finocchio, con concentrazioni di circa 6,5-19 mg/100 g di peso fresco.
I frutti sono una fonte povera della molecola, con un contenuto inferiore a 0,1 mg/100 g di peso fresco.

⇑ Torna all’inizio ⇑

Miricetina

La miricetina è il terzo flavonolo più abbondante e si trova in alcune spezie, come prezzemolo, origano e finocchio con concentrazioni di circa 2-19,8 mg/100 g di peso fresco, ma anche nel tè, 0,5-1,6 mg/100 ml, e nel vino rosso, 0-9,7 mg/100 ml.
Nella frutta è presente in elevate concentrazioni solo nei frutti di bosco, mentre nella maggior parte dell’altra frutta e nella verdura è presente con un contenuto inferiore a 0,2 mg/100 g di peso fresco.

⇑ Torna all’inizio ⇑

Isoramnetina

Un quarto flavonolo, meno abbondante rispetto ai precedenti, è la isoramnetina, presente solo in alcuni alimenti come ad es. alcune spezie quali: finocchio 9,3 mg/100 g di peso fresco, erba cipollina 5,0-8,5 mg/100 g di peso fresco, dragoncello 5 mg/100 g di peso fresco.
Nella frutta e verdura è presente solo nelle mandorle, dove varia tra 1,2 e 10,3 mg/100 g di peso fresco, nelle pere e cipolle.

⇑ Torna all’inizio ⇑

Bibliografia

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Han X., Shen T. and Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci 2007;9:950-988. doi:10.3390/i8090950

Manach C., Scalbert A., Morand C., Rémésy C., and Jime´nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-47 [Abstract]

Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010;2:1231-46. doi:10.3390/nu2121231

Antociani: definizione, struttura, pH

Antociani: contenuti in breve

Che cosa sono gli antociani?

Gli antociani o antocianine sono un sottogruppo di flavonoidi, e dunque di polifenoli, che conferisce alle piante i colori caratteristici.
Sono pigmenti solubili in acqua, si trovano disciolti nella linfa vacuolare dei tessuti epidermici di fiori e frutta, e sono responsabili dei colori della maggior parte dei petali, della frutta e verdura, e di alcune varietà di cereali come il riso nero.
A loro si devono i colori rosso, rosa e dal viola al blu dei frutti di bosco, delle mele rosse, dell’uva rossa, delle ciliegie, e di molti altri frutti, della lattuga rossa, del cavolo rosso, della cipolla o delle melanzane, ma anche del vino rosso.
Insieme ai carotenoidi, sono responsabili del colore delle foglie in autunno.
Infine le antocianine concorrono ad attrarre gli animali quando il fiore è pronto per l’impollinazione o il frutto è pronto per essere mangiato.

Sono composti bioattivi presenti nei cibi di origine vegetale che hanno un duplice interesse per l’uomo:

  • tecnologico, conseguente al loro impatto sulle caratteristiche sensoriali del prodotto;
  • salutare, essendo implicati nella protezione nei confronti del rischio cardiovascolare.

in vitro, le antocianine hanno un’attività antiossidante, grazie alla loro capacità di delocalizzare gli elettroni e formare strutture di risonanza, ed un ruolo protettivo nei confronti dell’ossidazione delle LDL;

al pari di altri polifenoli, come le catechine, le proantocianidine e altri flavonoidi non colorati, possono regolare diverse vie di segnalazione coinvolte nella sopravvivenza, crescita e differenziazione della cellula.

⇑ Torna all’inizio ⇑

Struttura chimica degli antociani

La struttura chimica di base è il catione flavilio o 2-fenilbenzopirilio cui si legano gruppi idrossilici (-OH), metossilici (-OCH3) ed uno o più zuccheri.
La molecola priva di zucchero è detta antocianidina.

Antociani
Fig. 1 – Struttura di Base delle Antocianine

In base al numero e alla posizione dei gruppi idrossilici e metossilici sono state descritte varie antocianidine, e di queste, sei si trovano comunemente nella frutta e verdura:

  • pelargonidina
  • cianidina
  • delfinidina
  • petunidina
  • peonidina
  • malvidina

Le antocianine, come la maggior parte degli altri flavonoidi, sono presenti nelle piante e nei cibi derivati in forma di glicosidi, ossia legati ad una o più unità glucidiche.
I tipi più comuni di zuccheri presenti in questi pigmenti naturali sono:

Gli zuccheri sono legati principalmente in posizione C3 come 3-monoglicosidi, in C3 e C5 come diglicosidi (con le possibili forme 3-diglicoside, 3,5-diglicosidi e 3-diglicoside-5-monoglicoside).
Sono state osservate anche glicosilazioni in posizione C7, C3’ e C5’.
La struttura di queste molecole è ulteriormente complicata dal legame allo zucchero di diversi tipi di sostituenti acilici quali:

  • acidi alifatici, come l’acido acetico, malico, succinico e malonico;
  • acidi cinnamici (aromatici), come l’acido sinapico, ferulico e p-cumarico;
  • infine, si ritrovano pigmenti con sostituenti sia alifatici che aromatici.

Inoltre in alcuni antociani si osserva la presenza di diversi zuccheri acilati nella struttura; questi antociani sono talvolta definiti come poliglicosidi.

Antociani
Fig. 2 – Antocianine

Sulla base del tipo di idrossilazione, metossilazione e glicosilazione, come dei diversi sostituenti legati allo zucchero, sono state individuate oltre 500 antocianine differenti che si basano su 31 monomeri di antocianidine. Tra questi 31 monomeri:

  • il 30% deriva dalla cianidina;
  • il 22% dalla delfinidina;
  • il 18% dalla pelargonidina.

I derivati metilati delle sopracitate antocianidine, ossia peonidina, malvidina e petunidina, insieme rappresentano il 20% degli antociani.
Quindi il 90% degli antociani che si incontrano più di frequente sono relati alla cianidina, delfinidina e pelargonidina più i loro derivati metilati.

⇑ Torna all’inizio ⇑

Antociani e pH

Il colore delle antocianine dipende dal pH del vacuolo cellulare dove sono immagazzinate, variando dal:

  • rosso, in condizioni molto acide;
  • viola-blu, in condizioni di pH intermedio;
  • giallo-verde, in ambiente alcalino.

Oltre che dal pH, il colore di questi flavonoidi può essere influenzato dal grado di idrossilazione o dal tipo di metilazione degli anelli aromatici, come dal tipo di glicosilazione.
Infine il colore di certi pigmenti vegetali deriva da complessi tra antocianine, flavoni e ioni metallici.
Da notare che le antocianine sono spesso utilizzati come indicatori di pH grazie alle differenze nella struttura chimica che si verificano in risposta a cambiamenti di pH.

⇑ Torna all’inizio ⇑

Bibliografia

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

de Pascual-Teresa S., Moreno D.A. and García-Viguera C. Flavanols and anthocyanins in cardiovascular health: a review of current evidence. Int J Mol Sci 2010;11:1679-1703. doi:10.3390/ijms11041679

Escribano-Bailòn M.T., Santos-Buelga C., Rivas-Gonzalo J.C. Anthocyanins in cereals. J Chromatogr A 2004:1054;129-141. doi:10.1016/j.chroma.2004.08.152

Han X., Shen T. and Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci 2007;9:950-988. doi:10.3390/i8090950

Manach C., Scalbert A., Morand C., Rémésy C., and Jime´nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-47 [Abstract]

Ottaviani J.I., Kwik-Uribe C., Keen C.L., and Schroeter H. Intake of dietary procyanidins does not contribute to the pool of circulating flavanols in humans. Am J Clin Nutr 2012;95:851-8. doi:10.3945/​ajcn.111.028340

Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010;2:1231-1246. doi:10.3390/nu2121231

Proantocianidine: proprietà, struttura ed assorbimento

Proantocianidine: contenuti in breve

Che cosa sono le proantocianidine?

Le proantocianidine o tannini condensati, chiamate anche picnogenoli o leucocianidine, sono una sottogruppo di polifenoli, ed in particolare di flavonoidi, ampiamente distribuito nel regno vegetale, e seconde solo alla lignina come fenolo più abbondante in natura.
Sono presenti in elevata concentrazione in varie parti delle piante come i fiori, i frutti, le bacche, i semi (ad es. i semi d’uva) e la corteccia (ad es. la corteccia di pino).

Insieme agli antociani ed i loro prodotti di ossidazione, e alle catechine, sono i flavonoidi più abbondanti nella dieta dell’uomo ed è stato suggerito che costituiscano una frazione significativa dei polifenoli ingeriti nella dieta occidentale.
Dunque i tannini condensati vanno presi in considerazione quando si studia l’associazione epidemiologica tra l’assunzione di polifenoli, ed in particolare dei flavonoidi, e le malattie croniche.

⇑ Torna all’inizio ⇑

Struttura chimica delle proantocianidine

Proantocianidine
Fig. 1 – Struttura di Base delle Procianidine

Le proantocianidine hanno una struttura chimica complessa essendo oligomeri (da dimeri a pentameri) o polimeri  (sei o più unità, fino a 60) delle catechine o flavanoli, legate tra di loro da ponti carbonio-carbonio.
Possono essere costituite da sole subunità di:

  • (epi)catechina, e sono definite procianidine;
  • (epi)afzelechina, e sono definite propelargonidine;
  • <(epi)gallocatechina, e sono definite prodelfinidine.

Propelargonidine e prodelfinidine sono meno frequenti in natura e nei cibi rispetto alle procianidine.

In base ai legami che si stabiliscono tra i monomeri le proantocianidine posso avere una struttura definita:

  • di tipo B se la polimerizzazione avviene tramite legame carbonio-carbonio tra la posizione 8 dell’unità terminale e la 4 della successiva o tra le posizioni 4 e 6;
  • di tipo A, meno frequente, se i monomeri sono doppiamente legati tramite un legame etere C2-O-C7 o C2-O-C5 e un legame di tipo B.

⇑ Torna all’inizio ⇑

Procianidine

Proantocianidine
Fig. 2 – Procianidine B1-B4

I dimeri più comuni sono procianidine di tipo B, da B1 a B8, formati da catechina o epicatechina, unite da legami C4-C8, da B1 a B4, o C4-C6,da B5 a B8.

La procianidina C1 è un trimero di tipo B.

La procianidina A2 è un esempio di procianidina di tipo A.

⇑ Torna all’inizio ⇑

Assorbimento intestinale delle proantocianidine

I tannini condensati sono scarsamente assorbiti a livello intestinale e, con gli antociani ed i derivati esteri con l’acido gallico delle catechine del tè, sono i polifenoli meno ben assorbiti.
Sembra che gli oligomeri a basso peso molecolare (2-3 monomeri) possano essere assorbiti come tali mentre i polimeri non lo sono.
Nella circolazione sistemica i dimeri raggiungono concentrazioni di due ordini di grandezza inferiori rispetto a quelle delle catechine.
Le proantocianidine con un grado di polimerizzazione maggiore di tre sembra che attraversino lo stomaco e l’intestino tenue senza significative modificazioni, per poi essere catabolizzate ad opera della microflora del colon. I prodotti di degradazione includono gli acidi fenilacetico, fenilpropionico e fenilvalerico, acidi fenolici che sono stati suggeriti essere i principali metaboliti delle proantocianidine oligomeriche e polimeriche negli esseri umani sani.

⇑ Torna all’inizio ⇑

Procianidine e catechine

In passato era stato proposto che il catabolismo intestinale delle procianidine portasse alla liberazione di catechine monomeriche, contribuendo così al loro pool sistemico negli esseri umani.
In realtà è stato dimostrato che ciò non accade in quanto le procianidine non contribuiscono in maniera significativa:

  • alla concentrazione dei metaboliti delle catechine nella circolazione sistemica;
  • al totale dei metaboliti delle catechine escreti con le urine;
  • infine, non influenzano in modo significativo il profilo dei metaboliti plasmatici derivanti dall’attività della catecol-O-metiltransferasi.

Pertanto quando si vanno ad analizzare i potenziali effetti benefici sulla salute associati all’assunzione di cibi contenenti questi fitochimici, catechine e procianidine debbono essere considerate classi distinte di composti correlati.

⇑ Torna all’inizio ⇑

Bibliografia

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Gu L., Kelm M.A., Hammerstone J.F., Beecher G., Holden J., Haytowitz D., Gebhardt S., and Prior R.L. Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J Nutr 2004;134(3):613-617 [Abstract]

Han X., Shen T. and Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci 2007;9:950-988. doi:10.3390/i8090950

Manach C., Scalbert A., Morand C., Rémésy C., and Jime´nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-47 [Abstract]

Nandakumar V., Singh T., and Katiyar S.K. Multi-targeted prevention and therapy of cancer by proanthocyanidins. Cancer Lett 2008;269(2):378-387. doi:10.1016/j.canlet.2008.03.049

Ottaviani J.I., Kwik-Uribe C., Keen C.L., and Schroeter H. Intake of dietary procyanidins does not contribute to the pool of circulating flavanols in humans. Am J Clin Nutr 2012;95:851-8. doi:10.3945/ajcn.111.028340

Santos-Buelga C. and Scalbert A. Proanthocyanidins and tannin-like compounds: nature, occurrence, dietary intake and effects on nutrition and health. J Sci Food Agr 2000;80(7):1094-1117. doi:10.1002/(SICI)1097-0010(20000515)80:7<1094::AID-JSFA569>3.0.CO;2-1

Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010;2:1231-1246. doi:10.3390/nu2121231

Wang Y.,Chung S., Song W.O., and Chun O.K. Estimation of daily proanthocyanidin intake and major food sources in the U.S. diet. J Nutr 2011;141(3):447-452. doi:10.3945/jn.110.133900

Flavonoidi: definizione, struttura e classificazione

Flavonoidi: contenuti in breve

Che cosa sono i flavonoidi?

I flavonoidi sono i polifenoli più abbondanti nella dieta dell’uomo, rappresentandone circa i 2/3 di tutti i quelli assunti. Come gli altri fitochimici sono il prodotto del metabolismo secondario delle piante e, al momento, non è possibile stabilire precisamente il loro numero, anche se ne sono stati identificati oltre 4000.
Nella frutta e nella verdura si trovano generalmente in forma di glicosidi e in alcuni casi acilglicosidi, mentre meno frequentemente, ed in concentrazioni minori, in forme acilate, metilate e solfate.
Sono molecole idrosolubili e si accumula all’interno dei vacuoli cellulari.

⇑ Torna all’inizio ⇑

Struttura chimica dei flavonoidi

La loro struttura di base è costituita da uno scheletro di difenilpropano, ossia due anelli benzenici (indicati come A e B, vedi figura) collegati da una catena di tre atomi di carbonio che forma un anello piranico (anello eterociclico contenente ossigeno) chiuso con l’anello benzenico A, che è detto anello C. La loro struttura è pertanto definita anche come C6-C3-C6.

Struttura di Base dei Flavonoidi
Fig. 1 – Scheletro di Difenilpropano

Nella maggior parte dei casi l’anello B si lega all’anello C in posizione 2, ma può legarsi anche in posizione 3 o 4; questo, insieme con le caratteristiche strutturali dell’anello B e gli schemi di glicosilazione ed idrossilazione dei tre anelli, fa si che i flavonoidi siano il gruppo di fitochimici, quindi non solo di polifenoli, più ampio e diversificato presente in natura.
Le attività biologiche di questi composti, ad esempio sono dei potenti antiossidanti, dipendono sia dalle caratteristiche strutturali che dallo schema di glicosilazione.

⇑ Torna all’inizio ⇑

Classificazione dei flavonoidi

Sottogruppi di Flavonoidi
Fig. 2 – Sottogruppi di Flavonoidi

Possono essere suddivisi in diverse sottogruppi sulla base del carbonio dell’anello C su cui va a legarsi l’anello B, e del grado di insaturazione ed ossidazione dell’anello C.
I flavonoidi in cui l’anello B si lega in posizione 3 dell’anello C sono detti isoflavoni; quelli in cui l’anello B si lega in posizione 4 neoflavonoidi, mentre quelli in cui l’anello B si lega in posizione 2 a loro volta essere suddividi in sei sottogruppi sulla base delle caratteristiche strutturali dell’anello C: flavoni, flavonoli, flavanoni, flavanonoli, flavanoli o catechine ed antociani.
Infine, i flavonoidi con l’anello C aperto sono detti calconi.

  • Flavoni
    Hanno un doppio legame tra la posizione 2 e 3 ed un chetone in posizione 4 dell’anello C. La maggior parte dei flavoni della verdura e frutta presenta un gruppo idrossilico in posizione 5 dell’anello A, mentre l’idrossilazione in altre posizioni, per la maggior parte in posizione 7 dell’anello A o 3’ e 4’ dell’anello B, possono variare a seconda della classificazione tassonomica della particolare verdura o frutta.
    La glicosilazione si verifica per la maggior parte sulle posizione 5 e 7, la metilazione e l’acilazione sui gruppi idrossilici dell’anello B.
    Alcuni flavoni, come la nobiletina e la tangerina, sono polimetossilati.
  • Flavonoli
    I flavonoli rispetto ai flavoni presentano un gruppo ossidrilico in posizione 3 dell’anello C, gruppo ossidrilico che può essere anche glicosilato. Di nuovo, al pari dei flavoni, anche i flavonoli sono molto vari per quello che riguarda l’idrossilazione e la metilazione, e, considerando i vari schemi di glicosilazione, i sono forse il sottogruppo più comune ed ampio di flavonoidi nella frutta e verdura. Ad esempio, la quercetina è presente in moltissimi alimenti vegetali.
  • Flavanoni
    I flavanoni, anche detti diidroflavoni, hanno l’anello C saturo; quindi, a differenza dei flavoni, mancano del doppio legame tra le posizione 2 e 3 e questa è l’unica differenza strutturale tra i due sottogruppi di flavonoidi.I flavanoni possono essere multi-idrossilati, e diversi gruppi idrossilici possono essere metilati e/o glicosilati. Alcuni hanno modelli unici di sostituzione, ad esempio, flavanoni prenilati, furanoflavanoni, piranoflavanoni o flavanoni benzilati, dando un gran numero di derivati sostituiti.
    Negli ultimi 15 anni il numero dei flavanoni scoperti è notevolmente aumentato.
  • Flavanonoli
    I flavanonoli, anche detti diidroflavonoli, sono i 3-idrossi derivati dei flavanoni; sono un sottogruppo altamente diversificato e multisostituito.
  • Isoflavoni
    Come anticipato, gli isoflavoni sono flavonoidi in cui l’anello B si lega in posizione 3 dell’anello C. Hanno analogie strutturali con gli estrogeni, come l’estradiolo, e per questo sono anche detti fitoestrogeni.
  • Neoflavonoidi
    Nei neoflavonodi il gruppo B è legato in posizione 4 dell’anello C.
  • Flavanoli o flavan-3-oli o catechine
    I flavanoli sono detti anche flavan-3-oli poiché il gruppo ossidrilico è quasi sempre legato in posizione 3 dell’anello C; altro nome comune è catechine.
    A differenza di molti flavonoidi non presentano un doppio legame tra le posizione 2 e 3; altro carattere distintivo, ad es. rispetto ai flavanonoli, con cui condividono un ossidrile in posizione 3, è l’assenza di un carbonile, un gruppo chetonico, in posizione 4. Questa particolare struttura chimica permette ai flavanoli di avere due centri chirali nella molecola, sulle posizioni 2 e 3, quindi quattro possibili diastereoisomeri. La catechina è l’isomero con configurazione trans e la epicatechina è quello con configurazione cis. Ciascuna di queste due configurazioni ha due stereoisomeri, cioè, (+)-catechina e (-)-catechina, (+)-epicatechina e (-)-epicatechina.
    La (+)-catechina e (-)-epicatechina sono i due isomeri spesso presenti nelle piante commestibili.
    Un’altra importante caratteristica dei flavanoli, in particolare della catechina e della epicatechina, è quella di formare polimeri, detti proantocianidine o tannini condensati. Il nome “proantocianidine” deriva dal fatto che un clivaggio acido catalizzato produce antocianidine.
    Le proantocianidine in genere contengono da 2 a 60 monomeri di flavanolo (catechina o epicatechina).
    Sia i flavanoli monometrici che quelli oligomerici (da 2 a 7 monomeri) sono potenti antiossidanti.
  • Antocianidine
    Chimicamente, le antocianidine sono cationi di flavilio e per la maggior parte si trovano come sali di cloruro.
    Le antocianine o antociani sono i glicosidi delle antocianidine; lo zucchero si lega per la maggior parte dei casi in posizione 3 dell’anello C, zucchero che spesso si coniuga con acidi fenolici come l’acido ferulico.
    Sono l’unico gruppo di flavonoidi che conferisce colore ai vegetali (tutti gli altri flavonoidi sono privi di colore). Il colore degli antociani dipende dal pH e dall’acilazione o metilazione dei gruppi idrossilici sugli anelli A e B.
  • Calconi
    I calconi ed i diidrocalconi vengono considerati flavonoidi con struttura aperta; sono classificati tra i flavonoidi in quanto hanno vie di sintesi simili.

⇑ Torna all’inizio ⇑

Bibliografia

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Han X., Shen T. and Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci 2007;9:950-988. doi:10.3390/i8090950

Manach C., Scalbert A., Morand C., Rémésy C., and Jime´nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-47 [Abstract]

Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010;2:1231-1246. doi:10.3390/nu2121231

Funzioni dei carotenoidi nelle piante ed alimenti

carotenoidi nel corso dell’evoluzione, grazie alle loro proprietà chimiche e fisiche uniche, si sono dimostrati molecole estremamente versatili, essendo in grado di svolgere molte funzioni sia nelle piante che negli animali.

Carotenoidi e fotosintesi

I carotenoidi, nelle prime fasi della comparsa degli organismi unicellulari fotosintetizzanti sono probabilmente serviti per l’assorbimento dell’energia luminosa a lunghezze d’onda differenti rispetto a quelle coperte dalla clorofilla.
Dunque i carotenoidi, agendo come pigmenti fotoassorbenti accessori, hanno permesso di espandere l’intervallo di radiazione solare assorbibile e quindi utilizzabile per la fotosintesi, energia che poi trasferiscono alla clorofilla stessa.
I principali carotenoidi coinvolti nell’assorbimento della luce, che si accumulano nei tessuti verdi delle piante, sono la luteina, il beta-carotene, la violaxantina e la neoxantina, che assorbono nell’intervallo tra 400 e 500 nanometri.
Inoltre proteggono la clorofilla dalla foto-ossidazione (nell’uomo possono concorrere alla protezione dal danno foto-ossidativo causato dai raggi UV, dunque agire come foto-protettori endogeni).

Carotenoidi e colori delle foglie in autunno

Carotenoidi e Colori delle Foglie delle Piante in Autunno
Fig. 1 – Carotenoidi e Colori delle Foglie in Autunno

Il colore assunto nelle diverse stagioni dalle foglie delle piante caducifogli, verde, giallo, arancio o rosso, è dovuta alla presenza al loro interno di pigmenti naturali.
In primavera ed estate il pigmento presente in quantità maggiore nelle foglie è la clorofilla per cui il colore predominante è il verde.
Durante l’autunno il colore vira dal verde al giallo, arancio o rosso, a seconda del tipo di pianta: ciò è conseguenza del cambiamento, sia qualitativo che quantitativo, nel contenuto in pigmenti. Infatti, a seguito della diminuzione della temperatura e delle ore di luce, la produzione di clorofilla si interrompe e quella presente viene demolita in metaboliti privi di colore; in questo modo i pigmenti predominanti diventano i carotenoidi (giallo-arancio), molecole molto più stabili rispetto alla clorofilla, che quindi permangono nella foglia colorandola (non sembra siano sintetizzati de novo), e gli antociani (rosso-porpora), che a differenza dei carotenoidi non sono presenti durante la stagione di crescita ma sono sintetizzate in autunno, poco prima della caduta delle foglie. Si può quindi concludere che il colore rosso-porpora assunto dalle foglie di certi alberi non è un semplice effetto collaterale della senescenza bensì deriva da una sintesi de novo di antociani.
A seconda della prevalenza di carotenoidi o antociani il colore della foglia virerà dal verde al giallo/arancio, come nel Ginkgo biloba (giallo), o al rosso-porpora, come in alcuni aceri.

E le piante con foglie non verdi?
Il loro colore è dovuto non all’assenza di clorofilla bensì alla presenza di quantità molto elevate di altri pigmenti, in genere carotenoidi ed antociani, che “coprono” la clorofilla, determinando il colore della foglia.

Alcune funzioni degli apocarotenoidi nelle piante e negli alimenti

Questi carotenoidi ossigenati, formati da meno di 40 atomi di carbonio, svolgono molteplici funzioni nelle piante e negli animali e sono importanti anche per l’aroma ed il sapore dei cibi.
Di seguito alcune delle loro principali funzioni.

  • Hanno ruoli significativi nei segnali di risposta coinvolti nello sviluppo e nella risposta all’ambiente (come l’acido abscissico).
  • Possono fungere da segnali visivi o volatili per attirare gli agenti impollinatori.
  • Sono importanti nei meccanismi di difesa delle piante.
  • Hanno un ruolo nella regolazione dell’architettura vegetale.
  • Un apocarotenale, il trans-beta-apo-8’-carotenale, presente negli spinaci e agrumi, con una debole attività di pro-vitamina A, è utilizzato nella farmaceutica e cosmesi, ed è anche un additivo (E160e) legalizzato dalla Commissione europea per l’alimentazione umana.
  • Contribuiscono in modo importante al sapore e alla qualità nutrizionale di diversi tipi di alimenti quali frutta, tè, e vino. Due ben noti apocarotenoidi naturali, la bixina e la crocetina, hanno importanza economica come pigmenti e aromi negli alimenti.
  • Infine, una vasta gamma di apocarotenali sono prodotti da reazioni ossidative durante la lavorazione dei cibi e sono intermedi nella formazione di molecole più piccole, importanti per il colore e sapore del cibo.
Bibliografia

Archetti, M., Döring T.F., Hagen S.B., Hughes N.M., Leather S.R., Lee D.W., Lev-Yadun S., Manetas Y., Ougham H.J. Unravelling the evolution of autumn colours: an interdisciplinary approach. Trends Ecol Evol 2009;24(3):166-73 [Abstract]

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010