Tutti gli articoli di Dr. Nicola Tazzini

Gluconeogenesi

Gluconeogenesi: contenuti in breve

Che cos’è la gluconeogenesi?

La gluconeogenesi è la via metabolica che permette, anche agli organismi non fotosintetizzanti, di produrre glucosio a partire dal piruvato e da altri precursori non glucidici.
E’ presente in tutti gli animali, piante, funghi e microorganismi, con essenzialmente le stesse reazioni, che portano, da due molecole di piruvato, alla sintesi di una molecola di glucosio. Dunque è essenzialmente l’inverso della glicolisi, che invece procede dal glucosio fino al piruvato, e con essa condivide molti enzimi.

Gluconeogenesi
Fig. 1 – Gluconeogenesi e Glicolisi

La glicogenolisi è ben distinta dalla gluconeogenesi, non corrispondendo ad una sintesi de novo del monosaccaride, come si può facilmente evidenziare osservando la sua reazione complessiva:

Glicogeno o (glucosio)n → n molecole di glucosio

La discussione successiva verterà sulla gluconeogenesi che avviene negli animali superiori, ed in particolare nel fegato dei mammiferi.

⇑ Torna all’inizio ⇑

Perché la gluconeogenesi è importante?

La gluconeogenesi è una via metabolica di grande importanza per almeno due motivi.

  • Assicura il mantenimento di una adeguata concentrazione ematica di glucosio quando le riserve epatiche di glicogeno sono prossime all’esaurimento e lo zucchero non viene assunto con l’alimentazione.
    Il mantenimento della glicemia entro il range di normalità, 3,3-5,5 mmol/L (60 e i 99 mg/dL), è essenziale in quanto molte cellule e tessuti dipendono largamente o totalmente dal glucosio per soddisfare le loro richieste di ATP; tra questi i globuli rossi, i neuroni, il muscolo scheletrico quando lavora in anaerobiosi, la midollare del rene, i testicoli, la lente e la cornea dell’occhio, ed i tessuti embrionali. Considerando ad esempio il cervello, il suo fabbisogno giornaliero di glucosio è di circa 120 g, una quantità pari a:

oltre il 50% delle riserve corporee totali del monosaccaride, circa 210 g, di cui 190 g immagazzinato come glicogeno muscolare ed epatico, e 20 g in forma libera nei fluidi corporei;
circa il 75% del fabbisogno giornaliero di glucosio dell’intero organismo, quindi sui 160 g.

Nel digiuno breve, come nell’intervallo tra i pasti o durante la notte, la glicemia è mantenuta entro il range di normalità grazie alla glicogenolisi epatica e al rilascio di acidi grassi dal tessuto adiposo e corpi chetonici dal fegato. Acidi grassi e corpi chetonici, utilizzati di preferenza dal muscolo scheletrico, consentono un risparmio di glucosio che sarà disponibile per le cellule ed i tessuti che da esso dipendono. Tuttavia, dopo circa 18 ore di digiuno, le riserve di glicogeno sono prossime all’esaurimento, riserve che possono divenire insufficienti anche durante l’attività fisica intensa e prolungata. Ed è a questo punto che, se non sono assunti carboidrati con l’alimentazione, la gluconeogenesi diviene essenziale.
E, a sottolineare ulteriormente l’importanza della sintesi de novo del glucosio il fatto che  se i valori della glicemia scendono al di sotto di 2 mmol/L si verifica la perdita di coscienza.

  • L’eventuale escrezione del piruvato comporterebbe la perdita della possibilità di produrre ATP attraverso la sua ossidazione aerobica, ossia più di 10 molecole di ATP per ogni piruvato ossidato.

⇑ Torna all’inizio ⇑

Dove si verifica la gluconeogenesi?

Negli animali superiori la gluconeogenesi avviene nel fegato, nella corticale del rene e nelle cellule epiteliali dell’intestino tenue, gli enterociti.
Quantitativamente il fegato rappresenta la sede principale, producendo circa il 90% di tutto il glucosio sintetizzato, seguito dalla corticale del rene, con circa il 10%. La maggiore capacità di sintesi del fegato rispetto alla corticale del rene è dovuta solo alle sue maggiori dimensioni; se infatti si considera il rapporto peso/sintesi, la corticale del rene produce più glucosio del fegato.
A livello della corticale del rene, le cellule che portano a termine la gluconeogenesi sono quelle del tubulo prossimale, la porzione del nefrone successiva al glomerulo. Molto del glucosio prodotto nel rene viene utilizzato dalla midollare del rene stesso, mentre l’azione dell’organo sul mantenimento della omeostasi glicemica diviene più importante durante il digiuno prolungato e nell’insufficienza epatica. Va tuttavia sottolineato che il rene, essendo privo di depositi di glicogeno, può contribuire al mantenimento della glicemia solo attraverso la gluconeogenesi e non anche attraverso la glicogenolisi, come invece può fare il fegato.
Parte della via gluconeogenetica può verificarsi anche nel muscolo scheletrico e cardiaco e nel cervello, anche se a velocità estremamente ridotta. Nell’adulto il muscolo ha circa 18 volte la massa del fegato, per cui la sua sintesi di glucosio potrebbe avere una qualche importanza quantitativa. Tuttavia in questi tessuti la sintesi de novo del glucosio non porta alla sua liberazione in circolo, essendo assente la glucosio-6-fosfatasi (EC 3.1.3.9), l’enzima che catalizza l’ultima tappa della via (vedi sotto). Quindi, l’eventuale produzione di glucosio-6-fosfato, compreso quello derivante dalla glicogenolisi, non contribuirà al mantenimento della glicemia ma aiuterà solo a ripristinare le scorte del glicogeno, per la verità nel cervello piccole e limitate per lo più agli astrociti. L’unico contributo diretto al mantenimento della glicemia operato da questi tessuti, ed in particolare dal muscolo scheletrico, vista la sua grande massa, deriva dalla  piccola quota di glucosio rilasciata dall’enzima deramificante (EC 3.2.1.33) della glicogenolisi.
Per quello che riguarda la localizzazione cellulare, la maggior parte delle reazioni della gluconeogenesi avvengono nel citosol, alcune nel mitocondrio, e la tappa finale all’interno delle cisterne del reticolo endoplasmatico.

⇑ Torna all’inizio ⇑

Tappe irreversibili della gluconeogenesi

Come detto, glicolisi e gluconeogenesi sono essenzialmente una l’inverso dell’altra. E, delle dieci reazioni che costituiscono la gluconeogenesi, ben 7 sono in comune con la glicolisi. Si tratta di reazioni caratterizzate da un ΔG prossimo allo zero, per cui facilmente reversibili. Ma nelle normali condizioni cellulari, il ΔG complessivo della glicolisi è pari a circa -63 kJ/mole (-15 kcal/mole) e quello della gluconeogenesi a circa -16 kJ/mole (-3,83 kcal/mole), ossia si tratta di processi irreversibili.
Nel caso della glicolisi l’irreversibilità è conseguenza di tre reazioni fortemente esoergoniche, che non potranno essere utilizzate nella gluconeogenesi, e di seguito elencate.

  • La fosforilazione del glucosio a glucosio-6 fosfato, catalizzata dalla esochinasi (EC 2.7.1.1) o dalla glucochinasi (EC 2.7.1.2).
    ΔG = -33,4 kJ/mole (-8 kcal/mole)
    ΔG’° = -16,7 kJ/mole (-4 kcal/mole)
  • La fosforilazione del fruttosio-6-fosfato a fruttosio-1,6-bisfosfato, catalizzata dalla fosfofruttochinasi-1 o PFK-1 (EC 2.7.1.11).
    ΔG = -22,2 kJ/mole (-5,3 kcal/mole)
    ΔG’° = -14,2 kJ/mole (-3,4 kcal/mole)
  • La conversione del fosfoenolpiruvato o PEP, acronimo dell’inglese phosphoenolpyruvate, in piruvato, catalizzata dalla piruvato chinasi (EC 2.7.1.40).
    ΔG = -16,7 kJ/mole (-4,0 kcal/mole)
    ΔG’° = -31,4 kJ/mole (-7,5 kcal/mole)

Nella gluconeogenesi queste tre tappe unidirezionali sono superate grazie ad enzimi specifici che catalizzano passaggi irreversibili nella direzione della sintesi del glucosio. In questo modo è assicurata l’irreversibilità dell’intera via metabolica.
Di seguito sono analizzate tali reazioni.

⇑ Torna all’inizio ⇑

Conversione del piruvato in fosfoenolpiruvato

Il primo passaggio della gluconeogenesi che by-passa una tappa irreversibile della glicolisi, nello specifico quella catalizzata dalla piruvato chinasi, è la conversione del piruvato in fosfoenolpiruvato.
La sintesi del fosfoenolpiruvato è ottenuta attraverso una sequenza di due reazioni catalizzate nell’ordine dagli enzimi:

  • piruvato carbossilasi (EC 6.4.1.1);
  • fosfoenolpiruvato carbossichinasi o PEP carbossichinasi (EC 4.1.1.32).

Piruvato → Ossalacetato → Fosfoenolpiruvato

Gluconeogenesi
Fig. 2 – Fosfoenolpiruvato

La piruvato carbossilasi catalizza la carbossilazione del piruvato in ossalacetato, con consumo di una molecola di ATP. L’enzima richiede la presenza di ioni manganese o magnesio.

Piruvato + HCO3 + ATP → Ossalacetato + ADP + Pi

L’enzima, scoperto nel 1960 da Merton Utter, è una proteina mitocondriale formata da quattro subunità identiche, ognuna dotata di attività catalitica. Le subunità hanno come coenzima la biotina, legata attraverso legame ammidico al gruppo amminico ε di un residuo di lisina, e la cui funzione è quella di trasportatore di CO2 attivata nel corso della reazione enzimatica. In ogni subunità è presente anche un sito di legame per l’acetil-CoA.
Va notato che la reazione catalizzata dalla piruvato carbossilasi, portando alla produzione di ossalacetato, fornisce intermedi anche al ciclo dell’acido citrico o di Krebs.
La fosfoenolpiruvato carbossichinasi è presente, all’incirca nelle stesse quantità, sia nel mitocondrio che nel citosol dell’epatocita. Le due forme isoenzimatiche sono codificate da distinti geni nucleari.
L’enzima catalizza la decarbossilazione e fosforilazione dell’ossalacetato a dare fosfoenolpiruvato, in una reazione in cui il GTP funge da donatore di un gruppo fosfato, e richiede la presenza sia di ioni manganese che magnesio. La reazione nelle normali condizioni cellulari è reversibile.

Ossalacetato + GTP ⇄ PEP + CO2 + GDP

Nella reazione la CO2 aggiunta nella tappa catalizzata dalla piruvato carbossilasi viene rimossa. Nella reazione la CO2 aggiunta nella tappa catalizzata dalla piruvato carbossilasi viene rimossa. La sequenza di carbossilazione e decarbossilazione è un modo per “attivare” il piruvato, poiché la decarbossilazione dell’ossalacetato facilita, rende termodinamicamente possibile la formazione del fosfoenolpiruvato.
Più in generale le sequenze carbossilazione-decarbossilazione sono utilizzate per favorire reazioni che altrimenti sarebbero fortemente endoergoniche, e sono utilizzate anche nel ciclo dell’acido citrico, nella via dei pentoso fosfati, detta via dell’esoso monofosfato, e nella sintesi degli acidi grassi.
Prima della nascita i livelli di PEP carbossichinasi sono molto bassi, mentre, poche ore dopo il parto la sua attività aumenta di diverse volte. Questo è il motivo per cui la gluconeogenesi è attiva solo dopo la nascita.

La somma delle reazioni catalizzate dalla piruvato carbossilasi e dalla fosfoenolpiruvato carbossichinasi è:

Piruvato + ATP + GTP + HCO3 → PEP + ADP + GDP + Pi + CO2

Il ΔG’° della reazione è pari a  0,9 kJ/mole (0,2 kcal/mole), mentre la variazione di energia libera standard associata alla formazione di piruvato dal fosfoenolpiruvato per semplice inversione della reazione catalizzata dalla piruvato chinasi è di + 31,4 kJ/mole (7,5 kcal/mole).
Sebbene il ΔG’° dei due passaggi che portano alla formazione di fosfoenolpiruvato dal piruvato sia leggermente positivo, il ΔG calcolato dalle concentrazioni intracellulari degli intermedi è molto negativo, -25 kJ/mole (-6 kcal/mole), grazie al rapido consumo del fosfoenolpiruvato in altre reazioni, il che mantiene la sua concentrazione molto bassa. Quindi, nelle condizioni esistenti nella cellula la suddetta sintesi del PEP dal piruvato è un processo irreversibile.
Particolarità della sintesi del fosfoenolpiruvato dal piruvato è che la via seguita dipende dal precursore prevalente: piruvato o alanina, oppure il lattato.

⇑ Torna all’inizio ⇑

Substrato prevalente piruvato o alanina

Gluconeogenesi
Fig. 3 – Conversione del Piruvato in PEP

I passaggi di seguito descritti prevalgono quando i substrati gluconeogenetici prevalenti sono piruvato o alanina.
La piruvato carbossilasi è un enzima mitocondriale, per cui il piruvato dovrà essere trasportato dal citosol nell’organello. Ciò avviene grazie a due trasportatori presenti sulla membrana mitocondriale interna, indicati come MPC1 and MPC2, che, associandosi, formano un eteropolimero che facilita il passaggio della molecola.
Il piruvato può anche essere prodotto direttamente all’interno del mitocondrio dall’alanina per transaminazione, nella reazione catalizzata dalla alanina aminotransferasi (EC 2.6.1.2).
Poiché gli enzimi che intervengono nelle tappe successive della gluconeogenesi, fino alla formazione del glucosio-6-fosfato, sono citosolici, l’ossalacetato prodotto nei mitocondri dovrà essere trasportato nel citosol. La membrana mitocondriale interna è però priva di trasportatori per l’ossalacetato. Il suo passaggio nel citosol avviene a seguito della sua riduzione a malato, che al contrario può attraversare la membrana mitocondriale interna. La reazione è catalizzata dalla malato deidrogenasi mitocondriale (EC 1.1.1.37), un enzima che interviene anche nel ciclo dell’acido citrico dove però il flusso dei metaboliti procede in direzione opposta. Nella reazione il NADH viene ossidato a NAD+.

Ossalacetato + NADH + H+ ⇄ Malato + NAD+

Sebbene ΔG°’ della reazione sia piuttosto elevato, il ΔG calcolato sulla base della concentrazione intracellulare dell’ossalacetato, molto bassa, è prossimo allo zero per cui la reazione è facilmente reversibile.
Il malato prodotto attraversa la membrana mitocondriale interna grazie ad un componente dello shuttle del malato-aspartato, il trasportatore malato-α-chetoglutarato. Una volta nel citosol il malato è riossidato a ossalacetato nella reazione catalizzata dalla malato deidrogenasi citosolica, con produzione di NADH.

Malato + NAD+ → Ossalacetato + NADH + H+

Nota: lo shuttle del malato-aspartato è il più attivo nel trasporto degli equivalenti riducenti del NADH dal citosol all’interno del mitocondrio, ed è presente nei mitocondri del fegato, rene, e cuore.
Grazie a questa reazione equivalenti riducenti mitocondriali, in forma di NADH, sono trasferiti nel citosol. Tale trasferimento è necessario per il proseguimento della gluconeogenesi, in quanto nel citosol il NADH, utilizzato nella reazione catalizzata dalla gliceraldeide-3-fosfato deidrogenasi, è presente in bassa concentrazione, con un rapporto [NADH]/[NAD+] pari a 8 x 10-4, circa 100000 volte più basso di quello osservato nei mitocondri.
Infine l’ossalacetato viene convertito in fosfoenolpiruvato nella reazione catalizzata dalla PEP carbossichinasi.

⇑ Torna all’inizio ⇑

Substrato prevalente lattato

Il lattato è un importante precursore gluconeogenico. Esempi di cellule e tessuti che lo producono in grande quantità sono i globuli rossi, che, completamente dipendenti dalla glicolisi anaerobica, lo producono continuamente, ed il muscolo scheletrico in forte attività, quando la velocità della glicolisi supera la velocità del ciclo dell’acido citrico e della fosforilazione ossidativa.
Quando il lattato è il precursore gluconeogenico prevalente la sintesi del PEP segue una via differente rispetto a quanto visto in precedenza (vedi fig. 3).
Nel citosol dell’epatocita, dove come detto la concentrazione del NAD+ è elevata, il lattato viene ridotto a piruvato nella reazione catalizzata dall’isoenzima epatico della lattico deidrogenasi. Nella reazione il NAD+ viene ridotto a NADH.

Lattato + NAD+ → Piruvato + NADH + H+

La produzione citosolica di NADH rende non necessaria l’esportazione di equivalenti riducenti dal mitocondrio (vedi sopra).
Il piruvato passa nella matrice mitocondriale per essere convertito in ossalacetato nella reazione catalizzata dalla piruvato carbossilasi. Nel mitocondrio l’ossalacetato è convertito in fosfoenolpiruvato nella reazione catalizzata dall’isoenzima mitocondriale della piruvato carbossilasi, che, a mezzo di un trasportatore anionico della membrana mitocondriale interna, esce dal mitocondrio per continuare nella via gluconeogenetica.

Nota: la sintesi del glucosio dal lattato può essere considerata anche come una parte del “ramo epatico” del ciclo di Cori.

⇑ Torna all’inizio ⇑

Conversione del fruttosio-1,6-bisfosfato in fruttosio-6-fosfato

Il secondo passaggio della gluconeogenesi che supera una reazione irreversibile della via glicolitica, quella catalizzata dalla  PFK-1, è la defosforilazione del fruttosio-1,6-bisfosfato a fruttosio-6-fosfato.
La reazione, catalizzata dalla fruttosio-1,6-bisfosfatasi o FBPasi-1 (EC 3.1.3.11), enzima citosolico e Mg2+ dipendente, comporta l’idrolisi del fosfato sul C-1, senza alcuna produzione di ATP.

Fruttosio-1,6-bisfosfato + H2O → Fruttosio-6-fosfato + Pi

Il ΔG°’ della reazione è pari a16,3 kJ/mol (-3,9 kcal/mol), dunque una reazione irreversibile.

⇑ Torna all’inizio ⇑

Conversione del glucosio-6-fosfato a glucosio

Il terzo passaggio esclusivo della gluconeogenesi permette di superare la reazione della glicolisi catalizzata dalla esochinasi o dalla glucochinasi. Nello specifico si tratta della defosforilazione del glucosio-6-fosfato a glucosio catalizzata dall’unità catalitica della glucosio-6-fosfatasi, un complesso proteico presente nella membrana del reticolo endoplasmatico degli epatociti, enterociti e cellule del tubulo prossimale del rene. La glucosio-6-fosfatasi è composta da una subunità catalitica dotata di attività fosfatasica e un trasportatore bidirezionale specifico per il glucosio-6-fosfato detto glucosio-6-fosfato traslocasi o T1.
La subunità catalitica della glucosio-6-fosfatasi presenta il sito attivo rivolto verso la superficie luminale dell’organello: quindi l’enzima catalizza una idrolisi intraluminale del substrato. Il glucosio-6-fosfato, sia quello derivante dalla gluconeogenesi, rilasciato dalla reazione catalizzata dalla glucosio-6-fosfato isomerasi o fosfoglucosio isomerasi (EC 5.3.1.9), che dalla glicogenolisi, rilasciato dalla reazione catalizzata dalla fosfoglucomutasi (EC 5.4.2.2), è prodotto nel citosol, e dovrà entrare nel lume del reticolo endoplasmatico per essere defosforilato. Il suo passaggio è operato dalla glucosio-6-fosfato traslocasi.

La subunità catalitica della glucosio-6-fosfatasi, un enzima Mg2+-dipendente, catalizza la reazione corrisponde all’ultima tappa sia della gluconeogenesi che della glicogenolisi. E, al pari della reazione che porta alla sintesi del fruttosio-6-fosfato, anche questa è una semplice idrolisi di un estere fosforico.

Glucosio-6-fosfato + H2O → Glucosio + Pi

Va inoltre sottolineato che, grazie all’orientamento del sito attivo, la cellula separa questa reazione dal citosol, e dunque dalla glicolisi, che verrebbe bloccata dall’azione dell’enzima sul glucosio-6-fosfato.
Il ΔG°’ della reazione è pari a 13,8 kJ/mol (-3,3 kcal/mol), dunque una reazione irreversibile. Se invece la reazione fosse l’inverso di quella catalizzata dalla esochinasi/glucochinasi, comporterebbe il trasferimento di un gruppo fosforico all’ADP dal glucosio-6-fosfato, una reazione con ΔG pari a +33,4 kJ/mole (+8 kcal/mol), quindi fortemente endoergonica. Analoghe considerazioni possono essere estese alla reazione catalizzata dalla FBPasi-1.

Sembra che il glucosio ed il gruppo Pi prodotti siano trasportati nel citosol da due distinti trasportatori, indicati rispettivamente come T2 e T3, quest’ultimo un trasportatore anionico.
Infine, grazie al trasportatore di membrana GLUT2, il glucosio potrà lasciare l’epatocita ed entrare in circolo per essere trasportato ai tessuti che lo richiedano. Come accennato in precedenza invece, il glucosio prodotto nel rene, in condizioni di normale efficienza epatica, viene utilizzato per la maggior parte dalla midollare del rene stesso.

⇑ Torna all’inizio ⇑

La gluconeogenesi: energeticamente costosa

Al pari di quanto accade nella glicolisi, sono le tappe irreversibili della gluconeogenesi le responsabili del consumo della maggior parte dell’energia necessaria al processo.
Sono consumati sei legami fosforici ad alta energia, due forniti dal GTP e quattro dall’ATP, cui vanno aggiunte due molecole di NADH per la  riduzione di altrettante molecole di 1,3-bisfosfoglicerato nella reazione catalizzata dalla gliceraldeide-3-fosfato deidrogenasi. Il consumo dei due NADH comporta la mancata produzione di 5 molecole di ATP che sarebbero potute essere sintetizzate nel caso in cui gli elettroni del coenzima ridotto fossero stati utilizzati per la sintesi di ATP nel mitocondrio attraverso la fosforilazione ossidativa.
Anche da queste considerazioni prettamente energetiche emerge che la gluconeogenesi non è semplicemente l’inverso della glicolisi, nel qual caso necessiterebbe del consumo di sole due molecole di ATP, come si evince dalla equazione glicolitica complessiva.

Glucosio + 2 ADP + 2 Pi + 2 NAD+ → 2 Piruvato + 2 ATP + 2 NADH + 2 H+ + 2 H2O

Per la gluconeogenesi invece:

2 Piruvato + 4 ATP + 2 GTP + 2 NADH + 2 H+ + 4 H2O → Glucosio + 4 ADP + 2 GDP + 6 Pi + 2 NAD+

Almeno nel fegato, l’ATP necessario a sostenere la gluconeogenesi deriva di solito dall’ossidazione degli acidi grassi, o dall’ossidazione degli scheletri carboniosi degli aminoacidi, a seconda del “carburante” disponibile.

⇑ Torna all’inizio ⇑

Regolazione coordinata della glicolisi e della gluconeogenesi

Se la glicolisi e la gluconeogenesi procedessero simultaneamente ad alta velocità nella stessa cellula, ne risulterebbe solo il consumo di ATP e la produzione di calore, in particolare in corrispondenza delle tappe irreversibili dei due processi, e nulla di più.
Ad esempio, considerando PFK-1 e FBPasi-1:

ATP + Fruttosio-6-fosfato → ADP + Fruttosio-1,6-bisfosfato

Fruttosio 1,6-bisfosfato + H2O → Fruttosio 6-fosfato + Pi

E, dalla somma delle due reazioni:

ATP + H2O → ADP + Pi + Calore

Quando reazioni contrapposte di questo tipo procedono simultaneamente si parla di ciclo futile o ciclo del substrato. E’ una situazione che apparentemente sembra senza benefici, ma che in realtà permette il controllo della direzione netta del flusso metabolico. Infatti un ciclo del substrato coinvolge enzimi differenti, almeno due, la cui attività può essere regolata separatamente, cosa che non potrebbe accadere nel caso di un solo enzima che operasse in entrambe le direzioni.
La contemporanea attività ad alta velocità di enzimi che catalizzano reazioni contrapposte è evitata grazie alla controllo dell’attività degli enzimi stessi, che può avvenire mediante:

  • meccanismi allosterici;
  • modificazioni covalenti, in particolare fosforilazioni e defosforilazioni;
  • modificazioni nella concentrazione degli enzimi coinvolti, conseguenti a variazioni del rapporto tra la loro sintesi e degradazione.

I meccanismi allosterici sono molto rapidi e istantaneamente reversibili, avvenendo in un arco temporale di millisecondi. Gli altri, innescati da segnali che provengono dall’esterno della cellula e trasportati da ormoni quali insulina, glucagone, o adrenalina, richiedono tempi più lunghi, dai secondi ai minuti per le modificazioni covalenti, e fin’anche ad ore per le modificazioni della concentrazione degli enzimi.
Grazie a questi meccanismi regolatori è possibile ottenere una regolazione coordinata delle due vie, tale da assicurare che quando il flusso di piruvato procede attraverso la gluconeogenesi, il flusso del glucosio attraverso la glicolisi rallenta, e viceversa.

⇑ Torna all’inizio ⇑

La gluconeogenesi è regolata a livello di diversi passaggi

La regolazione della gluconeogenesi e della glicolisi avviene attraverso controlli esercitati sugli enzimi specifici delle singole vie, e non su quelli comuni.
Mentre i principali punti di regolazione della glicolisi sono le reazioni catalizzate dagli enzimi PFK-1 e piruvato chinasi, i principali punti di regolazione della via gluconeogenetica sono le reazioni catalizzate dagli enzimi fruttosio-1,6-bisfosfatasi e piruvato carbossilasi. Anche gli altri due enzimi esclusivi della via gluconeogenetica, glucosio-6-fosfatasi e PEP carbossichinasi, sono soggetti a regolazione ma solo a livello trascrizionale.

⇑ Torna all’inizio ⇑

Piruvato carbossilasi

Gluconeogenesi
Fig. 4- Due Destini Alternativi del Piruvato

Nel mitocondrio il piruvato può essere convertito in:

    • acetil-CoA, nella reazione catalizzata dal complesso della piruvato deidrogenasi, che lega la glicolisi al ciclo di Krebs;
    • ossalacetato, nella reazione catalizzata dalla privato carbossilasi, l’enzima che catalizza la prima tappa della gluconeogenesi.

Il destino metabolico del piruvato dipende dai livelli dell’acetil-CoA e dunque dalla disponibilità di acidi grassi nel mitocondrio.
Quando gli acidi grassi sono disponibili, la loro β-ossidazione porta alla liberazione di molecole di acetil-CoA, che entrano nel ciclo di Krebs per dar luogo alla formazione di GTP e NADH. Una volta che i fabbisogni energetici della cellula sono soddisfatti, la fosforilazione ossidativa rallenta, il rapporto NADH/NAD+ cresce, il NADH inibisce il ciclo dell’acido citrico e si verifica un accumulo di acetil-CoA nella matrice mitocondriale.
L’acetil-CoA è un effettore allosterico positivo della piruvato carbossilasi ed un effettore allosterico negativo della piruvato chinasi. Inoltre inibisce la piruvato deidrogenasi sia attraverso una inibizione da prodotto finale che mediante la sua fosforilazione, a seguito dell’attivazione di una specifica chinasi.
Dunque, quando la carica energetica della cellula è alta, quello che accade è che la formazione di acetil-CoA dal piruvato è rallentata, mentre viene stimolata la conversione del piruvato in glucosio. L’acetil-CoA è quindi un segnale metabolico che indica che un’ulteriore ossidazione del glucosio a scopo energetico non è necessaria e che i metaboliti carboniosi possono essere utilizzati per la sintesi ed il deposito di glucosio.
Viceversa, quando i livelli di acetil-CoA si riducono, l’attività della piruvato chinasi e piruvato deidrogenasi aumentano, e quindi anche il flusso di metaboliti attraverso il ciclo di Krebs, il tutto per rifornire di energia la cellula.
Si potrebbe riassumere dicendo che la piruvato carbossilasi è attiva quando la carica energetica della cellula è alta e che il primo punto di controllo della gluconeogenesi determina quello che sarà il destino del piruvato nel mitocondrio.

⇑ Torna all’inizio ⇑

Fruttosio-1,6-bisfosfatasi

Il secondo punto principale di controllo della gluconeogenesi è rappresentato dalla reazione catalizzata dalla fruttosio-1,6-bisfosfatasi. L’enzima è inibito allostericamente dall’AMP. Quindi quando la concentrazione dell’AMP è alta, e di conseguenza quella dell’ATP è bassa, la gluconeogenesi rallenta. Ossia, come visto in precedenza, l’enzima è attivo quando la carica energetica della cellula è adeguata a sostenere la sintesi de novo del glucosio.
Di contro la PFK-1, l’enzima glicolitico corrispondente, è stimolata allostericamente dall’AMP e dall’ADP ed inibita dall’ATP e dal citrato, quest’ultimo derivante dalla condensazione tra l’acetil-CoA e l’ossalacetato.

Gluconeogenesi
Fig. 5 – Regolazione della FBPasi-1 e della PFK-1

Quindi riassumendo:

  • quando la concentrazione dell’AMP è alta la gluconeogenesi rallenta, mentre la glicolisi accelera;
  • quando la concentrazione dell’ATP è elevata, e quindi è bassa quella di ADP e AMP, o quando l’acetil-CoA o il citrato sono presenti in concentrazioni adeguate, viene promossa la gluconeogenesi mentre rallenta la glicolisi.
    L’aumento della concentrazione del citrato segnala che l’attività del ciclo dell’acido citrico può rallentare; in questo modo il piruvato potrà essere utilizzato per la sintesi del glucosio.

⇑ Torna all’inizio ⇑

Fruttosio-1,6-bisfosfatasi, PFK-1 e fruttosio-2,6-bisfosfato
Gluconeogenesi
Fig. 6 – Fruttosio-2,6-bisfosfato

Il fegato ha un ruolo centrale nel mantenimento della glicemia a valori costanti: questo richiede la presenza di meccanismi regolatori che coordinino il consumo e la produzione del glucosio. Due sono gli ormoni principalmente coinvolti: il glucagone e l’insulina.
Il glucagone, rilasciato in circolo quando la glicemia scende, segnala al fegato di ridurre il suo consumo di glucosio e di aumentarne la produzione de novo ed il rilascio dal glicogeno.
L’azione degli ormoni suddetti è mediata da un effettore allosterico della PFK-1 e della fruttosio-1,6-bisfosfatasi: il fruttosio-2,6-bisfosfato, una molecola strutturalmente correlata al fruttosio-1,6-bisfosfato ma che non è ne un intermedio della glicolisi nel della gluconeogenesi. La molecola fu scoperta nel 1980 da Emile Van Schaftingen and Henri-Gery Hers come un potente stimolatore della PFK-1; l’anno successive gli stessi ricercatori dimostrarono che è anche un potente inibitore dalla fruttosio-1,6-bisfosfatasi.
A seguito del legame allo specifico sito allosterico sulla PFK-1, il fruttosio-2,6-bisfosfato svolge un duplice effetto: riduce l’affinità della proteina per i suoi inibitori allosterici ATP e citrato e ne aumenta l’affinità per il fruttosio-6-fosfato, il suo substrato. La PFK-1, in assenza di fruttosio-2,6-bisfosfato, e in presenza di concentrazioni fisiologiche di ATP, fruttosio-6-fosfato, e dei suoi effettori allosterici AMP, ATP e citrato, è praticamente inattiva. La presenza di fruttosio-2,6-bisfosfato ha invece l’effetto di attivare l’enzima quindi stimolare la glicolisi nell’epatocita. Nel contempo la molecola rallenta la gluconeogenesi, inibendo la fruttosio-1,6-bisfosfatasi, anche in assenza di AMP. Tuttavia gli effetti di AMP e fruttosio-2,6-bisfosfato sull’inibizione di FBPasi-1 sono sinergici.

Gluconeogenesi
Fig. 7 – Ruolo del Fruttosio-2,6-bisfosfato nella Regolazione della Glicolisi e Gluconeogenesi

La concentrazione di fruttosio-2,6-bisfosfato è regolata dalle velocità relative della sua sintesi e degradazione. Viene sintetizzato a partire dal fruttosio-6-fosfato nella reazione catalizzata dalla fosfofruttochinasi 2 o PFK-2 (EC 2.7.1.105), ed idrolizzato a fruttosio-6-fosfato nella reazione catalizzata dalla fruttosio-2,6-bisfosfatasi o FBPasi-2 (EC 3.1.3.46). Le due attività enzimatiche sono presenti su una stessa proteina, che dunque è un enzima bifunzionale, anche detto enzima tandem, e nel fegato sono regolate dall’insulina e dal glucagone, nel modo di seguito descritto.

  • Il glucagone, a seguito del legame allo specifico recettore di membrana, stimola la adenilato ciclasi (EC 4.6.1.1) presente sulla membrana plasmatica a produrre 3’-5’ AMP ciclico o cAMP, che, a seguito del legame alla protein chinasi cAMP-dipendente o protein chinasi A o PKA (EC 2.7.11.11), la attiva. La chinasi attivata catalizza la fosforilazione, a spese di una molecola di ATP, di uno specifico residuo di serina  (Ser32) di PFK-2/FBPasi-2. La fosforilazione comporta un aumento dell’attività fosfatasica a spese di quella chinasica, che si riduce in conseguenza di un aumento della Km per il fruttosio-6-fosfato. Tutto ciò porta ad una riduzione dei livelli di fruttosio-2,6-bisfosfato, con conseguente stimolazione della gluconeogenesi ed inibizione della glicolisi. Quindi, in risposta al segnale trasportato dal glucagone, aumenta la produzione epatica di glucosio attraverso la gluconeogenesi, il che rende l’organo capace di contrastare la riduzione della glicemia segnalata dall’ormone.
    Nota: il glucagone, al pari dell’adrenalina, stimola la gluconeogenesi in parte anche aumentando la disponibilità di substrati quali il glicerolo e gli aminoacidi.
  • L’insulina, a seguito del legame agli specifici recettori di membrana dell’epatocita, va ad attivare una protein fosfatasi, la fosfoprotein fosfatasi 2A che catalizza la rimozione del gruppo fosforico dalla PFK-2/FBPasi-2, attivando così la PFK-2 e riducendo l’attività della FBPasi-2. (Nel contempo stimola anche una cAMP fosfodiesterasi che idrolizza il cAMP ad AMP). Il risultato è l’aumento dei livelli intracellulari di fruttosio-2,6-bisfosfato e la conseguente inibizione della gluconeogenesi ed attivazione della glicolisi.
    Inoltre il fruttosio-6-fosfato inibisce allostericamente la FBPasi-2 mentre attiva la PFK-2. Riguardo l’attività dell’enzima bifunzionale PFK-2/FBPasi-2 va sottolineato che entrambe le attività sono inibite dai rispettivi prodotti di reazione, e tuttavia i fattori predominanti sono la concentrazione del fruttosio-6-fosfato e lo stato di fosforilazione dell’enzima stesso.

⇑ Torna all’inizio ⇑

Glucosio-6-fosfatasi

A differenza della piruvato carbossilasi e della fruttosio-1,6-bisfosfatasi , la subunità catalitica della glucosio-6-fosfatasi non è soggetta a regolazione allosterica o covalente, mentre viene regolata a livello trascrizionale. La bassa glicemia ed il glucagone, dunque fattori che determinano una maggiore produzione di glucosio, ed i glucocorticoidi ne stimolano la sintesi, che al contrario è inibita dall’insulina.
Inoltre la sua Km per il glucosio-6-fosfato è decisamente più alta rispetto al normale intervallo di concentrazione della molecola stessa. Ne risulta che l’attività dell’enzima mostra una dipendenza quasi lineare rispetto alla concentrazione del substrato. Per questo si dice che l’enzima è sotto controllo da parte della concentrazione del substrato.

⇑ Torna all’inizio ⇑

PEP carbossichinasi

La regolazione dell’enzima avviene principalmente a livello della sua sintesi e demolizione. Ad esempio elevati livelli di glucagone o il digiuno ne aumentano la produzione, a seguito della stabilizzazione del suo mRNA e dell’aumento della sua velocità di trascrizione. Glicemie elevate o l’insulina hanno effetto opposto.

⇑ Torna all’inizio ⇑

Xilulosio-5-fosfato

Anche un altro meccanismo regolatorio scoperto di recente, attraverso l’azione dello xilulosio-5-fosfato, stimola la glicolisi ed inibisce la gluconeogenesi, intervenendo nel controllo della concentrazione del fruttosio-2,6-bisfosfato nell’epatocita.

Gluconeogenesi
Fig. 8 – Xilulosio-5-fosfato

Quando la concentrazione ematica del glucosio aumenta, come dopo un pasto ricco di carboidrati, nel fegato si verifica l’attivazione della glicolisi e della via dell’esoso monofosfato. In quest’ultima via metabolica viene prodotto anche xilulosio-5-fosfato che è in grado di attivare la protein fosfatasi 2A. Ciò porta alla defosforilazione della PFK-2/FBPasi-2, inibendo così la FBPasi-2 e stimolando la PFK-2. Ne risulta un aumento della concentrazione del fruttosio-2,6-bisfosfato, e quindi l’inibizione della gluconeogenesi e la stimolazione della glicolisi, con conseguente aumento della produzione di acetil-CoA, il principale substrato per la sintesi dei lipidi. Il concomitante aumento del flusso attraverso la via dell’esoso monofosfato produce NADPH, fonte di elettroni per la sintesi dei lipidi. Infine, la protein fosfatasi 2A defosforila anche ChREBP, acronimo dell’inglese carbohydrate-responsive element-binding protein, un fattore di trascrizione che attiva l’espressione dei geni epatici per la sintesi dei lipidi. Quindi, in risposta ad un aumento della glicemia, a livello epatico sarà stimolata la sintesi dei lipidi.
Risulta dunque evidente che lo xilulosio-5-fosfato è un regolatore chiave del metabolismo sia dei carboidrati che dei grassi.

⇑ Torna all’inizio ⇑

Precursori della gluconeogenesi

Oltre al piruvato, i principali precursori gluconeogenici sono il lattato, di cui si è parlato in precedenza, il glicerolo, la maggior parte degli aminoacidi, e comunque qualunque composto che possa essere convertito in piruvato od ossalacetato.

⇑ Torna all’inizio ⇑

Glicerolo

Il glicerolo deriva dall’idrolisi dei trigliceridi nel tessuto adiposo e dei glicerofosfolipidi. Con l’esclusione del propionil-Coa (vedi sotto), è l’unica parte delle molecole dei lipidi che negli animali possa essere utilizzata per la sintesi de novo del glucosio.
Il suo punto di ingresso nella gluconeogenesi, o nella glicolisi, a seconda delle condizioni energetiche in cui si trova la cellula, è rappresentato dal diidrossiacetone fosfato, la cui sintesi avviene in due passaggi.

Gluconeogenesi
Fig. 9 – Conversione del Glicerolo in Diidrossiacetone Fosfato

Nel primo il glicerolo è fosforilato a glicerolo-3-fosfato, nella reazione catalizzata dalla glicerolo chinasi (EC 2.7.1.30). La reazione consuma una molecola di ATP. L’enzima assente negli adipociti, ma presente nel fegato. Ciò significa che il glicerolo dovrà raggiungere il fegato prima di essere ulteriormente metabolizzato.
Il glicerolo-3-fosfato viene quindi ossidato a diidrossiacetone fosfato, nella reazione catalizzata dalla glicerolo-3-fosfato deidrogenasi (EC 1.1.1.8). Nella reazione il NAD+ viene ridotto a NADH.
Durante il digiuno prolungato il glicerolo è il principale precursore gluconeogenetico, essendo responsabile  della produzione di circa il 20% del glucosio.

⇑ Torna all’inizio ⇑

Aminoacidi glucogenici

Acido piruvico e ossalacetato rappresentano i punti di ingresso per gli aminoacidi glucogenici, ossia quelli il cui scheletro carbonioso o parte di esso può essere utilizzato per la sintesi de novo di glucosio.
Gli aminoacidi derivano dalla demolizione delle proteine, sia di origine alimentare che endogena, come quelle del muscolo scheletrico nel corso del digiuno o dell’attività fisica intensa e prolungata.
I processi catabolici a carico di ognuno dei venti aminoacidi che compongono le proteine convergono verso la sintesi di sette prodotti principali: acetil-CoA, acetoacetil-CoA, α-chetoglutarato, succinil-CoA, fumarato, ossalacetato e piruvato.
Con l’esclusione di acetil-CoA e acetoacetil-CoA, le altre cinque molecole possono essere utilizzate per la sintesi del glucosio; quindi gli aminoacidi glucogenici possono essere definiti anche come quelli il cui scheletro carbonioso, in parte o in toto, può essere convertito in una o più delle suddette molecole.
Di seguito sono elencati gli aminoacidi glucogenici con i rispettivi punti di ingresso.

  • Piruvato: alanina, cisteina, glicina, serina, treonina e triptofano.
  • Ossalacetato: aspartato e asparagina.
  • α-Chetoglutarato: glutammato, arginina, glutammina, istidina e prolina.
  • Succinil-CoA: isoleucina, metionina, treonina e valina.
  • Fumarato: fenilalanina e tirosina;
Gluconeogenesi
Fig. 10 – Aminoacidi Glucogenici e Chetogenici

α-Chetoglutarato, succinil-CoA e fumarato, tutti intermedi del ciclo dell’acido citrico, entrano nella via gluconeogenetica previa conversione in ossalacetato.
L’utilizzo degli scheletri carboniosi degli aminoacidi deve essere preceduto dalla rimozione del loro gruppo amminico. Alanina e glutammato, le principali molecole responsabili del trasporto dei gruppi amminici dai tessuti extraepatici al fegato, sono aminoacidi glucogenici particolarmente importanti nei mammiferi. L’alanina è il principale substrato gluconeogenetico per il fegato, e arriva all’organo dal muscolo e da altri tessuti periferici seguendo la via del ciclo glucosio-alanina.

⇑ Torna all’inizio ⇑

Aminoacidi chetogenici

Acetil-CoA e acetoacetil-CoA non possono essere utilizzati per la gluconeogenesi, ma sono precursori per la sintesi di acidi grassi e corpi chetonici. L’analisi della stechiometria del ciclo dell’acido citrico chiarisce perché non possano essere utilizzati per la sintesi de novo del glucosio.
L’acetil-CoA condensando con l’ossalacetato, nella reazione catalizzata dalla citrato sintasi, porta alla formazione di citrato, composto a 6 atomi di carbonio anziché 4 come l’ossalacetato. Tuttavia, sebbene i due atomi di carbonio dell’acetato compaiano nell’ossalacetato, due atomi di carbonio sono perduti, in forma di CO2, nelle reazioni catalizzate dalla isocitrico deidrogenasi (EC 1.1.1.42) e dal complesso dell’α-chetoglutarato deidrogenasi. Quindi l’acetil-CoA non comporta alcun guadagno netto di carbonio per il ciclo dell’acido citrico.
Inoltre la reazione che dal piruvato porta alla formazione di acetil-CoA, catalizzata dal complesso della piruvato deidrogenasi, che rappresenta il ponte tra glicolisi e ciclo dell’acido citrico, è irreversibile, e non esiste altra via metabolica per convertire l’acetil-CoA in piruvato.

Piruvato + NAD+ + CoASH → Acetil-CoA + NADH + H+ + C02

Per questo, gli aminoacidi dal cui catabolismo derivano solamente acetil-CoA e/o acetoacetil-CoA sono definiti chetogenici.
Solamente due aminoacidi sono puramente chetogenici: leucina ed lisina.

Nota: piante, lieviti, e molti batteri possono utilizzare l’acetil-CoA per la sintesi de novo di glucosio grazie alla via metabolica chiamata ciclo del gliossilato. Tale ciclo ha alcune reazioni in comune con il ciclo dell’acido citrico, due esclusive, catalizzate dalla isocitrato liasi (EC 4.1.3.1) e malato sintasi (EC 2.3.3.9), ma non ha reazioni di decarbossilazione (vedi sopra). Quindi gli organismi che possiedono il ciclo del gliossilato sono in grado di utilizzare gli acidi grassi per la sintesi del glucosio.

Cinque aminoacidi, isoleucina, fenilalanina, tirosina, treonina e triptofano sono sia chetogenici che glucogenici, poiché una parte del loro scheletro carbonioso può essere utilizzata per la gluconeogenesi, mentre l’altra da origine a corpi chetonici.

⇑ Torna all’inizio ⇑

Propionato

Il propionato, un acidi grasso a tre atomi di carbonio, in forma di propionil-CoA è un precursore gluconeogenetico in quanto può essere convertito in succinil-CoA.
Di seguito sono analizzate le diverse fonti di propionato.

  • Può derivare dalla β-ossidazione di acidi grassi a catena dispari, come ad esempio l’acido margarico, acido grasso saturo con 17 atomi di carbonio. Tali acidi grassi sono molto rari rispetto a quelli a catena pari, e presenti in quantità significative nei lipidi di alcuni organismi marini, delle piante, e nel grasso dei ruminanti. Nell’ultimo passaggio del loro ciclo di ossidazione, il substrato è non a 4 ma a 5 atomi di carbonio, per cui una volta ossidato e scisso in due frammenti, darà origine ad un acetil-CoA e un propionil-CoA.
  • Altra fonte è la ossidazione degli acidi grassi a catena ramificata, con ramificazioni costituite da gruppi alchilici con un numero dispari di atomi di carbonio. Un esempio è l’acido fitanico, prodotto nei ruminanti dall’ossidazione del fitolo, un derivato della degradazione della clorofilla.
  • Nei ruminanti, è prodotto anche a partire dal glucosio liberato dall’idrolisi della cellulosa ad opera di batteri presenti nel rumine, una delle quattro camere che compongono lo stomaco di questi animali. Sempre nel rumine, gli stessi batteri convertono, attraverso fermentazione, il glucosio in propionato, che potrà, una volta assorbito, essere utilizzato per la gluconeogenesi, essere ossidato per la produzione di energia, od essere utilizzato per la sintesi degli acidi grassi.
    Nei ruminanti, dove la gluconeogenesi tende ad essere un processo continuo, il propionato è il più importante precursore gluconeogenetico.
  • Il propionato può derivare anche catabolismo della valina, leucina ed isoleucina (vedi sopra).

L’ossidazione del propionil-CoA a succinil-CoA avviene attraverso tre reazioni che si verificano nel fegato ed in altri tessuti.

Gluconeogenesi
Fig. 11 – Conversione del Propionil-CoA in Succinil-CoA

Nella prima reazione il propionil-CoA è carbossilato a dare D-metilmalonil-CoA, nella reazione catalizzata dalla propionil-CoA carbossilasi (EC 6.4.1.3), enzima che ha come cofattore la biotina. La reazione consuma un ATP.
Nella reazione successiva il D-metilmalonil-CoA viene epimerizzato nello stereoisomero L. La reazione è catalizzata dalla metilmalonil-CoA epimerasi (EC 5.1.99.1).
Infine l’L-metilmalonil-CoA, nella reazione catalizzata dalla metilmalonil-CoA mutasi (EC 5.4.99.2), enzima che richiede come coenzima la 5-deossiadenosilcobalamina, un derivato della cobalamina o vitamina B12, subisce un riarrangiamento intramolecolare a dare succinil-CoA.

⇑ Torna all’inizio ⇑

Bibliografia

Bender D.A. Introduction to nutrition and metabolism. 3rd Edition. Taylor & Francis, 2004

Garrett R.H., Grisham C.M. Biochemistry. 4th Edition. Brooks/Cole, Cengage Learning, 2010

Kabashima T., Kawaguchi T., Wadzinski B.E., Uyeda K. Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver. Proc Natl Acad Sci USA 2003;100:5107-12. doi:10.1073/pnas.0730817100

Kuriyama H. et all. Coordinated regulation of fat-specific and liver-specific glycerol channels, aquaporin adipose and aquaporin 9. Diabetes 2002;51(10):2915-21. doi:10.2337/diabetes.51.10.2915

McCommis K.S. and Finck B.N. Mitochondrial pyruvate transport: a historical perspective and future research directions. Biochem J 2015;466(3):443-54. doi:10.1042/BJ20141171

Nelson D.L., M. M. Cox M.M. Lehninger. Principles of biochemistry. 6th Edition. W.H. Freeman and Company, 2012

Rosenthal M.D., Glew R.H. Medical biochemistry – Human metabolism in health and disease. John Wiley J. & Sons, Inc., Publication, 2009

Soty M., Chilloux J., Delalande F., Zitoun C., Bertile F., Mithieux G., and Gautier-Stein A. Post-Translational regulation of the glucose-6-phosphatase complex by cyclic adenosine monophosphate is a crucial determinant of endogenous glucose production and is controlled by the glucose-6-phosphate transporter. J Proteome Res  2016;15(4):1342-49. doi:10.1021/acs.jproteome.6b00110

Stipanuk M.H., Caudill M.A. Biochemical, physiological, and molecular aspects of human nutrition. 3rd Edition. Elsevier health sciences, 2013 [Google eBooks]

Van Schaftingen, E., and Hers, H-G. Inhibition of fructose-1,6-bisphosphatase by fructose-2,6-bisphosphate. Proc Natl Acad Sci USA 1981;78(5):2861-63 [PDF]

Van Schaftingen E., Jett M-F., Hue L., and Hers, H-G. Control of liver 6-phosphofructokinase by fructose 2,6-bisphosphate and other effectors. Proc Natl Acad Sci USA 1981;78(6):3483-86 [PDF]

Ciclo glucosio-alanina

Ciclo glucosio-alanina: contenuti in breve

Che cos’è il ciclo glucosio-alanina

Il ciclo glucosio-alanina, anche detto ciclo di Cahill, proposto per la prima volta tra il 1969 ed il 1970 da Mallette, Exton e Park, e Felig e collaboratori, consiste in una serie di reazioni attraverso le quali i tessuti extraepatici, come ad esempio il muscolo scheletrico, esportano al fegato piruvato e gruppi amminici in forma di alanina, e ricevono, attraverso il circolo sanguigno, glucosio prodotto nel fegato.
Di seguito ne sono riassunte le tappe.

  • Quando nei tessuti extraepatici gli amminoacidi sono utilizzati a fini energetici, il piruvato, prodotto dal glucosio attraverso la via glicolitica, funge da accettore del loro gruppo amminico α, formando alanina, un aminoacido non essenziale.
  • L’alanina diffonde nel circolo sanguigno, grazie al quale raggiunge il fegato.
  • Nel fegato, il gruppo amminico dell’alanina viene trasferito all’α-chetoglutarato a dare rispettivamente piruvato e glutammato.
  • Il glutammato cede per la maggior parte il gruppo amminico al ciclo dell’urea, mentre in parte funge da donatore di azoto in molti processi biosintetici.
    Il piruvato entra nella gluconeogenesi e viene utilizzato per la produzione di glucosio.
  • Il glucosio neoformato diffonde dall’epatocita nel circolo sanguigno e raggiunge i tessuti periferici dove, grazie alla glicolisi, può essere convertito in piruvato, di nuovo disponibile per accettare il gruppo amminico α degli amminoacidi liberi, chiudendo così il ciclo.

Il ciclo glucosio-alanina fornisce quindi un collegamento tra il metabolismo dei carboidrati e quello degli amminoacidi.
In breve:

Glucosio → Piruvato → Alanina → Piruvato → Glucosio

Ciclo Glucosio-Alanina
Fig. 1 – Ciclo Glucosio-Alanina

Il ciclo glucosio-alanina esiste non solo tra il muscolo scheletrico, il primo tra i tessuti in cui fu osservato, ed il fegato, ma coinvolge anche altre cellule e tessuti extraepatici tra cui le cellule del sistema immunitario, ad esempio gli organi linfoidi.

⇑ Torna all’inizio ⇑

Tappe del ciclo glucosio-alanina

L’analisi successiva verrà fatta considerando il ciclo tra muscolo scheletrico e fegato.
Le proteine, sia intracellulari che extracellulari, sono continuamente idrolizzate nei loro amminoacidi costituenti e risintetizzate; e la velocità con cui avvengono i due processi è tale da evitare una perdita netta di massa magra dall’organismo.
Tuttavia, in condizioni cataboliche, come nel digiuno o nell’esercizio intenso e prolungato, la velocità con cui avviene l’idrolisi delle proteine muscolari supera quella della loro sintesi de novo. Questo porterà alla liberazione di amminoacidi, alcuni dei quali sono utilizzati a fini energetici, altri a fini glucogenetici. Infatti, l’ossidazione dello scheletro carbonioso degli amminoacidi, in particolare di quelli a catena ramificata (valina, leucina, ed isoleucina), rappresenta una significativa fonte di energia per il muscolo. Ad esempio, dopo circa 90 minuti dall’inizio di un esercizio fisico intenso, l’ossidazione intramuscolare degli amminoacidi fornisce il 10-15% dell’energia necessaria alla contrazione.
L’utilizzazione degli scheletri carboniosi degli amminoacidi a fini energetici implica la rimozione del loro gruppo amminico α, e quindi il successivo smaltimento di tale azoto in una forma non tossica.
La rimozione del gruppo amminico α avviene attraverso reazioni di transaminazione che possono essere schematizzate come segue:

α-Chetoacido + Aminoacido ⇄ Nuovo aminoacido + Nuovo α-chetoacido

Tali reazioni, catalizzate da enzimi detti amminotransferasi o transaminasi (EC 2.6.1) sono liberamente reversibili (vedi sotto).
Gli amminoacidi ramificati, ad esempio, trasferiscono il gruppo amminico α all’α-chetoglutarato o acido 2-ossoglutarico, a dare glutammato e l’α-chetoacido derivato dall’amminoacido stesso, in una reazione catalizzata dalla transaminasi specifica per tale gruppo di amminoacidi o BCAT (EC 2.6.1.42), acronimo dell’inglese branched chain aminotransferases.

⇑ Torna all’inizio ⇑

Il ciclo glucosio-alanina nel muscolo scheletrico

Nel muscolo scheletrico, il glutammato prodotto potrà accettare un altro gruppo amminico a dare glutammina, per molti tessuti ed organi, come ad esempio il cervello, la principale forma di trasporto interorgano dell’azoto. La reazione è catalizzata dall’enzima citosolico glutammina sintetasi (EC 6.3.1.2) e consuma un ATP.

Glutammato + NH4+ + ATP → Glutammina + ADP + Pi

In questo caso tuttavia si uscirebbe dal ciclo glucosio-alanina.
In alternativa, e a differenza  di quanto accade nella maggior parte degli altri tessuti, il glutammato prodotto potrà partecipare ad una reazione di transaminazione catalizzata dalla alanina aminotransferasi o ALT (EC 2.6.1.2), enzima presente nella maggior parte dei tessuti animali e vegetali. In tale reazione il glutammato dona il gruppo amminico α al piruvato, derivante dalla glicolisi, a dare alanina ed α-chetoglutarato:

Piruvato + Glutammato ⇄ Alanina + α-Chetoglutarato

L’alanina prodotta e quella derivante dalla degradazione delle proteine, e le proteine muscolari ne sono piuttosto ricche, può lasciare la cellula ed essere veicolata dal circolo ematico al fegato, trasportandovi quindi il gruppo amminico. La velocità con cui l’alanina formata per transaminazione dal piruvato viene trasferita in circolo è proporzionale alla produzione intracellulare del piruvato.
Nota: alanina e glutammina sono le principali fonti di azoto e carbonio nel metabolismo interorgano degli amminoacidi.

⇑ Torna all’inizio ⇑

Il ciclo glucosio-alanina nel fegato

Una volta nel fegato si verifica una transaminazione catalizzata dalla alanina aminotransferasi epatica, in cui l’alanina, il principale amminoacido gluconeogenico, funge da donatore del gruppo amminico α, e l’α-chetoglutarato da chetoacido accettore. I prodotti della reazione sono il piruvato, ossia lo scheletro carbonioso dell’alanina, ed il glutammato.

Alanina + α-Chetoglutarato ⇄ Piruvato + Glutammato

Il glutammato, nella reazione catalizzata dalla glutammato deidrogenasi (EC 1.4.1.2), enzima presente nella matrice mitocondriale, rilascia ione ammonio, che entra nel ciclo dell’urea, ed una molecola di α-chetoglutarato, che può entrare nel ciclo di Krebs. Questa reazione rappresenta processo anaplerotico che lega il metabolismo degli amminoacidi con il ciclo di Krebs.

Ciclo Glucosio-Alanina

Tuttavia il glutammato potrà entrare anche nella reazioni di transaminazione, catalizzata dalla aspartato amminotransferasi (EC 2.6.1.1), con l’ossalacetato a dare aspartato e α-chetoglutarato. L’aspartato è uno degli amminoacidi coinvolti nella produzione di urea attraverso il ciclo dell’urea, ma può essere utilizzato pure nella sintesi delle purine e pirimidine.

Glutammato + Ossalacetato ⇄ Aspartato + α-Chetoglutarato

Anche il piruvato prodotto potrà seguire destini metabolici differenti: essere ossidato per la produzione di ATP, e quindi uscire dal ciclo glucosio-alanina, o entrare nella via gluconeogenetica, e dunque proseguire nel ciclo glucosio-alanina.
Il glucosio prodotto verrà rilasciato dall’epatocita e attraverso il circolo ematico distribuito ai vari tessuti che lo richiedono, tra cui il muscolo scheletrico, dove viene utilizzato per la produzione di piruvato, di nuovo disponibile per accettare il gruppo amminico α del glutammato, chiudendo così il ciclo.

⇑ Torna all’inizio ⇑

Le transaminasi

Come detto in precedenza, la rimozione del gruppo amminico α degli amminoacidi avviene in reazioni di transaminazione (vedi sopra per la reazione generale), catalizzate da enzimi detti amminotransferasi o transaminasi.
Sono enzimi citosolici, presenti in tutte le cellule e particolarmente abbondanti nel fegato, rene, intestino e muscolo, la maggior parte dei quali richiede come coenzima il piridossal fosfato o PLP (acronimo dell’inglese  pyridoxal phosphate), la forma attiva della vitamina B6 o piridossina. Il coenzima è legato strettamente al sito attivo dell’enzima.
Nelle reazioni di transaminazione il gruppo amminico α degli amminoacidi liberi, con l’esclusione della treonina e lisina, è “incanalato” verso un numero ristretto di α-chetoacidi, in particolare piruvato, ossalacetato e α-chetoglutarato.
Le cellule contengono diversi tipi di amminotransferasi: molte sono specifiche per l’α-chetoglutarato come α-chetoacido, ma differiscono nella specificità per l’amminoacido, da cui prendono parte del nome. Esempi sono le già citate alanina aminotransferasi, anche detta alanina transaminasi e glutammico piruvico transferasi (GPT), e l’aspartato aminotransferasi (AST) o glutammico ossalacetico transaminasi (GOT) (EC 2.6.1.1).
Va sottolineato che nelle reazioni di transaminazione non si verifica alcuna deaminazione netta, nessuna perdita di gruppi amminici, in quanto l’α-chetoacido accettore viene amminato e l’amminoacido deaminato.

⇑ Torna all’inizio ⇑

Funzioni del ciclo glucosio-alanina

Tale ciclo ha diversi ruoli.

  • Trasporta azoto in una forma non tossica dai tessuti periferici al fegato.
  • Trasporta al fegato piruvato, un substrato gluconeogenico.
  • Rimuove piruvato dai tessuti periferici nei quali è così possibile ottenere una maggior produzione di ATP dal glucosio. Infatti il NADH prodotto durante la glicolisi può entrare nei mitocondri ed essere ossidato attraverso la fosforilazione ossidativa.
  • Permette di mantenere nell’epatocita una concentrazione relativamente alta di alanina, tale da inibire la degradazione delle proteine.
  • Può avere un ruolo nella difesa dell’ospite nei confronti delle malattie infettive.

Infine è importante sottolineare che nel ciclo glucosio-alanina non c’è sintesi netta di glucosio.

⇑ Torna all’inizio ⇑

Costo energetico del ciclo glucosio-alanina

Al pari del ciclo di Cori, anche il ciclo glucosio-alanina ha un costo energetico netto, che corrisponde a 3-5 molecole di ATP.
La parte del ciclo che si svolge nei tessuti periferici comporta la produzione di 5-7 molecole di ATP per molecola di glucosio:

  • 2  ATP sono prodotti dalla glicolisi;
  • 3-5 ATP derivano dal trasferimento degli elettroni dal NADH/FADH2 (vedi sotto) alla catena di trasporto degli elettroni.

Nel fegato invece la gluconeogenesi e il ciclo dell’urea consumano 10 ATP:

  • 6 ATP sono consumati nel corso della gluconeogenesi;
  • 4 ATP sono necessari per il ciclo dell’urea per ogni molecola di urea prodotta.

Il ciclo glucosio-alanina, al pari del ciclo di Cori, sposta parte del carico metabolico dai tessuti extraepatici al fegato. Tuttavia il prezzo pagato dal fegato è ampiamente giustificato dai vantaggi che il ciclo apporta all’intero organismo in quanto consente, in particolari condizioni, un efficiente catabolismo delle proteine nei tessuti extraepatici, il che a sua volta permette di ottenere substrati per la gluconeogenesi come anche l’utilizzazione a fini energetici degli aminoacidi nei tessuti extraepatici.

⇑ Torna all’inizio ⇑

Analogie e differenze tra ciclo glucosio-alanina e di Cori

Tra i due cicli esistono alcune analogie di seguito elencate.

  • Il ciclo di Cahill in parte si sovrappone al ciclo di Cori quando il piruvato viene convertito in glucosio e lo stesso trasportato ai tessuti extraepatici, dove attraverso la via glicolitica rigenera piruvato.
  • L’ingresso nella gluconeogenesi epatica è simile per i due cicli: sia l’alanina che il lattato sono infatti convertiti in piruvato.
  • Al pari del ciclo di Cori, anche il ciclo glucosio-alanina si “estende” attraverso tipi cellulari differenti, al contrario di quanto accade con vie metaboliche come la glicolisi, il ciclo di Krebs o la gluconeogenesi che  sono confinate all’interno di singole cellule.
Ciclo Glucosio-Alanina
Fig. 2 – Ciclo Glucosio-Alanina e Ciclo di Cori

Di seguito, alcune differenze tra i due cicli.

  • La principale riguarda l’intermedio a tre atomi di carbonio che dai tessuti periferici raggiunge il fegato: il lattato nel il ciclo di Cori e l’alanina nel ciclo glucosio-alanina.
  • Un’altra differenza riguarda il destino del NADH prodotto dalla glicolisi nei tessuti periferici.
    Nel ciclo di Cori il coenzima funge da donatore di agenti riducenti nella riduzione del piruvato a lattato, nella reazione catalizzata dalla lattico deidrogenasi (EC 1.1.1.27).
    Nel ciclo glucosio-alanina tale riduzione non si verifica e gli elettroni del NADH potranno essere trasportati all’interno del mitocondrio dai sistemi navetta del malato-aspartato o del glicerolo-3-fosfato, generando NADH la prima navetta e FADH2 l’altra, da cui si otterranno rispettivamente 2,5 e 1,5 molecole di ATP.
  • Infine, dal punto precedente emerge che, a differenza del ciclo di Cori, per il ciclo glucosio-alanina è richiesta nei tessuti periferici anche la presenza di ossigeno e mitocondri.

⇑ Torna all’inizio ⇑

Bibliografia

Berg J.M., Tymoczko J.L., and Stryer L. Biochemistry. 5th Edition. W. H. Freeman and Company, 2002

Felig P., Pozefsk T., Marlis E., Cahill G.F. Alanine: key role in gluconeogenesis. Science 1970;167(3920):1003-4. doi:10.1126/science.167.3920.1003

Gropper S.S., Smith J.L., Groff J.L. Advanced nutrition and human metabolism. Cengage Learning, 2009 [Google eBooks]

Lecker S.H., Goldberg A.L. and Mitch W.E. Protein degradation by the ubiquitin–proteasome pathway in normal and disease states. J Am Soc Nephrol 2006;17(7):1807-19. doi:10.1681/ASN.2006010083

Mallette L. E., Exton J. H., and Park C. R. Control of gluconeogenesis from amino acids in the perfused  rat liver. J Biol Chem 1969;244(20):5713-23 [PDF]

Nelson D.L., M. M. Cox M.M. Lehninger. Principles of biochemistry. 6th Edition. W.H. Freeman and Company, 2012

Raju S.M., Madala B. Illustrated medical biochemistry. Jaypee Brothers Publishers, 2005 [Google eBooks]

Wu G. Amino acids: biochemistry and nutrition. CRC Press, 2013 [Google eBooks]

Ciclo di Cori: definizione, funzione, biochimica

Ciclo di Cori: contenuti in breve

Che cos’è il ciclo di Cori?

Il ciclo di Cori, anche detto ciclo dell’acido lattico, fu scoperto grazie agli studi condotti negli anni 30 e 40 del secolo scorso dai coniugi Carl e Gerty Cori, i quali scoprirono l’esistenza di una cooperazione metabolica, una suddivisione del lavoro, tra il muscolo scheletrico che lavora in condizioni di limitata disponibilità di ossigeno ed il fegato.
Di seguito ne sono riassunte le tappe.

  • La conversione del glucosio ad acido lattico, attraverso la glicolisi anaerobica, in cellule muscolari scheletriche.
  • La diffusione dell’acido lattico dalla cellula muscolare scheletrica al circolo sanguigno, grazie al quale raggiunge il fegato, che è il suo principale utilizzatore.
  • La conversione dell’acido lattico a glucosio attraverso la gluconeogenesi.
  • La diffusione del glucosio dall’epatocita al circolo sanguigno, grazie al quale raggiunge il muscolo scheletrico chiudendo il ciclo.

In breve, parte dell’acido lattico prodotto nel muscolo scheletrico viene convertito in glucosio nel fegato, per tornare infine al muscolo chiudendo così il ciclo.

Glucosio → Acido lattico → Glucosio

L’importanza del ciclo di Cori è testimoniata dal fatto che può rappresentare circa il 40% del normale turn over del glucosio plasmatico.

⇑ Torna all’inizio ⇑

Dove avviene il ciclo di Cori?

Questa cooperazione metabolica è stata dimostrata esistere anche tra il fegato e tessuti extraepatici diversi dal muscolo scheletrico. Si può infatti affermare che, come per il ciclo glucosio-alanina, al ciclo di Cori possono partecipare i tessuti che non ossidino completamente il glucosio a CO2 e H2O, nel qual caso verrebbe a mancare il piruvato da cui ottenere l’acido lattico o, per transaminazione l’alanina (vedi sotto).  Esempi di cellule che producono continuamente acido lattico, oltre alle cellule muscolari scheletriche, sono i globuli rossi, le cellule proliferanti del midollo osseo, le cellule immunitarie dei noduli linfatici e le cellule epiteliali nella pelle.
Da notare che il muscolo scheletrico produce acido lattico anche a riposo, sebbene a bassa velocità.

Ciclo di Cori
Fig. 1 – Ciclo di Cori

Dal punto di vista biochimico, il ciclo di Cori connette la glicolisi anaerobica con la gluconeogenesi, utilizzando tessuti differenti per compartimentalizzare processi opposti. In una stessa cellula infatti, a prescindere dal tipo, tali vie metaboliche non sono molto attive simultaneamente. Quando la cellula necessita di ATP, la glicolisi è più attiva; quando invece la richiesta di ATP è bassa, la gluconeogenesi, nelle cellule dove avviene, è più attiva.
Ed degno di nota anche il fatto che sebbene tradizionalmente le vie metaboliche, come la glicolisi, il ciclo dell’acido citrico, o la gluconeogenesi, siano considerate confinate all’interno delle singole cellule, il ciclo di Cori, come anche il ciclo glucosio-alanina, si “estende” attraverso tipi cellulari differenti.
Va infine sottolineato che il ciclo di Cori coinvolge anche la corteccia renale, in particolare i tubuli prossimali, essendo questi un altro sito dove avviene la gluconeogenesi.

⇑ Torna all’inizio ⇑

I passaggi del ciclo di Cori

L’analisi dei passaggi del ciclo di Cori verrà fatta considerando l’acido lattico prodotto nel globulo rosso e nel muscolo scheletrico.
Il globulo rosso è una cellula priva di mitocondri, nucleo e ribosomi, che ricava l’energia necessaria dalla sola glicolisi. La possibilità di procedere della glicolisi, come la sua velocità, dipendono anche dalla disponibilità di NAD+. Il coenzima nella sua forma ossidata è infatti necessario per l’ossidazione della gliceraldeide-3-fosfato a 1,3-bisfosfoglicerato nella reazione catalizzata dalla gliceraldeide-3-fosfato deidrogenasi (EC 1.2.1.12).

Gliceraldeide-3-fosfato + NAD+ → 1,3-Bisfosfoglicerato + NADH + H+

L’accumulo di NADH è evitato dalla riduzione del piruvato ad acido lattico, nella reazione catalizzata dalla lattico deidrogenasi (EC 1.1.1.27) o LDH, acronimo dell’inglese lactate dehydrogenase, reazione nella quale il NADH funge da donatore di agenti riducenti, ossidandosi a NAD+.

Piruvato + NADH + H+ → Acido lattico + NAD+

Il muscolo scheletrico, e in particolare le fibre a contrazione rapida che posseggono un numero ridotto di mitocondri, in condizioni di limitata disponibilità di ossigeno, come nel corso di un intenso lavoro, producono notevoli quantità di acido lattico. In queste condizioni infatti:

  • la velocità di produzione del piruvato attraverso la via glicolitica eccede la capacità del ciclo dell’acido citrico di ossidarlo, tanto che meno del 10% del piruvato prodotto entra nel ciclo stesso;
  • la velocità alla quale l’ossigeno è assunto dalle cellule non è sufficiente per assicurare l’ossidazione aerobica di tutto il NADH formato.

E come nel globulo rosso, la reazione catalizzata dalla lattico deidrogenasi, rigenerando NAD+, permette alla glicolisi di procedere.
L’acido lattico è però un prodotto finale del metabolismo, e per essere utilizzato dalla cellula deve essere convertito in piruvato.
La membrana plasmatica della maggior parte delle cellule è liberamente permeabile sia al piruvato che all’acido lattico, che possono quindi raggiungere il circolo ematico. E, considerando ad esempio il muscolo scheletrico, la quantità di acido lattico che lascia la cellula è maggiore rispetto a quella del piruvato grazie all’elevato rapporto NADH/NAD+ intracellulare e alle proprietà catalitiche dell’isoenzima muscolare della lattico deidrogenasi (vedi sotto).
Una volta in circolo l’acido lattico raggiunge il fegato, che è il suo principale utilizzatore, e nel citosol dell’epatocita viene ossidato a piruvato, nella reazione catalizzata dall’isoenzima epatico della lattico deidrogenasi (vedi sotto).

Acido lattico + NAD+ → Piruvato + NADH + H+

Nell’epatocita questa ossidazione è favorita dal basso rapporto NADH/NAD+ presente nel citosol.
Il piruvato è quindi disponibile per entrare nella gluconeogenesi.
Il glucosio prodotto lascia il fegato e, tramite il circolo ematico raggiunge il muscolo, il globulo rosso, i neuroni, e gli altri tessuti e cellule che lo richiedono, chiudendo così il ciclo.

⇑ Torna all’inizio ⇑

La lattico deidrogenasi

L’enzima è un tetramero composto da due differenti tipi di subunità, indicate come:

  • H, dall’inglese heart, o subunità B;
  • M, dall’inglese muscle, o subunità A.

La subunità H predomina nel cuore, mentre la M nel muscolo scheletrico e nel fegato. In genere i tessuti con un metabolismo prevalentemente o esclusivamente aerobico, come il cuore, sintetizzano in misura maggiore la subunità H, mentre nei tessuti dove anche il metabolismo anaerobico è importante, come il muscolo scheletrico, la subunità M è prodotta in misura prevalente.
Le due subunità si associano in 5 modi differenti a dare altrettanti isoenzimi, che possono essere omopolimeri, ossia macromolecole formate da subunità identiche ripetute, o eteropolimeri, macromolecole formate da subunità differenti variamente assortite. I differenti isoenzimi della LDH hanno differenti proprietà catalitiche, oltre che differente distribuzione nei vari tessuti, come indicato di seguito:

  • H4, anche detto tipo 1, LDH1, o A4, un omopolimero di subunità H, si ritrova nel muscolo cardiaco, rene e globuli rossi;
  • H3M1, anche detto tipo 2, LDH2, o A3B, ha una distribuzione simile ad LDH1;
  • H2M2, anche detto tipo 3, LDH3, o A2B2, si ritrova nella milza, cervello, globuli bianchi, rene e polmone;
  • H1M3, anche detto tipo 4, LDH4, o AB3, si ritrova nella milza, polmone, muscolo scheletrico, globuli rossi e rene;
  • M4, anche detto tipo 5, LDH5, o A4, un omopolimero di subunità M, si ritrova nel fegato, muscolo scheletrico e polmone.

L’isoenzima H4 ha un’affinità per il substrato maggiore rispetto all’isoenzima M4.
L’isoenzima H4 è inibito allostericamente da elevati livelli di piruvato (il suo prodotto), mentre l’isoenzima M4 non lo è.
Gli isoenzimi “intermedi” hanno proprietà intermedie, più o meno spostate verso un estremo o l’altro, a seconda del rapporto tra i due tipi di subunità.
Si ritiene che l’isoenzima H4 sia il più idoneo per catalizzare l’ossidazione dell’acido lattico a piruvato, che nel cuore, grazie al suo metabolismo completamente aerobico, viene poi ossidato a CO2 e H2O.
Nel muscolo scheletrico prevale invece l’isoenzima M4, più idoneo per catalizzare la riduzione del piruvato ad acido lattico, consentendo quindi alla glicolisi di procedere in condizioni anaerobiche.

⇑ Torna all’inizio ⇑

Altri destini metabolici dell’acido lattico

Da quanto detto in precedenza è chiaro che l’acido lattico non rappresenta un  binario morto del metabolismo ne un prodotto di scarto del metabolismo del glucosio. E può avere anche un destino diverso da quello di entrare nel ciclo di Cori.
Ad esempio nel muscolo scheletrico in fase di recupero da un esercizio esaustivo, quando cioè l’ossigeno diviene nuovamente sufficiente, o quando l’esercizio è condotto a bassa intensità, l’acido lattico può essere ossidato a piruvato, grazie alla disponibilità di NAD+, e di seguito a CO2 e H20, con produzione di una notevole quantità di energia. In queste condizioni verrà recuperata anche l’energia immagazzinata nel NADH prodotto durante la sua conversione in piruvato, ottenendo 2,5 molecole di ATP per molecola di NADH.
L’acido lattico può anche essere assunto da tessuti esclusivamente aerobici, come il muscolo cardiaco, dove sarà ossidato a CO2 e H2O.

⇑ Torna all’inizio ⇑

Costo energetico del ciclo di Cori

Il ciclo di Cori comporta un consumo netto di 4 molecole di ATP.
La parte del ciclo che comprende la gluconeogenesi consuma 6 equivalenti di ATP, nello specifico 4 ATP e 2 GTP, nelle reazioni catalizzate dagli enzimi:

  • piruvato carbossilasi (EC 6.4.1.1): un ATP;
  • fosfoenolpiruvato carbossichinasi (EC 4.1.1.32): un GTP;
  • gliceraldeide-3-fosfato deidrogenasi (EC 1.2.1.12): un ATP.

Poiché sono utilizzate due molecole di acido lattico per la sintesi di ogni molecola di glucosio, il costo totale è di 2×3=6 legami ad alta energia per molecola di glucosio.
Di contro, la parte del ciclo che comprende la glicolisi anaerobica ne produce solo 2.
In definitiva, è richiesta più energia per produrre glucosio dall’acido lattico nel fegato rispetto a quella ottenuta dall’ossidazione anaerobica del glucosio nei tessuti extraepatici. Questo spiega perché il ciclo di Cori non può essere sostenuto indefinitamente.

⇑ Torna all’inizio ⇑

Ma il ciclo di Cori è un ciclo futile?

La continua demolizione e risintesi del glucosio caratteristica del ciclo dell’acido lattico può sembrare un inutile spreco di energia. In realtà questo ciclo permette l’efficace funzionamento di numerose cellule extraepatiche a spese del fegato e in parte della corteccia renale. Di seguito alcuni esempi.

  • Globuli rossi
    Gli eritrociti, essendo privi di nucleo, ribosomi e mitocondri, sono più piccoli rispetto a molte altre cellule, e le ridotte dimensioni permettono loro il passaggio attraverso gli stretti capillari. Ma la mancanza dei mitocondri li rende completamente dipendenti dalla glicolisi anaerobica per la produzione di ATP. L’acido lattico inevitabilmente formato sarà poi smaltito in parte dal fegato e dal rene.
  • Muscolo scheletrico
    Queste cellule, ed in particolare quelle delle fibre a contrazione rapida, quando soggette ad un intenso lavoro in condizioni di limitata disponibilità di ossigeno producono molto acido lattico. In tali condizioni la glicolisi anaerobica porta alla produzione di 2 molecole di ATP per molecola di glucosio, 3 se il glucosio proviene dal glicogeno muscolare, una quantità decisamente inferiore rispetto alle 29-30 molecole di ATP prodotte a seguito della completa ossidazione del glucosio ad H2O e CO2. Ma la velocità di produzione dell’ATP attraverso la glicolisi anaerobica è maggiore rispetto a quella ottenibile dalla completa ossidazione del glucosio. Dunque, per il muscolo che ha fame di ATP, la glicolisi anaerobica rappresenta una efficace sorgente del nucleotide trifosfato. Ma questo potrebbe portare ad un accumulo intracellulare di acido lattico, e ad una pericolosa diminuzione del pH intracellulare. Ovviamente tale accumulo non si verifica, anche grazie al ciclo di Cori, che scarica parte dell’acido lattico muscolare e del costo energetico per il suo smaltimento sul fegato, permettendo al muscolo di utilizzare l’ATP disponibile per sostenere la sua contrazione.
    E il debito di ossigeno, il “fiatone”, che sempre si presenta dopo un’attività fisica sostenuta, è in gran parte dovuto all’aumentata richiesta di ossigeno da parte degli epatociti per sostenere l’ossidazione degli acidi grassi, il loro principale carburante, che porterà alla produzione dell’ATP necessario per la gluconeogenesi.
  • Nel corso di traumi, sepsi, ustioni, o dopo grossi interventi chirurgici, si verifica un’intensa proliferazione cellulare nelle ferite, che sono tessuti ipossici, e nel midollo osseo. Questo a sua volta risulta in una maggiore produzione di acido lattico, un aumento del flusso attraverso il ciclo di Cori e quindi del consumo di ATP a livello epatico, che, come detto, è sostenuto da un incremento dell’ossidazione degli acidi grassi. Quindi l’alimentazione di questi pazienti deve tenere in conto questo aumento nei consumi.
  • Una situazione simile alla precedente sembra presentarsi anche in quei pazienti oncologici che vanno incontro ad una progressiva perdita di peso.
  • Il ciclo di Cori è fondamentale anche durante il digiuno.

⇑ Torna all’inizio ⇑

Ciclo di Cori e ciclo glucosio-alanina

Questi due cicli sono vie metaboliche che contribuiscono ad assicurare un continuo rifornimento di glucosio a tessuti per i quali il monosaccaride è la fonte primaria di energia.
La principale differenza tra i due cicli consiste nell’intermedio a tre atomi di carbonio che viene riciclato: nel ciclo di Cori il carbonio torna al fegato in forma di piruvato, mentre nel ciclo glucosio-alanina in forma di alanina.
Per ulteriori informazioni si veda: ciclo glucosio-alanina.

⇑ Torna all’inizio ⇑

Bibliografia

Bender D.A. Introduction to nutrition and metabolism. 3rd Edition. Taylor & Francis, 2004

Berg J.M., Tymoczko J.L., and Stryer L. Biochemistry. 5th Edition. W. H. Freeman and Company, 2002

Iqbal S.A., Mido Y. Biochemistry. Discovery Publishing House, 2005 [Google eBook]

Nelson D.L., M. M. Cox M.M. Lehninger. Principles of biochemistry. 6th Edition. W.H. Freeman and Company, 2012

Newsholme E.A., Leech T.R. Functional biochemistry in health and disease. John Wiley J. & Sons, Inc., Publication, 2010 [Google eBook]

Rawn J.D. Biochimica. Mc Graw-Hill, Neil Patterson Publishers, 1990

Rosenthal M.D., Glew R.H. Medical biochemistry – Human metabolism in health and disease. John Wiley J. & Sons, Inc., Publication, 2009

Shils M.E., Olson J.A., Shike M., Ross A.C. Modern nutrition in health and disease. 9th Ed., by Lippincott, Williams & Wilkins, 1999

Stipanuk M.H., Caudill M.A. Biochemical, physiological, and molecular aspects of human nutrition. 3rd Edition. Elsevier health sciences, 2013 [Google eBooks]

Sali biliari: definizione, funzione, circolo enteroepatico, sintesi

Sali biliari: contenuti in breve

Che cosa sono i sali biliari

Gli acidi ed i sali biliari sono derivati polari del colesterolo, e rappresentano la principale via per l’eliminazione dello steroide dal corpo.
Sono un gruppo di specie molecolari con struttura chimica simile ma non identica, proprietà fisiche differenti e caratteristiche biologiche anche più divergenti.
Sono sintetizzati nel fegato, immagazzinati nella cistifellea, secreti nel duodeno, ed infine per la maggior parte riassorbiti  nell’ileo.
Poiché a pH fisiologico sono presenti in forma di anioni, i termini acido biliare e sale biliare saranno di seguito utilizzati come sinonimi.

⇑ Torna all’inizio ⇑

Struttura chimica dei sali biliari

Sali Biliari
Fig. 1 – Struttura Chimica dei più Comuni Acidi Biliari

I sali biliari presentano analogia e differenze con la molecola del colesterolo.
Al pari dello steroide posseggono un nucleo formato da 4 anelli fusi, tre a sei atomi di carbonio, indicati come A, B e C, ed uno, indicato come D, a 5; tale struttura è il ciclopentanoperidrofenantrene, più comunemente noto come nucleo steroideo.
Negli vertebrati superiori sono formati da 24 atomi di carbonio, poiché hanno una coda idrocarburica più corta di tre atomi di carbonio rispetto a quella del colesterolo. Nei vertebrati inferiori sono formati a 25, 26 o 27 atomi di carbonio. La coda idrocarburica termina con un gruppo carbossilico, spesso ionizzato a pH 7, che può essere legato all’aminoacido glicina o taurina (vedi sotto).
Oltre al gruppo ossidrilico in posizione 3, possono avere gruppi ossidrilici in posizione 7 e/o 12.
Tutto ciò rende queste molecole molto più polari del colesterolo.

Sali Biliari
Fig. 2 – Struttura dell’Acido Colico

Poiché gli anelli A e B sono fusi in configurazione cis, la struttura del nucleo steroideo risulta curva, ed è possibile individuarvi:

  • un lato concavo, verso cui sono orientati i gruppi idrossilici ed il gruppo carbossilico della catena laterale, con o senza l’aminoacido ad esso legato, e che risulta idrofilico;
  • un lato convesso, verso cui sono orientati i gruppi metilici presenti in posizione 18 e 19, che risulta idrofobico.

Dunque, possedendo sia gruppi polari che non polari sono molecole anfifiliche ed ottimi surfattanti. Tuttavia la loro struttura chimica li rende molto diversi rispetto ai surfattanti tradizionali, dove spesso si individua una testa polare ed una lunga coda non polare.

⇑ Torna all’inizio ⇑

Acidi e sali biliari primari, coniugati e secondari

Sali Biliari
Fig. 3 – Acidi Biliari Coniugati

Sono definiti acidi biliari primari le molecole sintetizzate negli epatociti direttamente dal colesterolo. Nell’uomo i principali sono l’acido colico e l’acido chenodesossicolico, che da soli formano fino all’80% di tutti gli acidi biliari.
Prima di essere secreti nell’albero biliare sono coniugati quasi per intero, sino al 98%, con gli amminoacidi glicina o taurina, a dare rispettivamente glicoconiugati e tauroconiugati. In particolare circa il 75% dell’acido colico e chenodesossicolico sono coniugati con la glicina, a dare acido glicocolico e acido glicochenodesossicolico, il restante 25% con la taurina, a dare acido taurocolico e acido taurochenodesossicolico.
Gli acidi biliari coniugati sono molecole dotate di gruppi maggiormente idrofilici rispetto a quelle di origine, dunque con una capacità emulsionante superiore. La coniugazione ha infatti l’effetto di ridurre il loro pKa facendo si che rimangano ionizzate in un intervallo più ampio di pH. Se infatti il pKa tipico dei non coniugati è di circa 6, si passa a circa 4 con l’acido glicocolico, e circa 2 con l’acido taurocolico.
L’idrofilicità dei comuni acidi e sali biliari decresce secondo il seguente ordine: coniugati della glicina < coniugati della taurina < acido litocolico < acido desossicolico < acido chenodesossicolico < acido colico < acido ursodesossicolico.
Infine la coniugazione ha anche l’effetto di ridurre la citotossicità delle molecole di origine.

Gli acidi biliari secondari derivano dai primari che non sono stati riassorbiti durante il loro passaggio nell’intestino tenue. Una volta raggiunto il colon, gli acidi biliari primari possono infatti subire diverse modificazioni ad opera del microbiota colonico (vedi sotto), a dare appunto gli acidi biliari secondari, che formano il restante 20% del pool corporeo totale degli acidi biliari.

Un altro modo di suddividere i sali biliari fa riferimento alla loro coniugazione con aminoacidi e al grado di idrossilazione. Su queste base si individuano tre categorie.

  • I coniugati triidrossilati, quali l’acido taurocolico e il glicocolico.
  • I coniugati diidrossilati, come l’acido glicodesossicolico, glicochenodesossicolico, taurochenodesossicolico e taurodesossicolico. Nella bile rappresentano circa il 60% del totale dei sali biliari.
  • Forme non coniugate come l’acido colico, desossicolico, chenodesossicolico, e litocolico.

⇑ Torna all’inizio ⇑

Funzione dei sali biliari

Premessa: tutte le funzioni fisiologiche sono portate a termine dai sali biliari in forma coniugata.

  • Rappresentano la via principale per l’eliminazione del colesterolo. Nell’uomo infatti non esiste il corredo enzimatico necessario per rompere nessuno dei quattro anelli del nucleo steroideo, ne per ossidare il colesterolo ad anidride carbonica ed acqua.
    L’altro modo per eliminare il colesterolo è con la bile, in forma libera.
  • I sali biliari sono potenti surfattanti. E in particolare, i coniugati di- e triidrossilati sono i surfattanti migliori, molto più efficaci rispetto ai corrispettivi non coniugati, avendo un numero maggiore di gruppi polari.
    Una volta a contatto con i lipidi apolari nel lume del piccolo intestino, il lato convesso apolare va ad interagire con il lipidi idrofobici, quali trigliceridi, esteri del colesterolo e delle vitamine liposolubili, mentre il lato concavo polare prende contatto con il mezzo acquoso circostante. Ciò incrementa la dispersione nel mezzo acquoso dei lipidi apolari, favorendo la formazione di minuscole goccioline lipidiche, che dunque subiranno l’attacco delle lipasi, in particolare della lipasi pancreatica, nella cui attivazione i sali biliari hanno un ruolo diretto, e delle esterasi intestinali. In seguito facilitano l’assorbimento dei prodotti della digestione lipidica stessa, nonché delle vitamine liposolubili, ad opera della mucosa intestinale grazie alla formazione di micelle miste.
    Una funzione simile è svolta nella cistifellea dove, formando micelle miste con i fosfolipidi, prevengono la precipitazione del colesterolo.
    Nota: grazie alla disposizione dei gruppi polari e non polari, una volta in soluzione acquosa, i sali biliari tendono a formare micelle, di solito composte da meno di 10 monomeri, purché la loro concentrazione sia superiore alla cosiddetta concentrazione micellare critica.
  • A livello intestinale modulano la secrezione degli enzimi pancreatici e della colecistochinina.
  • Sia nell’intestino tenue che nel colon hanno una potente attività antimicrobica, in primis l’acido desossicolico, in particolare contro i batteri Gram-positivi. Questa attività potrebbe essere dovuta a danno ossidativo al DNA e/o al danno alle membrane cellulari batteriche. Sono dunque importanti nella prevenzione della sovracrescita batterica, ma sembra abbiano anche un ruolo nella regolazione della composizione del microbiota intestinale.
  • Negli ultimi anni è divenuto evidente il loro ruolo regolatorio sul controllo del metabolismo energetico, ed in particolare per la “movimentazione” epatica del glucosio.

⇑ Torna all’inizio ⇑

Circolo enteroepatico dei sali biliari

A seguito del consumo di lipidi con la dieta, le cellule enteroendocrine del duodeno secernono in circolo la colecistochinina. Il successivo legame dell’ormone alle cellule muscolari lisce della parete della cistifellea ne promuove la contrazione; inoltre l’ormone causa anche il rilascio dello sfintere di Oddi. Da tutto ciò risulta la secrezione pulsatile della bile, e degli acidi biliari in essa contenuti, nel duodeno.

In condizioni fisiologiche il pool corporeo di acidi biliari è costante, e pari a circa 3-5 g; ciò è reso possibile da due processi:

  • il loro riassorbimento a livello intestinale;
  • la loro sintesi de novo (vedi sotto).

Fino al 95% dei sali biliari secreti viene riassorbito a livello intestinale, non assieme ai prodotti della digestione lipidica, ma attraverso un processo definito circolo enteroepatico.
Si tratta di un sistema di recupero estremamente efficiente, che sembra avvenire almeno due volte per ogni pasto, cui partecipano il fegato, l’albero biliare, il duodeno, il colon, ed il circolo portale attraverso cui le molecole riassorbite tornano al fegato. Tale ricircolo è reso necessario dal fatto che la capacità dell’epatocita di produrre acidi biliari è limitata ed insufficiente a soddisfare le necessità fisiologiche intestinali se gli stessi sali andassero perduti in elevate quantità.
La maggior parte dei sali biliari è riassorbita una volta raggiunto l’ileo distale, la parte più bassa dell’intestino tenue, a mezzo di un trasportatore sodio-dipendente presente nell’orletto a spazzola degli enterociti, detto ASBT, acronimo dell’inglese apical sodium-dependent bile acid transporter, che opera un cotrasporto di due ioni sodio ed un acido biliare.
Una volta nell’enterocita si ritiene che, a mezzo della proteina IBABP, acronimo dell’inglese ileal bile acid-binding protein, siano trasportati attraverso il citosol alla membrana basolaterale, che attraversano grazie  all’intervento del trasportatore OSTα/OSTβ, acronimo dell’inglese organic solute transporter alpha and beta. Tramite il circolo portale, veicolati dall’albumina, raggiungono il fegato.
Da notare che una piccola parte di acidi biliari raggiunge il fegato attraverso l’arteria epatica.
A livello epatico la loro estrazione dal circolo è molto efficiente, tanto che dal 50 al 90% sono rimossi al primo passaggio, percentuale che varia in funzione della struttura molecolare. Gli acidi biliari coniugati sono in gran parte rimossi  attraverso un meccanismo di trasporto attivo sodio-dipendente, a mezzo del trasportatore NTCP, acronimo dell’inglese Na+-dependent taurocholate co-transport polipeptide. Tuttavia può avvenire anche un trasporto sodio-indipendente ad opera di proteine della famiglia OATP, acronimo dell’inglese organic anion transporting polypeptides, principalmente le isoforme OATP1B1 e OATP1B3.
Nel circolo enteroepatico il passaggio limitante è rappresentato dalla loro secrezione nei canalicoli biliari, in gran parte ad opera di BSEP, acronimo dell’inglese bile salt export pump, in un processo ATP-dipendente. Questa pompa trasporta gli acidi biliari monoanionici, che sono la maggior parte. Gli acidi biliari solforati o glucuronati, dianionici, sono secreti a mezzo di trasportatori differenti, quali MRP2 e BCRP.

Nota: il livello sierico degli acidi biliari varia sulla base della velocità di riassorbimento e quindi è più alto durante i pasti, quando il circolo enteroepatico è più attivo.

⇑ Torna all’inizio ⇑

Metabolismo intestinale dei sali biliari

Sali Biliari
Fig. 4 – Metabolismo Intestinale degli Acidi Biliari

Gli acidi biliari che sfuggono al riassorbimento ileale passano nel colon dove in parte subiscono l’azione di enzimi della flora batterica e sono trasformati in acidi biliari secondari.
Di seguito sono elencate le principali reazioni.

  • Deconiugazione
    A livello della catena laterale si può verificare l’idrolisi del legame con l’aminoacido coniugato in posizione 24, con liberazione di acidi biliari non coniugati e glicina o taurina. Le reazioni sono catalizzate da idrolasi batteriche presenti sia nell’intestino tenue che nel colon.
  • 7α-Deidrossilazione
    E’ la reazione quantitativamente più importante, portata a termine da deidratasi batteriche coloniche che rimuovono il gruppo ossidrilico in posizione 7 dando origine ad un 7-deossi acido biliare. In particolare, dall’acido colico si formerà l’acido desossicolico, mentre dal chenodesossicolico il litocolico, due acidi biliari secondari tossici.
    Da notare che la 7α-deidrossilazione, a differenza di quanto accade con l’ossidazione e l’epimerizzazione (vedi sotto), può avvenire solamente sugli acidi biliari non coniugati, per cui la deconiugazione è un prerequisito essenziale.
  • Ossidazione ed epimerizzazione
    Sono reazioni che interessano i gruppi idrossilici in posizione 3, 7 e 12, catalizzate da idrossisterolo deidrogenasi batteriche. Ad esempio, l’epimerizzazione dell’acido chenodesossicolico da origine all’acido ursodesossicolico.

Parte degli acidi biliari secondari sono poi riassorbiti e tornano al fegato, per essere riconiugati, se necessario, e secreti nuovamente. Quelli che invece sfuggono al riassorbimento saranno perduti con le feci.

Mentre le reazioni di deconiugazione ed ossidazione sono portate a termine da un ampio spettro di batteri anaerobi, le 7α-deidrossilazioni sono effettuate da un numero ristretto di anaerobi.
La 7α-deidrossilazione e la deconiugazione hanno come effetto quello di aumentare il pKa e dunque l’idrofobicità degli acidi biliari, permettendone un certo grado di recupero passivo attraverso l’epitelio colonico.
L’aumento di idrofobicità è associato anche ad un aumento della loro citotossicità. E una elevata concentrazione di acidi biliari secondari nelle feci, sangue e bile è stata associata alla patogenesi del cancro al colon.

⇑ Torna all’inizio ⇑

Riassorbimento dei sali biliari e fibre solubili

Il riassorbimento degli sali biliari può essere ridotto dall’azione chelante delle fibre solubili, come quelle presenti nella frutta fresca, legumi, avena e crusca d’avena. Tutto questo ha come effetto quello di incrementare la loro sintesi de novo, up-regolando l’espressione della colesterolo 7α-idrossilasi e della sterolo 12α-idrossilasi (vedi sotto), e quindi ridurre la concentrazione del colesterolo negli epatociti.
La deplezione del colesterolo epatico aumenta l’espressione del recettore per le LDL, e quindi abbassa la concentrazione plasmatica del colesterolo LDL. Di contro però stimola anche la sintesi della HMG-CoA reduttasi, l’enzima chiave nella sintesi dello steroide.
Anche diversi farmaci agiscono legando gli acidi biliari a livello intestinale, impedendone così il riassorbimento.

⇑ Torna all’inizio ⇑

Sintesi degli acidi biliari

Sali Biliari
Fig. 5 – Sintesi degli Acidi Biliari Primari

Dal punto di vista quantitativo, gli acidi biliari sono il prodotto principale del metabolismo del colesterolo.
Come detto in precedenza, il circolo enteroepatico e la loro sintesi de novo assicurano la costanza del pool corporeo. In particolare, la sintesi de novo permette la sostituzione di quel 5-10%, circa 0,5 g/die, che viene perduto con le feci.
Di seguito verrà presa in esame la sintesi dell’acido colico e dell’acido  chenodesossicolico, e la loro coniugazione con gli aminoacidi taurina e glicina.
Esistono due vie principali per la sintesi dei suddetti acidi: la via classica e quella alternativa. A queste si aggiungono alcune vie minori.

⇑ Torna all’inizio ⇑

La via classica o neutra

Nell’uomo fino al 90% dei sali biliari sono sintetizzati attraverso la via classica (vedi fig. 5), definita anche “neutra” in quanto i suoi intermedi sono steroli neutri.
E’ una via presente solo nel fegato, cui prendono parte numerosi enzimi localizzati nel citosol, nel reticolo endoplasmatico, nei mitocondriale e perossisomi, ed i cui prodotti finali sono i coniugati degli acidi colico e chenodesossicolico.

  • La prima reazione è l’idrossilazione in posizione 7 del colesterolo, a dare il 7α-idrossicolesterolo. La reazione è catalizzata dalla colesterolo 7α-idrossilasi o CYP7A1 (E.C. 1.14.14.23). E’ un enzima localizzato sul reticolo endoplasmatico, e catalizza il passaggio limitante dell’intera via.

Colesterolo + NADPH + H+ + O2 → 7α-Idrossicolesterolo + NADP+ + H2O

  • Il 7α-idrossicolesterolo subisce l’ossidazione del gruppo 3β-ossidrilico e lo spostamento del doppio legame dalla posizione 5,6 alla posizione 4,5 a dare il 7α-idrossi-4-colesten-3-one. La reazione è catalizzata dalla 3β-idrossi-Δ5-C27-steroide ossidoreduttasi o HSD3B7 (E.C. 1.1.1.181), un enzima del reticolo endoplasmatico.
  • Il 7α-idrossi-4-colesten-3-one può seguire due vie:

entrare nella via che porta alla sintesi dell’acido colico, attraverso la reazione catalizzata dalla 7α-idrossi-4-colesten-3-one 12α-monoossigenasi o sterolo 12α-idrossilasi o CYP8B1 (E.C. 1.14.18.8), enzima del reticolo endoplasmatico;

entrare nella via che porta la sintesi dell’acido chenodesossicolico, attraverso la reazione catalizzata dalla 3-osso-Δ4-steroide 5β-reduttasi o AKR1D1 (E.C. 1.3.1.3), enzima citosolico.

Ed è l’attività della sterolo 12α-idrossilasi che determinerà il rapporto tra gli acidi colico e chenodesossicolico prodotti, e, in definitiva, quella che sarà la potenza detergente del pool degli acidi biliari. Ed infatti la regolazione della trascrizione del gene corrispondente è uno dei punti di regolazione principali dell’intera via di sintesi.

Dunque, se il 7α-idrossi-4-colesten-3-one fluisce attraverso la reazione catalizzata dalla sterolo 12α-idrossilasi si avranno le seguenti reazioni.

  • La molecola è idrossilata in posizione 12 dall’enzima suddetto, a dare il 7α,12α-diidrossi-4-colesten-3-one.
  • Il 7α,12α-diidrossi-4-colesten-3-one subirà la riduzione del doppio legame in posizione 4,5, nella reazione catalizzata dalla 3-osso-Δ4-steroide 5β-reduttasi, a dare 5β-colestan-7α,12α-diol-3-one.
  • Il 5β-colestan-7α,12α-diol-3-one subirà a sua volta la riduzione a gruppo ossidrilico del gruppo in posizione 4, nella reazione catalizzata dalla 3α-idrossisteroide deidrogenasi o AKR1C4 (EC 1.1.1.213), enzima citosolico, a dare 5β-colestan-3α,7α,12α-triolo.
  • Il 5β-colestan-3α,7α,12α-triolo subirà l’ossidazione della catena laterale in tre reazioni catalizzate dalla sterolo 27-idrossilasi o CYP27A1 (EC 1.14.15.15). Si tratta di un enzima mitocondriale presente anche in tessuti extraepatici e nei macrofagi, che introduce un gruppo ossidrilico in posizione 27. Il gruppo ossidrilico è poi ossidato ad aldeide e quindi ad acido carbossilico, con formazione di acido 3α,7α, 12α-triidrossi-5β-colestanoico.
  • L’acido 3α,7α, 12α-triidrossi-5β-colestanoico è attivato a seguito del legame con il coenzima A, nella reazione catalizzata dagli enzimi BACS, acronimo dell’inglese bile acid CoA synthetase (EC 6.2.1.7), o VLCS, acronimo dell’inglese very long chain acyl CoA synthetase (EC 6.2.1.-), entrambe localizzati nel reticolo endoplasmatico.
  • Il 3α,7α,12α-triidrossi-5β-colestanoilCoA è trasportato nei perossisomi dove va incontro a 5 reazioni consecutive, catalizzate da altrettanti enzimi differenti. Nelle ultime due la catena laterale è accorciata a quattro atomi di carbonio e viene prodotto il colilCoA.
  • L’ultimo passaggio coinvolge la coniugazione, attraverso legame ammidico, del gruppo carbossilico terminale della catena laterale con l’aminoacido glicina o taurina, nella reazione catalizzata da BAAT, acronimo dell’inglese bile acid-CoA:amino acid N-acyltransferase (EC 2.3.1.65), enzima a localizzazione prevalentemente perossisomiale.
    I prodotti della reazione saranno quindi gli acidi biliari coniugati glicocolico e taurocolico.

Nel caso in cui il 7α-idrossi-4-colesten-3-one non entri nella reazione catalizzata dalla sterolo 12α-idrossilasi prenderà la via che porta alla sintesi dei coniugati dell’acido chenodesossicolico attraverso le reazioni di seguito descritte.

  • Il 7α-idrossi-4-colesten-3-one viene convertito in 7α-idrossi-5β-colestan-3-one nella reazione catalizzata dall’enzima 3-osso-Δ4-steroide 5β-reduttasi.
  • Il 7α-idrossi-5β-colestan-3-one nella reazioni dalla 3α-idrossisteroide deidrogenasi, viene convertito in 5β-colestan-3α,7α-diolo.

Quindi, a seguito di modificazione analoghe a quelle viste per la sintesi dei coniugati dell’acido colico, e catalizzate per la maggior parte dagli stessi enzimi, si formeranno gli acidi biliari coniugati glicochenodesossicolico e taurochenodesossicolico.

Nota: gli acidi biliari deconiugati a livello intestinale dovranno raggiungere il fegato per essere riconiugati.

⇑ Torna all’inizio ⇑

La via alternativa o acida

E’ prevalente nel feto e nel neonato, mentre nell’adulto porta alla sintesi di meno del 10% dei sali biliari.
Questa via (vedi fig. 5) si differenzia da quella classica, in quanto:

  • i prodotti intermedi sono acidi, per cui viene definita anche come “via acida”;
  • l’ossidazione della catena laterale precede le modificazioni del nucleo steroideo;
  • i prodotti finali sono i coniugati dell’acido chenodesossicolico.

Il primo passaggio comporta la conversione del colesterolo in 27-idrossicolesterolo nella reazione catalizzata dalla sterolo 27-idrossilasi.
A questo punto sono possibili due vie.

Via A

  • In una reazione catalizzata dalla sterolo 27-idrossilasi, il 27-idrossicolesterolo è convertito in acido 3β-idrossi-5-colestenoico.
  • L’acido 3β-idrossi-5-colestenoico nella reazione catalizzata dalla ossisterolo 7α-idrossilasi o CYP7B1 (EC  1.14.13.100), un enzima del reticolo endoplasmatico, viene idrossilato in posizione 7 a dare l’acido 3β-7α-diidrossi-5-colestenoico.
  • L’acido 3β-7α-diidrossi-5-colestenoico viene convertito in acido 3-osso-7α-idrossi-4-colestenoico, nella reazione catalizzata dalla 3β-idrossi-Δ5-C27-steroide ossidoreduttasi.
  • L’acido 3-osso-7α-idrossi-4-colestenoico, a seguito di modificazioni della catena laterale, darà origine all’acido chenodesossicolico e quindi ai suoi coniugati.

Via B

  • Il 27-idrossicolesterolo è convertito in 7α,27-diidrossicolesterolo nella reazione catalizzata dalla ossisterolo 7α-idrossilasi e colesterolo 7α-idrossilasi.
  • Il 7α,27-diidrossicolesterolo è convertito in 7α,26-diidrossi-4-colesten-3-one nella reazione catalizzata dalla 3β-idrossi-Δ5-C27-steroide ossidoreduttasi.
  • Il 7α,26-diidrossi-4-colesten-3-one può ora proseguire come tale o essere convertito in acido 3-osso-7α-idrossi-4-colestenoico e subire le modifiche alla catena laterale e le altre reazioni che portano alla sintesi dei coniugati dell’acido chenodesossicolico.

⇑ Torna all’inizio ⇑

Le vie minori

Esistono anche vie minori (vedi fig. 5) che possono contribuire, sebbene in misura ridotta, alla sintesi degli acidi biliari.
Ad esempio:

  • Nel fegato viene espressa una colesterolo 25-idrossilasi (EC 1.14.99.38).
  • Nel cervello è espressa una colesterolo 24- idrossilasi o CYP46A1 (EC 1.14.14.25), e quindi, sebbene l’organo non sia in grado di esportare colesterolo, può esportare ossisteroli.
  • E’ stata scoperta anche una 7α-idrossilasi non specifica espressa in tutti i tessuti, che sembra essere coinvolta nella generazione di ossisteroli che possono poi essere trasportati al fegato per essere convertiti in acido chenodesossicolico.

Inoltre, la sterolo 27-idrossilasi è espressa in vari tessuti, per cui i suoi prodotti di reazione possono essere trasportati al fegato ed essere convertiti in sali biliari.

⇑ Torna all’inizio ⇑

Regolazione della sintesi degli acidi biliari

La regolazione avviene attraverso un feedback negativo, in particolare sull’espressione degli enzimi colesterolo 7α-idrossilasi e sterolo 12α-idrossilasi.
In caso di eccesso di acidi biliari, sia coniugati che liberi, gli stessi si vanno a legare al recettore nucleare FRX, acronimo dell’inglese farnesoid X receptor, attivandolo. L’acido biliare più efficace nell’attivare FRX è l’acido chenodesossicolico, mentre altri, come l’acido ursodesossicolico non lo attivano.
FRX induce l’espressione del repressore trascrizionale SHP, acronimo dell’inglese small heterodimer partner, che a sua volta interagisce con altri fattori trascrizionali, come LRH-1, acronimo dell’inglese liver receptor homolog-1, e HNF-4α, acronimo dell’inglese hepatocyte nuclear factor-4α, che si legano ad una sequenza presente nella regione del promotore dei geni per la 7α-idrossilasi e 12α-idrossilasi, regione definita BAREs, acronimo dell’inglese bile acid response elements, inibendone la trascrizione.
Uno dei motivi per cui la sintesi dei sali biliari è strettamente regolata è perché molti dei loro metaboliti sono tossici.

⇑ Torna all’inizio ⇑

Bibliografia

Chiang J.Y.L. Bile acids: regulation of synthesis. J Lipid Res 2009;50(10):1955-66. doi:10.1194/jlr.R900010-JLR200

Gropper S.S., Smith J.L. Advanced nutrition and human metabolism. 6h Edition. Cengage Learning, 2012 [Google eBook]

Moghimipour E., Ameri A., and Handali S. Absorption-enhancing effects of bile salts. Molecules 2015;20(8); 14451-73. doi:10.3390/molecules200814451

Monte M.J., Marin J.J.G., Antelo A., Vazquez-Tato J. Bile acids: Chemistry, physiology, and pathophysiology. World J Gastroenterol 2009;15(7):804-16. doi:10.3748/wjg.15.804

Rawn J.D. Biochimica. Mc Graw-Hill, Neil Patterson Publishers, 1990

Rosenthal M.D., Glew R.H. Medical biochemistry – Human metabolism in health and disease. John Wiley J. & Sons, Inc., Publication, 2009

Sundaram S.S., Bove K.E., Lovell M.A. and Sokol R.J. Mechanisms of Disease: inborn errors of bile acid synthesis. Nat Clin Pract Gastroenterol Hepatol 2008;5(8):456-68. doi:10.1038/ncpgasthep1179

Microbiota intestinale umano: definizione, composizione ed impatto della dieta

Microbiota intestinale umano: contenuti in breve

Definizione e composizione del microbiota intestinale umano

Microbiota Intestinale
Fig. 1 – Lactobacillus acidophilus

Il tratto gastrointestinale dell’uomo è una delle più feroci e competitive nicchie ecologiche presenti in natura. Vi si ritrovano virus, eucarioti, batteri, ed una sola specie di Archeobatteri, Methanobrevibacter smithii.
I batteri variano in proporzione e quantità lungo tutto il tratto gastrointestinale. La presenza maggiore si ha nel colon, con oltre 400 specie diverse appartenenti a 9 fila o divisioni, ed è a questi che ci si riferirà parlando di microbiota intestinale. Di seguito, l’elenco dei phyla suddetti e di alcuni tra i loro generi maggiormente rappresentati.

  • Actinobacteria (Gram-positivi); Bifidobacterium, Collinsella, Eggerthella e Propionibacterium.
  • Bacteroidetes (Gram-negativi); oltre 20 generi tra cui Bacteroides, Prevotella e Corynebacterium.
  • Cyanobacteria (Gram-negativi).
  • Firmicutes (Gram-positivi); almeno 250 generi tra cui Mycoplasma, Bacillus, Clostridium, Dorea, Faecalibacterium, Ruminococcus, Eubacterium, Staphylococcus, Streptococcus, Lactobacillus, Lactococcus, Enterococcus, Sporobacter e Roseburia.
  • Fusobacteria (Gram-negativi); Sneathia.
  • Lentisphaerae (Gram-negativi).
  • Proteobacteria (Gram-negativi); Escherichia, Klebsiella, Shigella, Salmonella, Citrobacter, Helicobacter e Serratia.
  • Spirochaeates (Gram-negativi).
  • Verrucomicrobia (Gram-negativi).

La presenza nel colon di un piccolo sottoinsieme del mondo batterico, 9 phyla sui 30 esistenti nel dominio Bacteria, è il risultato di una forte pressione selettiva che nel corso dell’evoluzione ha agito sia sui colonizzatori microbici, selezionando organismi  adattati eccezionalmente bene a questo ambiente ed in grado di dominare il processo di colonizzazione, che sulla nicchia intestinale. E tuttavia, ciascun individuo possiede nel proprio intestino una comunità batterica unica.
Nonostante la grande variabilità esistente sia riguardo ai taxa presenti che tra gli individui, è stato proposto, ma non da tutti accettato, che nella maggior parte dei soggetti adulti il microbiota intestinale, nella sua componente batterica, possa essere classificato in varianti od “enterotipi” sulla base del rapporto tra l’abbondanza di Bacteroides e Prevotella. Questo sembra indicare che esista un numero limitato di stati simbiotici ben bilanciati, che potrebbe rispondere in maniera differente a fattori quali la dieta, l’età, la genetica e l’assunzione di farmaci (vedi sotto).

L’intestino degli adulti ospita un’ampia e varia comunità di virus a DNA ed RNA, formata da circa 2000 genotipi differenti, dove però non se ne individua uno dominante, considerando che il virus più abbondante rappresenta solo circa il 6% dell’intera comunità (al contrario di ciò che accade nei neonati dove il genotipo più abbondante rappresenta oltre il 40% dell’intera comunità). La maggior parte dei virus a DNA sono batteriofagi o fagi, ossia virus che infettano i batteri (che sono anche l’entità biologica più abbondante presente sulla terra, con un una popolazione stimata di circa 1031 unità), mentre la maggior parte di quelli ad RNA sono virus vegetali.

⇑ Torna all’inizio ⇑

Influenze sulla composizione e lo sviluppo del microbiota intestinale umano

La comunità batterica intestinale è regolata da diversi fattori, molti dei quali sono di seguito elencati.

  • La dieta
    La dieta dell’ospite sembra essere il fattore più importante, a partire dal primo alimento assunto, il latte materno.
    Sebbene considerato sterile, il latte materno contiene un ricco microbiota formato da oltre 700 specie, dominato da stafilococchi, streptococchi, bifidobatteri e  batteri lattici. Dunque, nei i bambini allattati al seno rappresenta una fonte importante per la colonizzazione dell’intestino, ed è stato suggerito che questa modalità di colonizzazione giochi un ruolo cruciale per la salute, in quanto, tra le altre funzioni potrebbe proteggere il neonato dalle infezioni e contribuire alla maturazione del sistema immunitario. Il latte materno influenza il microbiota intestinale anche indirettamente, grazie alla presenza di oligosaccaridi con attività prebiotica che stimolano la crescita di gruppi batterici specifici quali stafilococchi e bifidobatteri.
    Anche uno studio che ha confrontato il microbiota intestinale di bambini europei ed africani (rispettivamente da Firenze ed un villaggio rurale del Burkina Faso) di età compresa tra 1 e 6 anni, ha messo in evidenza il ruolo decisivo della dieta rispetto ad altre variabili quali il clima, la geografia, l’igiene ed i servizi sanitari (è stata inoltre osservata un’assenza di differenze significative nell’espressione di geni chiave nel regolare la funzione immune, che suggerisce quindi una similarità funzionale tra i due gruppi). Infatti i bambini di entrambe i gruppi, fintanto che sono allattati al seno, presentano un microbiota intestinale con caratteristiche molto simili, ricco in Actinobacteria, principalmente Bifidobacterium (vedi sotto). La successiva introduzione di una dieta solida differente nei due gruppi, di tipo Occidentale negli europei e dunque ricca in grassi e proteine animali, povera in proteine animali ma ricca in carboidrati complessi nei bambini africani, porta ad una differenziazione del rapporto Firmicutes/Bacteroidetes nei due gruppi. Nei bambini europei erano più abbondanti i Gram-positivi, principalmente Firmicutes, rispetto ai Gram-negativi, mentre nei bambini africani prevalevano i Gram-negativi, principalmente Bacteroidetes, rispetto ai Gram-positivi.
    E la dieta a lungo termine è associata in modo molto stretto alla ripartizione in enterotipi. E’ stato infatti osservato che:

una dieta ricca in grassi e proteine animali, dunque di tipo occidentale, porta ad un microbiota intestinale dominato da taxa dell’enterotipo Bacteroides;
una dieta ricca in carboidrati, tipica delle società agricole, vede la prevalenza dell’enterotipo Prevotella.

Analoghi risultati sono emersi dallo studio sopracitato sui bambini. Negli europei, il microbiota intestinale era dominato da taxa tipici dell’enterotipo Bacteroides, mentre in quelli del Burkina Faso, dominano taxa dell’enterotipo Prevotella.
Con cambiamenti a breve termine della dieta (10 giorni), quali il passaggio da una povera in grassi e ricca in fibre ad una ricca in grassi e povera in fibre e viceversa, sono stati osservati cambiamenti nella composizione del microbioma (già dopo 24 ore), ma nessuno scambio stabile nella suddivisione in enterotipi. E questo rimarca come per un cambiamento dell’enterotipo del microbiota intestinale sia necessaria una dieta a lungo termine.
Modifiche a carico della dieta si traducono anche in cambiamenti a carico del viroma intestinale, che si sposta verso un nuovo stato, ossia si osservano alterazioni delle proporzioni delle popolazioni preesistenti, verso il quale convergono individui che seguano la stessa dieta.

  • Il pH, sali biliari ed enzimi digestivi
    Lo stomaco, a causa del pH estremamente acido del suo contenuto, è un ambiente ostile per i batteri, che non sono presenti in numero elevato, circa 102-103 cellule batteriche/grammo di tessuto. Oltre ad Helicobacter pylori, capace di causare gastriti ed ulcere gastriche, sono presenti anche batteri del genere Lactobacillus.
    Dal duodeno si osserva un incremento nel numero di unità, 104-10cellule batteriche/grammo di tessuto; e quantità simili si ritrovano nel digiuno e nelle prime parti dell’ileo. Il numero contenuto di microorganismi presente nell’intestino tenue è dovuto all’ambiente inospitale conseguente al fatto che nel tratto discendente del duodeno è presente l’apertura dell’ampolla di Vater dalla quale viene riversata la bile e il succo pancreatico ossia sali biliari ed enzimi pancreatici, entrambe in grado di causare danni ai microrganismi presenti.
    Nella porzione terminale dell’ileo, dove l’attività dei sali biliari e degli enzimi pancreatici è meno intensa, la conta batterica è di circa 10cellule batteriche/grammo di tessuto, fino ad arrivare nel colon a valori pari a 1012-1014 cellule batteriche/grammo di tessuto, tanto che le feci sono costituite per il 40% da batteri.
    La distribuzione di batteri lungo l’intestino è strategica. Nel duodeno e nel digiuno la quantità di nutrienti ancora disponibile è molto più alta rispetto a quella presente nell’ileo terminale, dove sono rimasti acqua, fibre, ed elettroliti. Dunque non è un problema trovare nell’ileo terminale, e ancor più nel colon, un numero elevato di batteri. Il problema sarebbe trovarli in numero eccessivo nel duodeno, digiuno e prima parte dell’ileo; ed esiste una condizione patologia, definita sindrome da sovracrescita batterica nel tenue o SIBO, acronimo dell’inglese small intestinal bacterial overgrowth, nella quale il numero di batteri nel tenue aumenta di circa 10-15 volte, il che li mette in condizione di poter competere con l’ospite per i nutrienti e dare origine a disturbi gastrointestinali quali ad esempio diarrea.
  • La posizione geografica e le conseguenti differenze riguardo lo stile di vita, di alimentazione, di religione ecc.
    E’ stato ad esempio osservata una sorta di gradiente geografico nel microbiota dei neonati europei, con un numero più elevato di specie di Bifidobacterium ed alcune di Clostridium nei bambini delle zone settentrionali, mentre in quelli delle zone meridionali è stata trovata una maggiore abbondanza di Bacteroides, Lactobacillus ed Eubacterium.
  • La modalità di nascita (vedi sotto).
  • L’assetto genetico dell’ospite.
  • Lo stato di salute, anche della madre nel corso della gravidanza.
    Ad esempio, in pazienti con malattia infiammatoria intestinale o IBD, acronimo dell’inglese inflammatory bowel disease, risulta depleta Faecalibacterium prausnitzii, una tra le specie produttrici di butirrato, un’importante fonte di energia per le cellule intestinali, e dotata anche di un’azione antiinfiammatoria in vitro e nei topi, mentre si osserva un aumento nel numero di Escherichia coli aderenti.
  • L’assunzione di antibiotici.
  • Le infezioni batteriche ed i predatori.
  • Le batteriocine, ossia proteine dotate di attività antibatterica, ed i batteriofagi.
    Questi ultimi sono una forza importante nel controllo dell’abbondanza e composizione del microbiota intestinale. In particolare potrebbero avere un ruolo di primo piano nel corso della colonizzazione dell’intestino del neonato, infettando via via gli ospiti dominanti e creando così l’opportunità per un altro ceppo di divenire abbondante. Questo modello di dinamiche preda-predatore, definito “kill the winner”, suggerisce che le fioriture di determinate specie batteriche porterebbero a fioriture dei loro corrispondenti fagi, seguite da riduzioni dell’abbondanza di entrambe. Di conseguenza il genotipo fagico più abbondante non sarà lo stesso in momenti differenti. E sebbene alcune sequenze virali presenti nell’intestino del neonato siano stabili nel corso dei primi tre mesi di vita, sono state osservate drammatiche variazioni nella composizione complessiva della comunità virale fecale tra la prima e la seconda settimana. Infine, anche la comunità batterica nel corso di questo periodo è estremamente dinamica (vedi sotto).
  • La competizione per lo spazio ed i nutrienti.

⇑ Torna all’inizio ⇑

Composizione del microbiota intestinale umano nel corso della vita

Microbiota Intestinale
Fig. 2 – Sviluppo della Flora Batterica Intestinale

Lo sviluppo dell’ecosistema microbico intestinale è un evento complesso e cruciale nella vita dell’uomo, altamente variabile da individuo ad individuo, ed influenzato dai fattori visti in precedenza.

Nell’utero materno i bambini sono considerati sterili, e dunque soggetti al momento del parto alla colonizzazione da parte dei microbi, grazie anche al fatto di nascere con una tolleranza immunitaria “insegnata” dalla madre.
Tuttavia alcuni lavori stanno evidenziando la presenza di batteri nel tessuto placentare, nel sangue del cordone ombelicale, nelle membrane fetali e nel liquido amniotico di neonati sani senza indicazioni di infezioni o infiammazioni. E ad esempio, il meconio di neonati prematuri nati da madri sane contiene un microbiota specifico, con i Firmicutes come phylum principale e predominanza di stafilococchi, mentre nelle prime feci i più abbondanti sono i Proteobacteria, in particolare specie quali Escherichia coli, Klebsiella pneumoniae, Serratia marcescens, ma anche gli enterococchi.
Nota: il meconio è privo di particelle virali rilevabili.
Sembra che sia i batteri vaginali che quelli intestinali possano avere accesso al feto, anche se attraverso vie differenti: per via ascendente i primi, tramite le cellule dendritiche del sistema immunitario i secondi. Dunque potrebbe esistere anche un microbiota fetale.

Al momento del parto si verifica la colonizzazione ad opera di un piccolo inoculo di origine materna, formato in genere da aerobi obbligati e facoltativi (inizialmente l’intestino contiene ossigeno), poi sostituiti da anaerobi obbligati, i batteri tipici presenti nell’età adulta, cui i primi colonizzatori hanno preparato l’ambiente idoneo.
Inoltre è presente un basso numero di taxa differenti, con dominio relativo dei phyla Proteobacteria e Actinobacteria, che rimane tale anche durante il primo mese di vita, ma non nei successivi dove si verifica un grande aumento della variabilità, parallelo a quello di nuove varianti genetiche. Si ritiene che l’esposizione microbica iniziale sia importante nel definire le “traiettorie” che porteranno agli ecosistemi adulti. Infine, le comunità iniziali possono fungere da fonte diretta di batteri protettivi o patogeni molto presto nel corso della vita.
Nei bambini nati con parto naturale le più importanti fonti di inoculo sono il microbiota vaginale e fecale della madre. Infatti i neonati ospitano comunità microbiche dominate dai specie dei generi Lactobacillus (i più abbondanti nel microbiota vaginale ed anche nell’intestino neonatale nei primi giorni), Bifidobacterium, Prevotella, o Sneathia. E sembra probabile che gli anaerobi, quali i membri dei phyla Bacteroidetes e Firmicutes, non potendo vivere all’esterno dei loro ospiti, facciano affidamento allo stretto contatto tra genitore e figli per la trasmissione. Infine la trasmissione degli anerobi stretti, data la presenza nell’intestino del neonato di ossigeno, potrebbe avvenire in seguito per mezzo di spore e non direttamente al momento del parto.
In caso di parto cesareo, i primi batteri incontrati sono quelli della pelle e dell’ambiente ospedaliero, ed i neonati ospitano un microbiota dominato da specie appartenenti ai generi Corynebacterium, Staphylococcus e Propionibacterium, con una conta batterica intestinale più bassa ed una minore diversità nelle prime settimane di vita rispetto ai bimbi nati con parto naturale.
Ulteriore prova che avvalora l’ipotesi di una trasmissione verticale è il fatto che esista una somiglianza tra il microbiota intestinale presente nel meconio, e campioni prelevati dai possibili siti di contaminazione. Queste “firme” materne non persistono indefinitamente, ma vengono sostituite da altre popolazioni microbiche entro il primo anno di vita.
Fonti successive di inoculo sono la bocca e la pelle dei parenti, oggetti, animali, ma sembra essere il latte materno (vedi sotto) ad avere il ruolo primario nel determinare la successione microbica a livello intestinale.
La variazione e la diversità presente invece tra i bambini rifletterebbe l’individualità di queste esposizioni accidentali.
Nota: il tipo di parto sembra influenzare anche le funzioni immunologiche nel corso del primo anno di vita, forse attraverso l’influenza esercitata sullo sviluppo del microbiota intestinale. I bambini nati con il cesareo avrebbero:

  • una più bassa conta di cellule batteriche nei campioni di feci ad un mese dalla nascita, dovuta soprattutto alla più elevata presenza di Bifidobacterium nei bambini nati con parto naturale;
  • un più alto numero di cellule secretrici anticorpi (IgA, IgG ed IgM), il che potrebbe riflettere un’eccessiva esposizione agli antigeni che riuscirebbero ad attraversare la più vulnerabile barriera intestinale.

Entro giorni dalla nascita si viene a creare una fiorente comunità la cui popolazione è molto più variabile in composizione e meno stabile nel tempo rispetto a quella dell’adulto, e che ben presto supererà in numero quella delle cellule del neonato stesso, evolvendo secondo un pattern temporale notevolmente variabile da individuo ad individuo.
I virus, assenti alla nascita, dalla fine della prima settimana di vita raggiungono un numero di circa le 108 unità/grammo di peso fresco di feci, e quindi rappresentano una componente abbondante e dinamica del microbiota intestinale in via di sviluppo, ma con una diversità estremamente bassa, al pari di quella batterica. La comunità virale è dominata dai fagi, che probabilmente influenzano anche la diversità ed abbondanza dei batteri concomitanti come visto in precedenza. La sorgente iniziale di virus non è nota; tra le possibili fonti ci sono ovviamente quelle materne e ambientali. D’altro canto i primi virus potrebbero essere il risultato dell’induzione dei profagi della “neonata” flora batterica, ipotesi avvalorata dall’osservazione che oltre il 25% delle sequenze fagiche sembrano essere molto simili a quelle dei fagi che infettano batterici come Lactobacillus, Lactococcus, Enterococcus, e Streptococcus (abbondanti nel latte materno).

Dal termine del primo mese di vita si ritiene che la fase iniziale di rapida acquisizione di microbi seguente alla nascita sia terminata.
Dal punto di vista tassonomico nei bambini di un mese i microrganismi più abbondanti sembrano essere quelli appartenenti ai generi Bacteroides ed Escherichia, mentre i Bifidobacterium compaiono e crescono fino a dominare, assieme a Ruminococcus, il tratto gastrointestinale del bambino allattato al seno tra il primo e l’undicesimo mese di vita.
I bifidobatteri, come Bifidobacterium longum subspecies infantis,  sono:

  • strettamente correlati all’allattamento al seno;
  • tra i meglio caratterizzati fra i batteri commensali benefici;
  • probiotici, ossia microrganismi in grado di apportare effetti benefici sulla salute dell’ospite.

La loro abbondanza conferisce benefici anche attraverso un’esclusione competitiva con cui sono di ostacolo alla colonizzazione da parte di patogeni. Ed infatti Escherichia e Bacteroides possono divenire preponderanti se i  Bifidobacterium non colonizzano in modo adeguato.
Al contrario, nei bambini allattati artificialmente batteri dei generi Escherichia (ad es. E. coli), Clostridium (ad es. C. difficile), Bacteroides (ad es. B. fragilis) e Lactobacillus sono presenti in modo significativamente maggiore rispetto a quanto osservato nei bambini allattati al seno.
Anche se prima dello svezzamento la dieta del neonato allattato al seno è piuttosto costante, il suo microbiota non lo è altrettanto. Si osservano infatti ampie fluttuazioni nell’abbondanza dei taxa batterici, con differenze tra soggetti che riguardano anche i pattern temporali di variazione. Le variazioni osservate potrebbero essere dovute ad eventi casuali di colonizzazione, malattie, assunzione di antibiotici, cambiamenti nel comportamento dell’ospite o ad altri aspetti legati allo stile di vita, come anche a differenze nelle risposte immunitarie ai microbi colonizzatori. Ma come questi fattori contribuiscano a plasmare il microbiota intestinale del bambino non è ancora chiaro.
Sembra che anche il viroma si modifichi molto rapidamente dopo la nascita, in quanto la maggior parte delle sequenze virali presenti nella prima settimana di vita non si ritrova dopo la seconda, ed il repertorio si espande rapidamente in diversità e numero nel corso dei primi tre mesi. E questo contrasta con la stabilità che si osserva nell’adulto dove il 95% delle sequenze si conserva nel tempo.

In condizioni normali, verso la fine del primo anno di vita, il neonato è stato esposto ad una dieta complessa per un periodo significativo e dovrebbe aver sviluppato una comunità microbica con caratteristiche analoghe a quelle del microbiota intestinale adulto, quali:

  • una composizione più stabile, filogeneticamente più complessa, e progressivamente più simile tra soggetti diversi;
  • una preponderanze di Bacteroidetes e Firmicutes, una comune presenza di Verrucomicrobia e un’abbondanza molto bassa di Proteobacteria;
  • un aumento del carico batterico come dei livelli di acidi grassi a catena corta o SCFA, acronimo dell’inglese short chain fatty acids, nelle feci;
  • un aumento dei geni associati all’utilizzo dei carboidrati, alla biosintesi delle vitamine e alla degradazione degli xenobiotici.

Interessante notare che il significativo turn-over di taxa che si verifica dalla nascita al termine del primo anno è accompagnato da una notevole costanza nelle capacità funzionali complessive.
Verso la fine del primo anno di vita anche i colonizzatori virali sono oramai stati sostituiti da virus specifici del bambino.

Verso i due anni e mezzo di vita il microbiota intestinale raggiunge un suo equilibrio, somigliando in modo completo a quello dell’adulto.
La selezione dei batteri più altamente adattati è conseguenza di vari fattori.

  • Il passaggio ad una dieta solida.
  • Una maggiore idoneità all’ambiente intestinale dei taxa che tipicamente dominano il microbiota colonico adulto rispetto agli opportunisti iniziali.
  • I cambiamenti progressivi nell’ambiente intestinale, dovuti ai cambiamenti legati allo sviluppo della mucosa stessa.
  • Gli effetti del microbiota medesimo.

Quindi i primi 2-3 anni di vita sono il periodo più critico in cui intervenire al fine di ottenere il miglior microbiota possibile così da ottimizzare la crescita e lo sviluppo del bambino.

Tutto questo, partendo da un inizio caotico, porta alla costituzione dell’ecosistema intestinale tipico del giovane adulto, che è relativamente stabile nel tempo (comprese le componenti virale, eucariotica e gli Archeobatteri), sino alla vecchiaia, dominato almeno nella popolazione occidentale da specie dei phyla Firmicutes, che rappresentano circa il 60% della comunità batterica intestinale, Bacteroidetes ed Actinobacteria (principalmente con il genere Bifidobacterium), ognuno circa il 10% della comunità batterica, seguiti da Proteobacteria e Verrucomicrobia. I generi Bacteroides, Clostridium, Faecalibacterium, Ruminococcus ed Eubacterium, costituiscono, assieme a Methanobrevibacter smithii, la grande maggioranza della comunità batterica intestinale dell’adulto.
Risultati contrastanti con i dati esposti stanno emergendo dall’analisi di popolazioni ad esempio di villaggi rurali dell’Africa, come visto sopra.
Ed il microbiota intestinale è sufficientemente simile tra gli individui da permettere l’individuazione di un nucleo microbiomico condiviso.
La stabilità e resilienza è però soggetta a numerose variabili tra cui, come detto, la dieta sembra essere una delle più importanti, variabili che quindi dovranno essere mantenute costanti, o nel caso della malattie evitate (ad esempio attraverso le vaccinazioni), al fine di mantenere la stabilità del microbiota. Va comunque sottolineato che stabilità e resilienza potrebbero essere dannose nel caso in cui la comunità intestinale dominante sia patogena.

Negli anziani, come già visto nei neonati, il microbiota intestinale va incontro a sostanziali cambiamenti. In uno studio condotto in Irlanda su 161 persone sane di 65 o più anni, nella maggior parte dei soggetti il microbiota intestinale è distinto da quello degli adulti più giovani, con una composizione che sembra essere dominato dai phyla Bacteroidetes, i principali, seguiti dai Firmicutes, con percentuali quasi inverse rispetto a quelle trovate negli adulti più giovani (anche se sono state osservate notevoli variazioni tra i soggetti). E tra i generi più abbondanti si trovano Faecalibacterium, che rappresenta circa il 6% dei 15 generi principali, seguiti dalle specie dei generi Ruminococcus, Roseburia e Bifidobacterium (quest’ultimo intorno allo 0,4%).
Anche la variabilità nella composizione delle comunità è più grande rispetto ai giovani adulti, il che potrebbe essere dovuto alla maggior morbilità associata con l’età, e quindi il successivo utilizzo di medicinali, nonché a variazioni della dieta.

⇑ Torna all’inizio ⇑

Bibliografia

Breitbart M., Haynes M., Kelley S., Angly F., Edwards R.A., Felts B., Mahaffy J.M., Mueller J., Nulton J., Rayhawk S., Rodriguez-Brito B., Salamon P., Rohwer F. Viral diversity and dynamics in an infant gut. Res Microbiol 2008;159:367-73. doi:10.1016/j.resmic.2008.04.006

Claesson M.J., Cusack S., O’Sullivan O., Greene-Diniz R., de Weerd H., Flannery E., Marchesi J.R., Falush D., Dinan T., Fitzgerald G., et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA 2011;108(Suppl 1);4586-91. doi:10.1073/pnas.1000097107

Clemente J.C., Ursell L.K., Wegener Parfrey L., and Knight R. The impact of the gut microbiota on human health: an integrative view. Cell 2012;148:1258-70. doi:10.1016/j.cell.2012.01.035

De Filippo c., Cavalieri D., Di Paola M., Ramazzotti M., Poullet J.B., Massart S., Collini S., Pieraccini G., and Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci 2010;107(33):14691-6. doi:10.1073/pnas.1005963107

Dominguez-Bello M.G., Costello E.K., Contreras M., Magris M., Hidalgo G., Fierer N., and Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci 2010;107:11971-5. doi:10.1073/pnas.1002601107

Fernández L., Langa S., Martín V., Maldonado A., Jiménez E., Martín R., Rodríguez J.M. The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res 2013;69(1):1-10. doi:10.1073/pnas.1002601107

Huurre A., Kalliomäki M., Rautava S., Rinne M., Salminen S., and Isolauri E. Mode of delivery-effects on gut microbiota and humoral immunity. Neonatology 2008;93:236-40. doi:10.1159/000111102

Koenig J.E., Spor A., Scalfone N., Fricker A.D., Stombaugh J., Knight R., Angenent L.T., and Ley R.E. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci 2011;108(1):4578-85. doi:10.1073/pnas.1000081107

Ley R.E., Peterson D.A., and Gordon J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006;124(4):837-48. doi:10.1016/j.cell.2006.02.017

Minot S., Sinha R., Chen J., Li H., Keilbaugh S.A., Wu G.D., Lewis J.D., and Bushman F.D. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res 2011;21:1616-1625. doi:10.1101/gr.122705.111

Moreno-Indias I.M., Cardona F., Tinahones F.J. and Queipo-Ortuño M.I. Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front Microbiol 2014;5(190):1-10 . doi:10.3389/fmicb.2014.00190

Newburg D.S. & Morelli L. Human milk and infant intestinal mucosal glycans guide succession of the neonatal intestinal microbiota. Pediatr Res 2015;77:115-120. doi:10.1038/pr.2014.178

Palmer C., Bik E.M., DiGiulio D.B., Relman D.A., and Brown P.O. Development of the human infant intestinal microbiota. PLoS Biol 2007;5(7):e177. doi:10.1371/journal.pbio.0050177

Rodrıguez J.M., Murphy K., Stanton C., Ross R.P., I. Kober O.I., Juge N., Avershina E., Rudi K., Narbad A., Jenmalm M.C., Marchesi J.R. and Collado M.C. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis 2015;26:26050. doi:10.3402/mehd.v26.26050

Wu G.D., Chen J., Hoffmann C., Bittinger K., Chen Y.Y., Keilbaugh S.A., Bewtra M., Knights D., Walters W.A., Knight R., et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011;334:105-8. doi:10.1126/science.1208344

Microbiota umano: definizione, composizione, funzioni, antibiotici

Microbiota umano: contenuti in breve

Che cos’è il microbiota umano

Microbiota Umano
Fig. 1 – Lactobacillus casei

E’ noto da quasi un secolo che gli esseri umani ospitano un ecosistema microbico, definito microbiota umano, straordinariamente denso e diversificato, formato da un numero di virus e cellule molto superiore a quello che compone il corpo umano, e che rappresenta dall’uno al tre per cento del peso corporeo.
I geni che i microrganismi componenti il microbiota umano codificano, che sono circa 1000 volte più numerosi rispetto a quelli del nostro genoma,  formano il microbioma umano.
I microrganismi colonizzano tutte le superfici del corpo esposte all’ambiente. Distinte comunità microbiche sono infatti presenti sulla pelle, nella vagina, nelle vie aeree, e lungo tutto il tubo digerente, a partire dalla bocca, passando attraverso lo stomaco sino a raggiungere le parti terminali dell’intestino.

⇑ Torna all’inizio ⇑

Composizione del microbiota umano

Microbiota Umano
Fig. 2 – Escherichia coli

E’ costituito da organismi provenienti da tutti i taxa.

  • I batteri, presenti con almeno cento trilioni (1014) di cellule, un numero dieci volte maggiore rispetto a quelle che compongono il corpo umano. Si ritrovano per la maggior parte a livello del tratto intestinale, dove, con concentrazioni sino a 1012-1014/grammo di tessuto, formano uno degli habitat più densamente popolati esistenti sulla terra. In questa sede sono particolarmente abbondanti membri dei phyla Firmicutes, ma anche di Bacteroidetes e Actinobacteria.
    Nota: le comunità microbiche di una data sede si “somigliano” tra di loro molto di più di quanto le stesse non somiglino a quelle presenti in altri siti dello stesso soggetto; ad esempio, le comunità delle vie aeree superiori sono molto più simili tra individui differenti che non a quelle della pelle o dell’intestino di uno stesso soggetto.
  • I virus, in assoluto i componenti più numerosi essendo presenti con quadrilioni di unità. I genomi di tutti i virus ospitati costituiscono il viroma umano.
    In passato i virus e gli eucarioti (vedi sotto) del microbiota umano sono stati studiati focalizzandoci sui microrganismi patogeni, ma negli ultimi anni l’attenzione si è spostata anche sui numerosissimi membri non patogeni di questi gruppi. E riguardo ai virus, molte delle sequenze geniche trovate sono nuove, il che suggerisce che ci sia ancora molto da conoscere sul viroma umano.
    Infine, al pari dei batteri, anche per i virus esiste una notevole variabilità interpersonale.
  • Archeobatteri, in particolare microrganismi appartenenti all’ordine dei  Methanobacteriales, con Methanobrevibacter smithii predominante nell’intestino umano (rappresentando sino al 10% di tutti gli anaerobi).
  • Eucarioti, e tra i primi identificati probabilmente ci sono i parassiti del genere Giardia e Entamoeba. Ma vi è anche una grande abbondanza e diversità di funghi, appartenenti ad esempio a generi quali Candida, Penicillium, Aspergillus, Hemispora, Fusarium, Geotrichum, Cryptococcus, Hormodendrum, Saccharomyces e Blastocystis.
Microbiota Umano
Fig. 3 – Candida albicans

Sulla base dei rapporti che stabiliscono con l’ospite, i microrganismi possono essere suddivisi in due categorie: commensali e patogeni.

  • I commensali non causano danno all’ospite, con cui anzi instaurano una simbiosi di tipo mutualistico che in genere porta benefici ad entrambe.
  • I patogeni sono al contrario in grado di causare malattie, ma fortunatamente rappresentano una minima percentuale della nostra flora microbica. Si tratta di microrganismi che stabiliscono una simbiosi con l’ospite traendone beneficio a suo svantaggio.
    In genere causano malattia se si verifica:

un “cambio di sede”, ossia se si spostano dalla loro normale nicchia, ad esempio l’intestino, ad un’altra impropria, quale la vagina o la vescica (come nel caso del fungo Candida albicans presente normalmente, ma in piccolissima quantità, nell’intestino);
un indebolimento delle difese immunitarie dell’ospite, come dopo un trapianto o comunque una terapia immunosoppressiva.

⇑ Torna all’inizio ⇑

Funzioni del microbiota umano

Microbiota Umano
Fig. 4 – Bifidobacterium longum

Talvolta definito “l’organo dimenticato”, il microbiota umano, ed in particolare la sua componente batterica intestinale, svolge numerose ed importanti funzioni che possono portare a benefici nutrizionali, immunologici, e di sviluppo, ma può anche essere causa di malattie per l’ospite.
Di seguito alcuni esempi.

  • E’ coinvolto nello sviluppo del sistema gastrointestinale, come dimostrato da esperimenti condotti su animali germ-free nei quali, ad esempio, lo spessore della mucosa intestinale è più sottile rispetto a quella di animali colonizzati, dunque più facilmente soggetto ad insulti che ne causino la rottura.
  • Concorre all’estrazione dell’energia dai nutrienti, grazie alla sua capacità di fermentare carboidrati per noi indigeribili; inoltre promuove l’assorbimento dei monosaccaridi ed il deposito dell’energia ricavata. Tutto ciò con molta probabilità ha rappresentato una forza evolutiva molto forte che ha giocato a favore del fatto che questi batteri siano diventati nostri simbionti.
  • Concorre al mantenimento del pH acido della pelle e del contenuto del colon.
  • E’ coinvolto nel metabolismo degli xenobiotici e di molti polifenoli.
  • Migliora l’assorbimento di acqua e sali minerali (ferro, calcio e magnesio) nel colon.
  • Aumenta la velocità di transito intestinale, più lenta negli animali germ-free.
  • Ha un ruolo importante nella resistenza alla colonizzazione da parte di microrganismi patogeni, in particolare nella vagina e nell’intestino.
  • E’ coinvolto nella biosintesi di isoprenoidi e vitamine attraverso la via del metileritritolo fosfato.
  • Stimola l’angiogenesi.
  • Interagisce con il sistema immunitario, fornendo segnali per promuovere la maturazione delle cellule immunitarie ed il normale sviluppo delle funzioni immuni. E questo è forse l’effetto più importante derivante dalla simbiosi tra uomo e microrganismi. Esperimenti condotti su animali germ-free hanno infatti evidenziato che:

i macrofagi, le cellule che hanno il compito di fagocitare i patogeni e poi presentarne gli antigeni al sistema immunitario, sono presenti in scarsissima quantità rispetto all’intestino colonizzato, e se messi in presenza di batteri non riescono a trovarli e quindi a fagocitarli, a differenza dei macrofagi estratti da un intestino colonizzato;
manca la flogosi cronica aspecifica, una condizione normale del nostro intestino dovuta alla presenza di un tessuto immunitario molto sviluppato e allenato, proprio grazie alla presenza dei batteri nel lume intestinale (ed anche di ciò che mangiamo).

  • Cambiamenti nella sua composizione possono contribuire allo sviluppo di obesità e sindrome metabolica.
  • Protegge dallo sviluppo del diabete di tipo I.
  • Molte malattie, sia del bambino che dell’adulto, tra cui il tumore dello stomaco e del colon, i linfomi del tessuto linfoide associato alla mucosa, l’enterocolite necrotizzante (un’importante causa di morbilità e mortalità nei prematuri) o le malattie croniche intestinali, sono ed altre appaiono essere collegate al microbiota intestinale.

Sembra quindi molto probabile che l’organismo umano rappresenti un superorganismo frutto di tanti anni di evoluzione, composto oltre che dalle proprie cellule e capacità metaboliche e fisiologiche che ne derivano, anche da un altro organo aggiunto, il microbiota.

⇑ Torna all’inizio ⇑

Human Microbiome Project

Microbiota Umano
Fig. 5- Human Microbiome Project

La componente batterica del microbiota umano è l’oggetto di vari studi tra i quali un progetto molto ampio partito nel 2008 chiamato “Human Microbiome Project”, che ne analizza il microbioma associato a vari habitat del corpo, quali pelle, bocca, naso, vagina ed intestino, in una popolazione sana di 242 adulti.
Questi studi hanno evidenziato l’esistenza di una grande variabilità nella composizione del microbiota umano, con i gemelli che condividono meno del 50% dei loro taxa batterici a livello di specie, ed una percentuale anche minore riguardo i virus.
I fattori che modellano la composizione delle comunità microbiche iniziano ad essere compresi; ad esempio le caratteristiche genetiche dell’ospite hanno un ruolo importante nel creare e plasmare le comunità batteriche presenti, anche se questo non è vero per quelle virali. E studi di metagenomica hanno evidenziato che, nonostante la grande variabilità interpersonale nella composizione delle comunità microbiche, esiste un ampio nucleo condiviso di geni codificante vie del segnale e metaboliche. Sembra cioè che l’assemblaggio e la struttura delle comunità microbiche non avvenga in base alle specie quanto al gruppo più funzionale di geni. E da questo ne deriverebbe che stati di malattia di queste comunità possano essere meglio identificati da distribuzione atipiche di classi di geni funzionali.

⇑ Torna all’inizio ⇑

Effetti degli antibiotici sul microbiota umano

Microbiota Umano
Fig. 6 – Clostridium difficile

l microbiota di un individuo adulto sano è generalmente stabile nel tempo. Tuttavia la sua composizione può essere alterata ad opera di fattori esterni come l’urbanizzazione, i viaggi , le modifiche della dieta, ma soprattutto l’uso di antibiotici a largo spettro.
Gli antibiotici hanno un profondo effetto.

  • Vi è una riduzione a lungo termine nella diversità batterica.
  • I taxa colpiti variano da individuo ad individuo (posso essere interessati fino ad un terzo di quelli presenti).
  • Alcuni taxa non recuperano anche dopo 6 mesi dal trattamento.
  • Una volta che la comunità batterica si è rimodellata dopo il trattamento con il farmaco, si osserva una ridotta resistenza alla colonizzazione. Ciò permette a microbi estranei e/o patogeni in grado di crescere più dei commensali di causare cambiamenti permanenti nella struttura del microbiota umano, come anche malattie sia acute, ad esempio la pericolosa colite pseudomembranosa, che croniche, come si sospetta per l’asma a seguito dell’uso ed abuso di antibiotici nell’infanzia.
    Inoltre il loro ripetuto uso sembra aumentare la riserva di geni per la resistenza agli antibiotici nel nostro microbioma. A supporto di questa ipotesi in alcune nazioni europee è stata osservata una riduzione nel numero dei patogeni antibiotico-resistenti a seguito di un calo nel numero degli antibiotici prescritti.

Infine non va sottovalutato il fatto che la microflora batterica intestinale è implicata in molte trasformazioni chimiche, per cui una sua alterazione potrebbe avere implicazioni nello sviluppo del cancro come dell’obesità.
Tuttavia, riguardo all’uso degli antibiotici va sottolineato che se abbiamo un’aspettativa di vita molto superiore al passato è anche perché non moriamo più di malattie infettive!

⇑ Torna all’inizio ⇑

Bibliografia

Burke C., Steinberg P., Rusch D., Kjelleberg S., and Thomas T. Bacterial community assembly based on functional genes rather than species. Proc Natl Acad Sci USA 2011;108:14288-93. doi:10.1073/pnas.1101591108

Clemente J.C., Ursell L.K., Wegener Parfrey L., and Knight R. The impact of the gut microbiota on human health: an integrative view. Cell 2012;148:1258-70. doi:10.1016/j.cell.2012.01.035

Gill S.R., Pop M., Deboy R.T., Eckburg P.B., Turnbaugh P.J., Samuel B.S., Gordon J.I., Relman D.A., Fraser-Liggett C.M., and Nelson K.E. Metagenomic analysis of the human distal gut microbiome. Science 2006;312:1355-59. doi:10.1126/science.1124234

Palmer C., Bik E.M., DiGiulio D.B., Relman D.A., and Brown P.O. Development of the human infant intestinal microbiota. PLoS Biol 2007;5(7):e177. doi:10.1371/journal.pbio.0050177

The Human Microbiome  Project

Turnbaugh P.J., Gordon J.I. The core gut microbiome, energy balance and obesity. J Physiol 2009;587:4153-58. doi:10.1113/jphysiol.2009.174136

Zhang, T., Breitbart, M., Lee, W., Run, J.-Q., Wei, C., Soh, S., Hibberd, M., Liu, E., Rohwer, F., Ruan, Y. Prevalence of plant viruses in the RNA viral community of human feces. PLoS Biol 2006;4(1):e3. doi:10.1371/journal.pbio.0040003

Biosintesi dei flavonoidi nelle piante

Biosintesi dei flavonoidi: contenuti in breve

Vie di biosintesi dei flavonoidi

Biosintesi dei Flavonoidi
Fig. 1 – Biosintesi dei Polifenoli Flavonoidi

La biosintesi dei flavonoidi, probabilmente la via metabolica meglio caratterizzata tra quelle del metabolismo secondario delle piante, fa parte della via biosintetica dei fenilpropanoidi, che porta alla formazione, oltre che dei flavonoidi, anche di un’ampia gamma di composti fenolici quali gli acidi idrossicinnamici, gli stilbeni, i lignani e le lignine.
La biosintesi dei flavonoidi è legata al metabolismo primario da intermedi di derivazione sia mitocondriale che plastidica. Queste molecole dovranno essere trasportate nel citoplasma per essere utilizzate, in quanto sembra che la maggior parte degli enzimi coinvolti sino ad ora caratterizzati lavorino uniti in complessi localizzati nel citosol della cellula.
I prodotti finali raggiungono i vari distretti intra- od extracellulari, con i flavonoidi coinvolti nella pigmentazione in genere trasportati all’interno dei vacuoli.
La biosintesi di questo ampio gruppo di polifenoli richiede come substrati iniziali una molecola di p-cumaril-CoA e tre di malonil-CoA.

⇑ Torna all’inizio ⇑

Biosintesi del p-cumaril-CoA

Biosintesi dei Flavonoidi
Fig. 2 – p-Cumaril-CoA

Il p-cumaril-CoA rappresenta il più importante punto di ramificazione della via dei fenilpropanoidi, essendo il precursore di un’ampia varietà di prodotti fenolici, di natura sia flavonoide che non flavonoide.
E’ prodotto a partire dalla fenilalanina attraverso un nucleo di tre reazioni catalizzate da enzimi ad azione citosolica detti enzimi del gruppo I od ad azione precoce, in ordine di azione:

  • fenilalanina ammoniaca liasi (EC 4.3.1.24);
  • cinnamato 4-idrossilasi o acido cinnamico 4-idrossilasi (EC 1.14.13.11);
  • 4-cumarato:CoA ligasi o idrossicinnamico:CoA ligasi (EC 6.2.1.12).

Sembra che questi enzimi si associno a formare un complesso multienzimatico ancorato al reticolo endoplasmatico, ancoraggio probabilmente assicurato dalla cinnamato 4-idrossilasi che inserisce il proprio dominio N-terminale nella membrana del reticolo stesso. Queste strutture, definite “metaboloni”, fanno si che il prodotto di una reazione sia incanalato direttamente verso il sito attivo dell’enzima che catalizza la reazione successiva.
Con l’esclusione della cinnamato 4-idrossilasi, in tutte le specie analizzate gli enzimi che intervengono a valle della fenilalanina ammoniaca liasi sono codificati da piccole famiglie di geni.
Le diverse forme isoenzimatiche mostrano pattern di espressione temporali, tissutali e indotti da elicitori, distinti; sembra infatti che ogni membro di ciascuna famiglia possa essere utilizzato soprattutto per la sintesi di uno specifico composto, agendo in questo modo come punto di controllo del flusso del carbonio verso le vie di biosintesi dei flavonoidi, lignani e lignine.

Nota: la fenilalanina, che da il nome alla via dei fenilpropanoidi, è un prodotto della via dell’acido shikimico, via che converte semplici precursori derivanti dal metabolismo dei carboidrati, fosfoenolpiruvato e eritrosio-4-fosfato, negli aminoacidi aromatici fenilalanina, tirosina e triptofano. Poiché gli animali non posseggono questa via metabolica, presente invece nelle piante e nei microorganismi, non sono in grado di sintetizzare i tre aminoacidi suddetti, che dunque risultano essenziali.

⇑ Torna all’inizio ⇑

Fenilalanina ammonica liasi

Biosintesi dei Flavonoidi
Fig. 3 – Fenilalanina Ammoniaca Liasi

E’ uno degli enzimi meglio studiati e caratterizzati del metabolismo secondario delle piante. Non richiede cofattori e catalizza la reazione che lega il metabolismo primario e quello secondario: la deaminazione della fenilalanina in acido trans-cinnamico, con liberazione dell’azoto in forma di ammoniaca ed inserzione di un doppio legame trans tra il C7 ed il C8 della catena laterale. Quindi dirige il flusso di carbonio dalla via dello shikimato a quella delle varie branche del metabolismo fenilpropanoico. L’ammoniaca rilasciata viene probabilmente fissata nella reazione catalizzata dalla glutammina sintetasi.
L’enzima presente nelle  monocotiledoni è anche in grado di agire come tirosina ammoniaca liasi (EC 4.3.1.25), convertendo direttamente la tirosina in acido p-cumarico (saltando quindi la idrossilazione in posizione 4), anche se con efficienza minore rispetto all’attività sulla fenilalanina.
In tutte le specie sono state trovate numerose copie dei geni per la fenilalanina ammoniaca liasi, copie che probabilmente rispondono in maniera differente a stimoli interni ed esterni. La trascrizione del gene e dunque l’attività dell’enzima è infatti sottoposta a regolazione da parte di fattori interni legati allo sviluppo e fattori esterni. Di seguito alcuni esempi che richiedono un aumento dell’attività dell’enzima.

  • La fioritura.
  • La produzione di lignina per il rafforzamento della parete cellulare secondaria delle cellule dello xilema.
  • La produzione di pigmenti per attrarre gli impollinatori.
  • L’attacco di patogeni che richieda la produzione di fitoalessine di natura fenilpropanoica, o l’esposizione a raggi UV.

⇑ Torna all’inizio ⇑

Cinnamato 4-idrossilasi

Biosintesi dei Flavonoidi
Fig. 4 – Cinnamato 4-Idrossilasi

Enzima della famiglia del citocromo P450 (EC 1.14.-.-), è una monossigenasi a localizzazione microsomiale, contenente un gruppo eme come cofattore, e dipendente dal NADPH e dall’ossigeno molecolare. Catalizza l’introduzione del gruppo ossidrilico in posizione 4 dell’acido trans-cinnamico (gruppo ossidrilico che si osserva nella maggior parte dei flavonoidi conosciuti) e formazione di acido p-cumarico. Questa reazione che fa parte anche della via di sintesi degli acidi idrossicinnamici.
Aumenti nei livelli di trascrizione del gene e di attività dell’enzima sono stati osservati in correlazione con la sintesi di fitoalessine in risposta ad infezioni  fungine, la lignificazione o lesioni alla pianta.

⇑ Torna all’inizio ⇑

4-Cumarato:CoA ligasi

Biosintesi dei Flavonoidi
Fig. 5 – 4-Cumarato:CoA Ligasi

In presenza di Mg2+ che agisce da cofattore, permette l’attivazione ATP-dipendente del gruppo carbossilico dell’acido p-cumarico e degli altri acidi idrossicinnamici, di per se piuttosto inerti, attraverso la formazione dei corrispondenti CoA-tioestere. In genere l’acido p-cumarico e l’acido caffeico sono i substrati preferiti, seguiti dall’acido ferulico e dall’acido 5-idrossiferulico, mentre si osserva una bassa attività nei confronti dell’acido trans-cinnamico e nessuna nei confronti dell’acido sinapico. I CoA-tioesteri prodotti sono in grado di entrare in differenti vie metaboliche come:

  • la riduzione ad aldeidi ed alcol (monolignoli);
  • l’addizione di unità di acetato fornite dal malonil-CoA, nel caso della biosintesi dei flavonoidi e degli stilbeni;
  • il trasferimento a molecole accettrici.

Va infine sottolineato che l’attivazione del gruppo carbossilico può essere ottenuta anche attraverso il trasferimento al glucosio dipendente non dall’ATP ma dall’UDP-glucosio.

⇑ Torna all’inizio ⇑

Biosintesi del malonil-CoA

Il malonil-CoA non deriva dalla via dei fenilpropanoidi, ma si forma nella reazione catalizzata dall’acetil-CoA carbossilasi (EC 6.4.1.2, la forma citosolica, vedi sotto). L’enzima, che ha come cofattori la biotina ed il Mg2+, catalizza la carbossilazione ATP-dipendente dell’acetil-CoA, utilizzando lo ione bicarbonato come donatore di anidride carbonica (CO2).

Biosintesi dei Flavonoidi
Fig. 6 – Acetil-CoA Carbossilasi

Si trova sia nei plastidi, dove interviene nella sintesi degli acidi grassi, che nel citoplasma, ed è quest’ultimo che catalizza la formazione del malonil-CoA che sarà utilizzato nella biosintesi dei flavonoidi e di altri composti. Aumenti dei livelli di trascrizione del gene e dell’attività dell’enzima sono indotti in risposta a stimoli che aumentano la biosintesi di questi polifenoli, come l’esposizione a funghi patogeni o raggi UV.
A sua volta l’acetil-CoA può essere prodotto nei mitocondri, plastidi, perossisomi e nel citosol attraverso differenti vie metaboliche. Quello che è utilizzato nella biosintesi del malonil-CoA e quindi dei flavonoidi è di derivazione citosolica, prodotto nella reazione catalizzata dalla ATP-citrato liasi (EC 2.3.3.8) che converte citrato, ATP e CoA in acetil-CoA, ossalacetato, ADP e fosfato inorganico.

⇑ Torna all’inizio ⇑

Passaggi iniziali della biosintesi dei flavonoidi

Biosintesi dei Flavonoidi
Fig. 7 – Naringenina Calcone

Il primo passo nella biosintesi dei flavonoidi è catalizzato dalla calcone sintasi (EC 2.3.1.74), un enzima ancorato al reticolo endoplasmatico e privo di cofattori noti.
In presenza di una molecola di p-cumaril-CoA e tre di malonil-CoA, catalizza una serie di decarbossilazioni e condensazioni sequenziali, nel corso delle quali si forma un intermedio polichetide che subisce ciclizzazioni ed aromatizzazioni che portano alla formazione dell’anello A, e la risultante struttura dei calconi. Il prodotto delle reazioni suddette è la naringenina calcone (2’,4,4′,6′-tetraidrossicalcone),  un 6’-idrossicalcone ed il primo flavonoide prodotto.
La reazione, citosolica, è irreversibile grazie al rilascio di tre molecole di CO2 e 4 di CoA.

Biosintesi dei Flavonoidi
Fig. 8 – Scheletro di Base dei Flavonoidi

L’anello B e il ponte centrale a 3 atomi di carbonio della molecole derivano dal p-cumaril-CoA (e quindi dalla fenilalanina), mentre l’anello A dalle tre unità di malonil-CoA.
Altro possibile prodotto della reazione è il 6’-deossicalcone, la cui sintesi sembra coinvolgere un passaggio addizionale di riduzione catalizzata da una polichetide reduttasi (EC. 1.1.1.-).
Le calcone sintasi di alcune specie, ad esempio l’orzo (Hordeum vulgare), possono accettare come substrati anche il caffeoil-CoA, il feruloil-CoA e il cinnamoil-CoA.
E’ l’enzima più abbondante della via dei fenilpropanoidi, probabilmente perché ha una bassa attività catalitica, ed è infatti considerato l’enzima limitante della via di biosintesi dei flavonoidi.
Come per la fenilalanina ammoniaca liasi, anche la sua sintesi è soggetta a controlli multipli dell’espressione genica ad opera di fattori interni ed esterni. In alcune piante, sono state trovate una o due isoforme, mentre in altre fino a 9.
Appartiene al gruppo delle polichetide sintasi, presenti nei batteri, funghi e piante. Sono enzimi in grado di formare catene polichetidiche attraverso la condensazione sequenziale di unità di acetato provenienti da malonil-CoA. Questa classe di enzimi comprende anche la stilbene sintasi (EC 2.3.1.146), che catalizza la formazione di resveratrolo, un polifenolo non flavonoide difensivo delle piante che ha suscitato molto interesse per la salute umana.

Biosintesi dei Flavonodi
Fig. 9 – (2S)-Naringenina

Di solito le piante non accumulano calconi, ed infatti dopo la sua formazione la naringenina calcone, nella reazione catalizzata dalla calcone isomerasi (EC 5.5.1.6) viene convertita in (2S)-naringenina, un flavanone. L’enzima, il primo della via di biosintesi dei flavonoidi ad essere scoperto, catalizza una isomerizzazione stereospecifica, chiudendo l’anello C. Sono state ritrovate due tipi di calcone isomerasi, indicate come tipo I e II. Il tipo I può utilizzare come substrati solo i 6’-idrossicalconi, come la naringenina calcone, mentre il tipo II, prevalente nelle leguminose, può catalizzare l’isomerizzazione sia dei 6’-idrossi- che dei 6’-deossicalconi.
Da notare che con i 6’-idrossicalconi l’isomerizzazione può avvenire anche non enzimaticamente a formare una miscela racemica, sia in vitro che in vivo; addirittura sembra con un grado tale da permettere una moderata sintesi di antociani. Al contrario in condizioni fisiologiche i 6’-deossicalconi sono stabili, per cui è richiesta la catalisi ad opera della isomerasi di tipo II per convertirli in flavanoni.
L’enzima assicura un aumento della velocità di reazione di 107 volte rispetto alla reazione spontanea, ma con una cinetica decisamente più lenta con i 6’-deossicalconi rispetto ai 6’-idrossicalconi. Infine permette l’ottenimento dei (2S)-flavanoni, che sono quelli biosinteticamente necessari.
Al pari di altri enzimi della biosintesi dei flavonoidi, anche la sua sintesi è soggetta ad uno stretto controllo. E come la fenilalanina ammoniaca liasi e la calcone sintasi, è indotta dagli elicitori.

Biosintesi dei Flavonoidi
Fig. 10 – Diidrocampferolo

Nella reazione catalizzata dalla flavanone-3β-idrossilasi (EC 1.14.11.9) i (2S)-flavanoni vanno incontro ad una isomerizzazione stereospecifica che li converte nei rispettivi (2R,3R)-diidroflavonoli. In particolare la naringenina è convertita in diidrocampferolo.
L’enzima, citosolico, è una non-eme diossigenasi dipendente dal Fe2+ e dal 2-ossiglutarato, e dunque appartenente alla famiglia delle diossigenasi 2-ossiglutarato-dipendenti (il che le distingue delle altre idrossilasi della via di biosintesi dei flavonoidi che sono enzimi citocromo P450).
La naringenina calcone, la (2S)-naringenina ed il suo derivato diidrocampferolo (diidroflavonolo) sono intermedi centrali nella biosintesi dei flavonoidi, essendo punti di ramificazione da cui si diparte la sintesi di distinte sottoclassi di flavonoidi. Ad esempio, direttamente o indirettamente:

Non tutte queste vie di sintesi sono presenti in tutte le piante, o sono attive all’interno di ogni tessuto di una data pianta. Al pari degli enzimi visti in precedenza, anche l’attività di quelli coinvolti in queste vie metaboliche “collaterali” è soggetta ad uno stretto controllo, che risulta in un profilo di metaboliti di natura flavonoide tessuto specifico. L’esempio è il chicco d’uva, dove la buccia, la polpa ed i semi hanno un profilo ben distinto riguardo al contenuto in antociani, catechine, tannini condensati e flavonoli, la cui sintesi ed accumulo è strettamente e temporalmente coordinata nel corso dello sviluppo.

⇑ Torna all’inizio ⇑

Bibliografia

Andersen Ø.M., Markham K.R. Flavonoids: chemistry, biochemistry, and applications. CRC Press Taylor & Francis Group, 2006

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Heldt H-W. Plant biochemistry – 3th Edition. Elsevier Academic Press, 2005

Vogt T. Phenylpropanoid biosynthesis. Mol Plant 2010;3(1):2-20. doi:http://dx.doi.org/10.1093/mp/ssp106

Wink M. Biochemistry of plant secondary metabolism – 2nd Edition. Annual plant reviews (v. 40), Wiley J. & Sons, Inc., Publication, 2010

Lignani: definizione, struttura chimica, biosintesi, metabolismo, alimenti

I lignani: contenuti in breve

Che cosa sono i lignani

I lignani sono un sottogruppo di polifenoli non flavonoidi.
Sono ampiamente distribuiti nel regno vegetale, essendo presenti in oltre 55 famiglie di piante, dove svolgono funzioni difensive nei confronti di attacchi da parte di funghi e batteri patogeni, ed agiscono anche come antiossidanti.
Nell’uomo, studi epidemiologici e fisiologici hanno dimostrato che sono in grado di esercitare effetti positivi nella prevenzione di patologie correlate allo stile di vita, quali il diabete di tipo II ed il cancro. Ad esempio, un aumento del loro consumo nella dieta si correla con una riduzione dell’insorgenza di alcuni tipi di tumori estrogeno-dipendenti, come il tumore al seno in donne in postmenopausa.
Inoltre alcuni lignani hanno suscitato anche interesse farmacologico. Esempi o sono:

  • la podofillotossina, ottenuta da piante del genere Podophyllum (famiglia Berberidaceae), una tossina mitotica i cui derivati sono stati utilizzati come chemioterapici;
  • l’arctigenina e la tracheologina, ottenute da piante rampicanti tropicali, che posseggono proprietà antivirali e sono state testate nella ricerca di un farmaco per la cura dell’AIDS.

⇑ Torna all’inizio ⇑

Struttura chimica dei lignani

Lignani
Fig. 1 – Unità di Fenilpropano

La loro struttura chimica di base si compone di due unità di fenilpropano legate attraverso un legame carbonio-carbonio che si stabilisce principalmente tra gli atomi centrali delle rispettive catene laterali (posizione 8 o β), legame anche detto β-β’. Meno frequentemente si osservano legami 3-3’, 8-O-4’, o 8-3’; in questi casi i dimeri sono definiti neolignani.
Dunque la loro struttura chimica può essere indicata come (C6-C3)2 e pertanto, al pari degli acidi idrossicinnamici da cui derivano (vedi sotto), appartengono alla classe dei fenilpropanoidi.
Sulla base dello scheletro carbonioso, del pattern di ciclizzazione e del modo in cui l’ossigeno è incorporato nello scheletro della molecola, possono essere suddivisi in 8 sottogruppi: furani, furofurani, dibenzilbutani, dibenzilbutirrolattoni, dibenzocicloottadieni, dibenzilbutirrolattoli, ariltetraline e arilnafatleni. In aggiunta esiste una notevole variabilità riguardo i livelli di ossidazione delle catene laterali propiliche e di entrambe gli anelli aromatici.
In natura non sono presenti in forma libera ma legati ad altre molecole, in genere glicosilati.
Tra i più comuni si ritrovano il secoisolariciresinolo, il più abbondante, ma in buone quantità anche lariciresinolo, pinoresinolo, matairesinolo e 7-idrossimatairesinolo.

Nota: i lignani si possono presentare non solo in forma di dimeri ma anche di oligomeri più complessi, come i dilignani ed i sesquilignani.

⇑ Torna all’inizio ⇑

Sintesi dei lignani

Lignani
Fig. 2 – Biosintesi dei Lignani

Di seguito verrà presa in esame la sintesi di alcuni tra i lignani più comuni.
La via metabolica ha inizio a partire da 3 dei 4 acidi idrossicinnamici alimentari più comuni: l’acido p-cumarico, l’acido sinapico e l’acido ferulico (l’acido caffeico non è un precursore dei questo sottogruppo di polifenoli). Quindi in ultima analisi derivano dalla fenilalanina e dunque dalla via dell’acido shikimico.
Le prime tre reazioni riducono i gruppi carbossilici degli idrossicinnamati a gruppi alcolici, con formazione di alcol detti monolignoli, ossia l’alcol p-cumarilico, l’alcol sinapilico e l’alcol coniferilico, molecole che entrano anche nella biosintesi della lignina.

  • La prima reazione, che porta all’attivazione degli acidi idrossicinnamici, è catalizzata dalla idrossicinnamato:CoA ligasi o 4-cumarato:CoA ligasi (EC 6.2.1.12), con formazione del corrispettivo idrossicinnamato-CoA, e dunque feruloil-CoA, p-cumaril-CoA e sinapil-CoA.
  • Di seguito intervengono le cinnamoil-CoA ossidoreduttasi NADPH-dipendenti o cinnamoil-CoA reduttasi (EC1.2.1.44), che catalizzano la formazione dell’aldeide corrispondente, con liberazione del coenzima A.
  • Nell’ultima delle tre tappe suddette le cinnamil alcol deidrogenasi o monolignolo deidrogenasi NADPH-dipendenti (EC 1.1.1.195) riducono ulteriormente il gruppo aldeidico ad alcol, con formazione di alcol coniferilico, alcol p-cumarilico e alcol sinapilico.

Il passaggio successivo, la dimerizzazione, comporta l’intervento di meccanismi stereoselettivi, o più precisamente enantioselettivi. Infatti la maggior parte dei lignani delle piante esiste in forma di (+)- o (-)-enantiomeri, le cui quantità relative possono variare da specie a specie, ma anche all’interno di organi differenti della stessa pianta, a seconda del tipo di reazioni coinvolte.
La dimerizzazione può essere ottenuta attraverso reazioni catalizzate da laccasi (EC 1.10.3.2). Questi enzimi di per se catalizzano la formazione di radicali che dimerizzando creano una miscela racemica, il che dunque non spiega come si formino le miscele enantiomeriche presenti nelle piante. Il meccanismo più accreditato per spiegare la sintesi stereospecifica chiama in causa l’azione degli enzimi suddetti e di una proteina in grado di dirigere la sintesi verso una o l’altra delle due forme enantiomeriche: la proteina dirigente. Lo schema di reazione potrebbe essere il seguente: l’enzima forma i radicali che sono orientati in modo da ottenere l’accoppiamento stereospecifico desiderato dalla proteina dirigente.

Lignani
Fig. 3 – (-)-Matairesinolo

Ad esempio, la pinoresinolo sintetasi, composta da laccasi e proteina dirigente, catalizza la sintesi stereospecifica del (+)-pinoresinolo a partire da due residui di alcol coniferilico. Di seguito il (+)-pinoresinolo, in due reazione stereospecifiche consecutive catalizzate dalla pinoresinolo/lariciresinolo reduttasi NADPH-dipendente (EC 1.23.1.2), viene dapprima ridotto a (+)-lariciresinolo e poi a (-)-secoisolariciresinolo. Il (-)-secoisolariciresinolo, nella reazione catalizzata dalla secoisolariciresinolo deidrogenasi NAD(P)-dipendente (EC 1.1.1.331 ), è ossidato a (-)-matairesinolo.

⇑ Torna all’inizio ⇑

Metabolismo intestinale dei lignani

La loro importanza per la salute dell’uomo deriva in larga misura dalla metabolizzazione che subiscono nel colon da parte del microbiota intestinale, che opera deglicosilazioni, para-deidrossilazioni e meta-demetilazioni senza inversione enantiomerica. Le trasformazioni batteriche infatti portano alla formazione di metaboliti dotati di una modesta attività simil-estrogenica, una situazione analoga a quella alcuni isoflavoni, come quelli della soia, di alcuni stilbeni e alcune cumarine. Si parla pertanto di fitoestrogeni. Il prodotto delle reazioni suddette sono i cosiddetti lignani dei mammiferi o enterolignani, come gli agliconi dell’enterodiolo e dell’enterolattone, prodotti rispettivamente a partire dal secoisolariciresinolo e dal matairesinolo.
Osservazioni condotte in  animali alimentati con diete ricche di lignani hanno evidenziato la loro presenza in forma non modificata, in basse concentrazioni, nel siero, dimostrando così che possono essere assorbite anche intatti a livello intestinale. Queste molecole esercitano azioni estrogeno-indipendenti, sia in vivo che in vitro, quali l’inibizione dell’angiogenesi, la riduzione del diabete e la soppressione della crescita tumorale.
Nota: con il termine di “fitoestrogeno” si intende una molecola dotata di attività estrogenica o antiandrogenica, almeno in vitro.

Dopo essere stati assorbiti, entrano nel circolo enteroepatico, e a livello epatico possono subire le reazione di fase II ed essere solforati o glucoronidati, ed infine escreti nelle urine.

⇑ Torna all’inizio ⇑

Alimenti ricchi di lignani

Lignani
Fig. 4 – (-)-Secoisolariciresinolo

La fonte più ricca è rappresentata dai semi di lino, che contengono in prevalenza secoisolariciresinolo, ma in buone quantità anche lariciresinolo, pinoresinolo e matairesinolo (in totale oltre 3,7 mg/100 g di prodotto secco). Si ritrovano anche nei semi di sesamo.
Un’altra fonte importante è rappresentata dai cereali integrali.
Sono presenti anche in altri alimenti, ma in concentrazioni tra le cento e le mille volte inferiori rispetto a quelle osservate nei semi di lino. Esempi sono:

  • le bevande, dove in genere sono più abbondanti nel vino rosso, seguito in ordine decrescente dal tè nero, latte di soia e caffè;
  • la frutta come albicocche, pere, pesche e fragole;
  • le verdure, come le Brassicaceae, l’aglio, gli asparagi e le carote;
  • lenticchie e fagioli.

La loro presenza nei cereali integrali e, in misura minore, nel vino rosso e nella frutta fa si che, almeno nella popolazione che segua una dieta di tipo mediterraneo, rappresentino la principale fonte di fitoestrogeni.

⇑ Torna all’inizio ⇑

Bibliografia

Andersen Ø.M., Markham K.R. Flavonoids: chemistry, biochemistry, and applications. CRC Press Taylor & Francis Group, 2006

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Heldt H-W. Plant biochemistry – 3th Edition. Elsevier Academic Press, 2005

Manach C., Scalbert A., Morand C., Rémésy C., and Jime´nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-47 [Abstract]

Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010;2:1231-46. doi:10.3390/nu2121231

Satake H, Koyama T., Bahabadi S.E., Matsumoto E., Ono E. and Murata J. Essences in metabolic engineering of lignan biosynthesis. Metabolites 2015;5:270-90. doi:10.3390/metabo5020270

van Duynhoven J., Vaughan E.E., Jacobs D.M., Kemperman R.A., van Velzen E.J.J, Gross G., Roger L.C., Possemiers S., Smilde A.K., Doré J., Westerhuis J.A.,and Van de Wiele T. Metabolic fate of polyphenols in the human superorganism. PNAS 2011;108(suppl. 1):4531-8. doi:10.1073/pnas.1000098107

Wink M. Biochemistry of plant secondary metabolism – 2nd Edition. Annual plant reviews (v. 40), Wiley J. & Sons, Inc., Publication, 2010

Acidi idrossicinnamici: definizione, struttura, biosintesi, alimenti

Acidi idrossicinnamici: contenuti in breve

Che cosa sono gli acidi idrossicinnamici?

Gli acidi idrossicinnamici o idrossicinnamati sono composti fenolici che fanno parte del gruppo dei polifenoli non flavonoidi.
Sono presenti praticamente in tutte le parti della frutta e verdura anche se le concentrazioni maggiori si ritrovano nelle porzioni esterne dei frutti maturi, concentrazioni che si riducono nel corso della maturazione, mentre il contenuto totale aumenta grazie all’aumentare delle dimensioni del frutto.

Il loro consumo con i cibi è stato associato ad un effetto di prevenzione dello sviluppo di malattie croniche come:

  • le malattie cardiovascolari;
  • il cancro;
  • il diabete di tipo 2.

Questi effetti sembra non siano dovuti solamente al loro notevole potere antiossidante (potere che variare in base al pattern metilazione, e soprattutto di idrossilazione dell’anello aromatico), ma anche ad altri meccanismi d’azione come ad es. la riduzione dell’assorbimento intestinale del glucosio o la modulazione della secrezione di alcuni ormoni intestinali.

⇑ Torna all’inizio ⇑

Struttura chimica degli acidi idrossicinnamici

Acidi Idrossicinnamici
Fig. 1 – Struttura di Base degli Idrossicinnamati

La struttura chimica di base è composta da un anello benzenico cui è legata una catena di tre atomi di carbonio, struttura che è indicata anche come C6-C3. Pertanto possono essere inseriti nel gruppo dei fenilpropanoidi.
Gli idrossicinnamati più comuni sono:

  • l’acido caffeico o acido 3,4-diidrossicinnamico;
  • l’acido ferulico o acido 4-idrossi-3-metossicinnamico;
  • l’acido sinapico o acido 4-idrossi-3,5-dimetossicinnamic
  • l’acido p-cumarico o acido 4-cumarico o acido 4-idrossicinnamico.

In natura si trovano associati ad altre molecole, in genere in forma di derivati glicosilati o di esteri dell’acido chinico, tartarico e shikimico (o acido scichimico). Inoltre sono state identificate diverse centinaia di antociani acilati con gli idrossicinnamati sopracitati (in ordine decrescente con l’acido p-cumarico, oltre 150, acido caffeico, circa 100, acido ferulico, circa 60, e acido sinapico, circa 25).
Raramente sono presenti in forma libera, tranne che nei cibi lavorati che abbiano subito congelamento, fermentazione o sterilizzazione. Ad esempio, una conservazione eccessivamente lunga delle arance rosse  provoca una idrolisi massiva dei derivati idrossicinnamici a dare acidi liberi, e questo a sua volta potrebbe portare alla formazione di composti maleodoranti quali i vinil-fenoli, indicatori di una senescenza troppo avanzata del frutto.

⇑ Torna all’inizio ⇑

Biosintesi degli acidi idrossicinnamici

Acidi Idrossicinnamici
Fig. 2 – Biosintesi degli Idrossicinnamati

La biosintesi degli idrossicinnamati consiste in una serie di reazioni successive a quella catalizzata dalla  fenilalanina ammonio liasi (PAL, acronimo dell’inglese phenylalanine ammonia lyase), reazione che deaminando la fenilalanina a dare acido trans-cinnamico lega l’aminoacido aromatico agli acidi idrossicinnamici e alle loro forme attivate.
Nel primo passaggio viene introdotto un gruppo ossidrilico in posizione 4 dell’anello aromatico dell’acido trans-cinnamico a dare l’acido p-cumarico (reazione catalizzata dalla acido cinnamico 4-idrossilasi). L’addizione di un secondo gruppo ossidrilico in posizione 3 dell’anello dell’acido p-cumarico porta alla formazione di acido caffeico (reazione catalizzata dalla p-cumarato 3-idrossilasi o fenolasi), mentre la O-metilazione del gruppo ossidrilico in posizione 3 produce acido ferulico (reazione catalizzata dalla catecol-O-metiltranferasi). L’acido ferulico a sua volta è convertito in acido sinapico attraverso due reazione: una idrossilazione in posizione 5 a dare l’acido 5-idrossiferulico (reazione catalizzata dalla ferulato 5-idrossilasi), e la successiva O-metilazione dello stesso ossidrile (reazione catalizzata ancora dalla catecol-O-metiltranferasi).
Gli idrossicinnamati non sono presenti in quantità elevate in quanto sono rapidamente convertiti in esteri del coenzima A (CoA) o in esteri del glucosio, nelle reazioni catalizzate da idrossicinnamato:CoA ligasi o da O-glucosiltransferasi. Questi intermedi attivati rappresentano punti di ramificazione in quanto in grado di partecipare ad un’ampia gamma di reazioni successive, quali la condensazione con il malonil-CoA a dare flavonoidi, o la riduzione NADPH-dipendente a dare lignani (che saranno di seguito utilizzati nella sintesi della lignina).

⇑ Torna all’inizio ⇑

Acidi idrossicinnamici nei cibi

Tra le fonti più ricche si ritrovano kiwi, mirtilli, prugne, ciliegie, mele, pere, cicoria, carciofi, carote, lattuga, melanzane, grano e caffè.

⇑ Torna all’inizio ⇑

Acido caffeico

Acidi Idrossicinnamici
Fig. 3 – Acido Caffeico

In genere, sia in forma libera che legata ad altre molecole, è l’acido idrossicinnamico più abbondante nella verdura e nella maggior parte della frutta, dove rappresenta il 75-100% del totale degli idrossicinnamati.
Le fonti più ricche sono il caffè, inteso come bevanda, le carote, la lattuga, le patate, anche quelle dolci, ma anche frutti di bosco quali mirtilli, mirtilli rossi e more.
Fonti minori sono rappresentate da uva e prodotti derivati, succo d’arancia, mele, prugne, pesche, e pomodori.
L’acido caffeico e il chinico si legano a formare l’acido clorogenico, presente in molti tipi di frutta ed in concentrazione elevata nel caffè.

⇑ Torna all’inizio ⇑

Acido ferulico

Acidi Idrossicinnamici
Fig. 4 – Acido Ferulico

E’ l’acido idrossicinnamico più abbondante nei cereali, che ne sono anche la fonte alimentare principale.
Nel grano il contenuto è compreso tra 0,8 e 2 g/kg di peso secco, che rappresenta fino al 90% del totale dei polifenoli. Si ritrova quasi esclusivamente, fino al 98% del totale, nelle parti più esterne del chicco, ossia lo strato aleuronico ed il pericarpo, e quindi il suo contenuto nelle farine dipende dal loro livello di raffinazione, mentre la principale fonte è ovviamente rappresentata dalla crusca. La molecola è presente principalmente nella forma trans, esterificata con arabinoxilani e emicellulose. Infatti solamente il 10% si ritrova in forma libera solubile nella crusca.
Nei cereali sono state ritrovati anche dimeri che formano strutture a ponte tra le catene di emicellulosa.
Nei frutti e nella verdura è molto meno comune dell’acido caffeico. Le principali fonti sono asparagi, melanzane e broccoli, mentre concentrazioni più basse sono state ritrovate nelle more, mirtilli, mirtilli rossi, mele, carote, patate, barbabietole, caffè e succo d’arancia.

⇑ Torna all’inizio ⇑

Acido sinapico

Acidi Idrossicinnamici
Fig. 5 – Acido Sinapico

Le quantità più elevate si ritrovano nella buccia e nei semi degli agrumi (il contenuto del succo d’arancia è decisamente più basso); buoni valori sono presenti anche nel cavolo cinese (o cavolo di Pechino), e in alcune varietà di mirtilli rossi.

⇑ Torna all’inizio ⇑

Acido p-cumarico

Acidi idrossicinnamici
Fig. 6 – Acido p-Cumarico

Elevate quantità sono presenti nelle melanzane, le più ricche, nei broccoli ed asparagi; altre fonti sono le ciliegie dolci, le prugne, i mirtilli, anche rossi, la buccia ed i semi degli agrumi, ed il succo d’arancia.

⇑ Torna all’inizio ⇑

Bibliografia

Andersen Ø.M., Markham K.R. Flavonoids: chemistry, biochemistry, and applications. CRC Press Taylor & Francis Group, 2006

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Manach C., Scalbert A., Morand C., Rémésy C., and Jime´nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-47 [Abstract]

Preedy V.R. Coffee in health and disease prevention. Academic Press, 2014  [Google eBook]

Zhao Z.,  Moghadasian M.H. Bioavailability of hydroxycinnamates: a brief review of in vivo and in vitro studies. Phytochem Rev 2010;9(1):133-145. doi:10.1007/s11101-009-9145-5

Polifenoli dell’uva e del vino: composizione chimica e attività biologiche

Polifenoli dell’uva e del vino: contenuti in breve

Il consumo di uva e prodotti derivati, in primis il vino rosso ma solo durante i pasti, è stato associato a numerosi effetti positivi sulla salute, che non si limitano al solo effetto antiossidante/antiradicalico, ma includono anche un’azione:

  • antiinfiammatoria;
  • cardioprotettiva;
  • anticancerosa;
  • antimicrobica;
  • neuroprotettiva
Polifenoli dell'Uva
Fig. 1 – Uva Rossa

Nell’uva sono presenti numerosi nutrienti quali zuccheri, vitamine, sali minerali, fibre e fitochimici. Tra questi ultimi, i polifenoli si sono dimostrati i composti più importanti nel determinare gli effetti positivi del frutto e dei prodotti derivati.
L’uva è infatti uno dei frutti più ricchi in polifenoli, la cui composizione è fortemente influenzata da diversi fattori quali la varietà o cultivar, le condizioni ambientali in cui avviene la maturazione, eventuali malattie quali infezioni fungine, come anche la lavorazione che subisce.
Al momento le specie di vite principalmente coltivate a livello mondiali sono: l’europea, Vitis vinifera, le nordamericane, Vitis labrusca e Vitis rotundifolia, ed ibridi francesi.
Nota: l’uva in realtà non è un frutto ma un’infruttescenza ossia un raggruppamento di frutti: il grappolo. A sua volta il grappolo è composto dal peduncolo, dal raspo o graspo, dai pedicelli, e dalle bacche o acini o chicchi.

⇑ Torna all’inizio ⇑

Quali sono i polifenoli dell’uva e del vino?

I polifenoli sono presenti sia in quantità che in varietà decisamente maggiori nell’uva rossa, e quindi nel vino rosso, rispetto a quella bianca. Questo, secondo molti ricercatori, sarebbe alla base dei maggiori benefici sulla salute derivanti al consumo di uva/vino rosso rispetto a quella bianca ed i suoi derivati.
I polifenoli dell’uva e del vino sono una complessa miscela di composti flavonoidi, il gruppo più abbondante, e non flavonoidi.
Tra i flavonoidi si ritrovano:

Tra i polifenoli non flavonoidi:

La maggior parte dei flavonoidi presenti nel vino derivano dallo strato epidermico della buccia, mentre il 60-70% del totale dei polifenoli è presente nel vinacciolo. Da notare che oltre il 70% dei polifenoli dell’uva non sono estratti e rimangono nella vinaccia.
Le complesse interazioni chimiche che si stabiliscono tra questi composti, e tra di loro e gli altri composti di natura differente presenti nell’uva e nel vino, sono probabilmente essenziali nel determinare sia la qualità delle uve e del vino che l’ampio spettro di effetti terapeutici propri di questi alimenti.
Nel vino la miscela di polifenoli svolge importanti funzioni essendo in gradi di influenzare:

  • il gusto amaro;
  • l’astringenza;
  • il colore rosso, di cui sono tra i maggiori responsabili;
  • la sensibilità all’ossidazione, essendo sostanze facilmente ossidabili quando esposte all’aria.

Infine sono un conservante importante per il vino stesso e la base per un lungo invecchiamento.

⇑ Torna all’inizio ⇑

Polifenoli dell’uva e del vino: antociani o antocianine

Sono flavonoidi ampiamente presenti nella frutta e verdura.
Nell’uva si accumulano in modo principale nella buccia (nei primi strati esterni del tessuto ipodermico), cui conferiscono il colore, avendo tonalità che variano dal rosso al blu. In alcune varietà, dette “teinturier”, si accumulano anche nella polpa dell’acino.
Esiste una stretta correlazione tra la sintesi degli antociani e lo sviluppo dell’acino. Quando l’acino raggiunge l’invaiatura, ossia il momento in cui termina la sua crescita, ha inizio la loro sintesi, che determina anche il cambiamento di colore dell’acino stesso che diventa viola. La sintesi raggiunge il massimo livello alla maturazione completa dell’acino.
Tra i flavonoidi del vino sono uno degli antiossidanti più potenti.
Ogni specie e varietà d’uva ha una composizione unica in antocianine. Inoltre nelle uve di Vitis vinifera, a seguito di una mutazione a carico del gene che codifica per 5-O-glucosiltransferasi, mutazione che determina la sintesi di un enzima inattivo, sono prodotti solo 3-monoglucosidi, mentre nelle uve derivanti da altre specie avviene anche la glicosilazione in posizione 5. Interessante notare che i derivati 3-glucosidici sono colorati più intensamente dei 3,5-diglucosidi.

Polifenoli dell'Uva
Fig. 2 – Malvidina-3-glucoside

Nell’uva e nel vino rosso i più abbondanti sono i 3-monoglucosidi della malvidina, la più abbondante sia nell’uva che nel vino, e della petunidina, delfinidina, peonidina, cianidina.
L’idrossile in posizione 6 del glucosio può a sua volta essere acilato con un gruppo acetilico, caffeico o cumarico, acilazione che ne aumenta ulteriormente la stabilità.
Le antocianidine, ossia le forme non coniugate, non sono presenti ne nell’uva ne nel vino, se non in tracce.
Gli antociani sono scarsamente presenti nelle uve bianche, e dunque nel vino bianco.
La composizione in antociani del vino è fortemente influenzata sia dal tipo di cultivar che dalle tecniche di vinificazione, ritrovandosi nel vino in conseguenza di processi di estrazione dalla buccia dovuti alla macerazione delle uve. Di conseguenza vini derivanti da varietà simili di uve possono avere composizioni in antocianine molto diverse.
Insieme alla proantocianidine, sono i polifenoli più importanti nel determinare alcune importanti proprietà organolettiche del vino rosso, in quanto sono i principali responsabili dell’astringenza, amarezza, stabilità chimica nei confronti dell’ossidazione, come anche del colore del vino giovane.
Riguardo al colore va sottolineato che con il tempo la loro concentrazione si riduce, mentre il colore è dovuto sempre più alla formazione di pigmenti polimerici prodotti della condensazione degli antociani sia tra di loro che  con altre molecole.
Nel corso dell’invecchiamento del vino gli antociani e le proantocianidine possono interagire a dare molecole con struttura complessa che possono parzialmente precipitare.

⇑ Torna all’inizio ⇑

Polifenoli dell’uva e del vino: flavanoli o catechine

Polifenoli dell'uva
Fig. 3- Catechina

Sono, insieme ai tannini condensati, i flavonoidi più abbondanti, rappresentando fino al 50% del totale dei polifenoli nelle uve bianche e dal 13% al 30% in quelle rosse.
Il loro livello nel vino dipende dal tipo di cultivar.
In genere il flavanolo più abbondante nel vino è la catechina, ma si ritrovano anche epicatechina ed epicatechina-3-gallato.

⇑ Torna all’inizio ⇑

Polifenoli dell’uva e del vino: proantocianidine o tannini condensati

Polifenoli dell'Uva
Fig. 4 – Procianidina C1

Formate da unità di catechine, sono presenti nella buccia, nel vinacciolo e nel raspo del grappolo d’uva in forma di:

  • dimeri, di cui i più comuni sono le proacianidine B1-B4, ma possono essere presenti anche le procianidine B5-B8;
  • trimeri, e tra questi la procianidina C1 è la più abbondante;
  • tetrameri;
  • polimeri, formati fino da 8 monomeri.

Il loro livello nel vino dipende dalle tecniche di vinificazione e dalla varietà dell’uva e, al pari degli antociani, sono molto più abbondanti nei vini rossi, in particolare in quelli invecchiati, rispetto ai bianchi.
Inoltre, come detto in precedenza, insieme agli antociani, i tannini condensati sono importanti nel determinare alcune proprietà organolettiche del vino.

⇑ Torna all’inizio ⇑

Polifenoli dell’uva e del vino: flavonoli

Sono presenti in una grande varietà di frutta e verdura, anche se in basse concentrazioni.
Nell’uva sono il terzo gruppo di flavonoidi più abbondanti, dopo proantocianidine e catechine.
Si ritrovano principalmente nell’epidermide esterna della buccia, dove agiscono come agenti protettivi nei confronti della radiazione UV-A e UV-B, ed hanno un ruolo di copigmentazione insieme agli antociani.
La loro sintesi inizia nel germoglio; la concentrazione più elevata è raggiunta poche settimane dopo l’invaiatura, per poi ridursi quando il chicco aumenta di dimensioni. Il loro contenuto totale è molto variabile, con le varietà rosse spesso più ricche rispetto a quelle bianche.
Nell’uva sono presenti come 3-glucosidi. Il loro profilo dipende dal tipo di uva e cultivar:

  • nell’uva bianca si ritrovano i derivati della quercetina, campferolo ed isoramnetina;
  • i derivati della miricetina, laricitrina e siringetina si ritrovano, insieme ai precedenti, solo in quella rossa, a causa della mancata espressione nell’uva bianca del gene che codifica per la flavonoide-3’,5’-idrossilasi.
Polfenoli dell'Uva
Fig. 5 – Quercetina-3-glucoside

In generale i 3-glucosidi ed i 3-glucoronidi della quercetina sono i principali flavonoli nella maggior parte delle uve. Nelle uve moscate invece i più rappresentati sono la quercetina-3-ramnoside e la quercetina aglicone.
A differenza dell’uva, nel vino e nel succo d’uva i flavonoli sono presenti anche come agliconi, in conseguenza dell’idrolisi acida che si verifica durante la lavorazione e la conservazione. Si ritrovano nel vino in quantità variabile, e i principali sono i glicosidi della miricetina e quercetina, che da soli rappresentano il 20-50% del totale dei flavonoli del vino rosso.

⇑ Torna all’inizio ⇑

Polifenoli dell’uva e del vino: idrossicinnamati

Polifenoli dell'Uva
Fig. 6 – Acido Ferulico

Gli acidi idrossicinnamici sono la principale classe di polifenoli non flavonoidi nell’uva ed i principali polifenoli del vino bianco.
I più importanti sono gli acidi p-cumarico, caffeico, sinapico e ferulico, presenti nel vino in forma di esteri con l’acido tartarico.
Sono molecole dotate di attività antiossidante e in alcune cultivar bianche di Vitis vinifera, assieme ai flavonoli, sono i principali polifenoli responsabili dell’assorbimento della radiazione ultravioletta a livello dell’acino.

⇑ Torna all’inizio ⇑

Polifenoli dell’uva e del vino: stilbeni

Polifenoli dell'Uva
Fig. 7 – trans-Resveratrolo

Sono fitoalessine che, al contrario dei flavonoidi che sono presenti in tutte le piante superiori, sono prodotti in basse concentrazioni solo da poche specie edibili, tra cui la vite.
Insieme agli altri polifenoli dell’uva e del vino anche gli stilbeni, ed in particolare il resveratrolo, sono stati associati agli effetti benefici sulla salute conseguenti al consumo della bevanda.
Il loro contenuto aumenta dall’invaiatura sino alla maturazione del chicco, ed è influenzato dal tipo di cultivar, dal clima, dalle tecniche di vinificazione e dalla pressione fungina.
I principali stilbeni presenti nell’uva e nel vino sono:

  • cis– e trans-resveratrolo (3,5,4’-triidrossistilbene);
  • piceide o resveratrolo-3-glucopiranoside e astringina o  3’-idrossi trans-piceide;
  • piceatannolo;
  • dimeri ed oligomeri del resveratrolo, detti viniferine, di cui le più importanti sono:

α-viniferina, un trimero;
β-viniferina, un tetramero ciclico;
γ-viniferina, un oligomero altamente polimerizzato;
ε-viniferina, un dimero ciclico.

Nell’uva sono state identificati in tracce anche altre forme isomeriche e glicosilate del resveratrolo e del piceatannolo, come il resveratroloside, l’opeafenolo, il resveratrolo di- e triglucoside.
La glicosilazione degli stilbeni è importante per la conservazione, il trasporto, la modulazione dell’attività antifungina e la protezione dalla degradazione ossidativa del vino.
La sintesi di dimeri ed oligomeri del resveratrolo, prodotti sia nell’uva che nel vino, rappresenta un meccanismo di difesa nei confronti di attacchi esogeni, o al contrario è il risultato dell’azione di enzimi extracellulari rilasciati da patogeni nel tentativo di eliminare composti tossici indesiderati.

⇑ Torna all’inizio ⇑

Polifenoli dell’uva e del vino: idrossibenzoati

Polifenoli dell'Uva
Fig. 8 – Acido Gallico

I derivati dell’acido idrossibenzoico sono componenti minori dell’uva e del vino.
Nell’uva i principali sono gli acidi gentisico, gallico, p-idrossibenzoico e protocatechico.
A differenza degli idrossicinnamati, che nel vino sono presenti come esteri con l’acido tartarico, si ritrovano in forma libera.
Insieme ai flavonoli, proantocianidine, catechine ed idrossicinnamati sono tra i responsabili dell’astringenza del vino.

⇑ Torna all’inizio ⇑

Bibliografia

Andersen Ø.M., Markham K.R. Flavonoids: chemistry, biochemistry, and applications. CRC Press Taylor & Francis Group, 2006

Basli A, Soulet S., Chaher N., Mérillon J.M., Chibane M., Monti J.P.,1 and Richard T. Wine polyphenols: potential agents in neuroprotection. Oxid Med Cell Longev 2012. doi:10.1155/2012/805762

de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010

Flamini R., Mattivi F.,  De Rosso M., Arapitsas P. and Bavaresco L. Advanced knowledge of three important classes of grape phenolics: anthocyanins, stilbenes and flavonols. Int J Mol Sci 2013;14:19651-19669. doi:10.3390/ijms141019651

Georgiev V., Ananga A. and Tsolova V. Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients 2014;6: 391-415. doi:10.3390/nu6010391

Guilford J.M. and Pezzuto J.M. Wine and health: a review. Am J Enol Vitic 2011;62(4):471-486. doi:10.5344/ajev.2011.11013

He S., Sun C. and Pan Y. Red wine polyphenols for cancer prevention. Int J Mol Sci 2008;9:842-853. doi:10.3390/ijms9050842

Xia E-Q., Deng G-F., Guo Y-J. and Li H-B. Biological activities of polyphenols from grapes. Int J Mol Sci 2010;11-622-646. doi:10.3390/ijms11020622

Waterhouse A.L. Wine phenolics. Ann N Y Acad Sci 2002;957:21-36. doi:10.1111/j.1749-6632.2002.tb02903.x