Glycogen: definition, structure and functions

What is glycogen?

Glycogen Structure
Fig. 1 – Glycogen Structure

Glycogen is an homopolysaccharide formed by units of glucose. Chemically similar to amylopectin, and therefore sometimes referred to as animal starch, compared to the latter it is more compact, extensively branched and larger, reaching a molecular weight up to 108 Da corresponding to about 600000 glucose molecules.
As in the amylopectin, glucose units in the main chain and in the lateral chains are linked by α-(1→4) glycosidic bonds. Lateral chains are joined to the main chain by an α-(1→6) glycosidic bond; unlike amylopectin branches are more frequent, approximately every 10 glucose units (rather than every 25-30 as in amylopectin) and are formed by a smaller numbers of glucose units.
Glycogen is located in the cytosol of the cell in the form of hydrated granules of diameter between 1 to 4 µm and forms complexes with regulatory proteins and enzymes responsible for its synthesis and degradation.

Functions of glycogen

Glycogen, discovered in 1857 by French physiologist Claude Bernard, is the storage form of glucose, and therefore of energy, in animals in which it is present in the liver, muscle (skeletal and heart muscle) and in lower amounts in nearly all the other tissues and organs.
In humans it represents less than 1% of the body’s caloric stores (the other form of caloric reserve, much more abundant, is triacylglycerols stored in adipose tissue) and is essential for maintaining normal glycemia too.
It represents about 10% of liver weight and 1% of muscle weight; although it is present in a higher concentration in the liver, the total stores in muscle are much higher thanks to its greater mass (in a non-fasting 70 kg adult male there are about 100 g of glycogen in the liver and 250 g in the muscle).

  • Liver glycogen stores is a glucose reserve that hepatocyte releases when needed to maintain a normal blood sugar levels: if you consider glucose availability (in a non-fasting 70 kg adult male) there is about 10 grams or 40 kcal in body fluids while hepatic glycogen can supply, also after a fasting night, about 600 kcal.
  • In skeletal and cardiac muscle, glucose from glycogen stores remains within the cell and is used as an energy source for muscle work.
  • The brain contains a small amount of glycogen, primarily in astrocytes. It accumulates during sleep and is mobilized upon waking, therefore suggesting its functional role in the conscious brain. These glycogen reserves also provide a moderate degree of protection against hypoglycemia.
  • It has a specialized role in fetal lung type II pulmonary cells. At about 26 weeks of gestation these cells start to accumulate glycogen and then to synthesize pulmonary surfactant, using it as a major substrate for the synthesis of surfactant lipids, of which dipalmitoylphosphatidylcholine is the major component.
Glycogen: Dipalmitoylphosphatidylcholine
Fig. 1 – Dipalmitoylphosphatidylcholine

Glycogen and foods

It is absent from almost all foods because after an animal is killed it is rapidly broken down to glucose and then to lactic acid; it should be noted that the acidity consequently to lactic acid production gradually improves the texture and keeping qualities of the meat. The only dietary sources are oysters and other shellfish that are eaten virtually alive: they contain about 5% glycogen.

In humans, accumulation of glycogen is associated with weight gain due to water retention: for each gram of stored glycogen 3 grams of water are retained.


Arienti G. “Le basi molecolari della nutrizione”. Seconda edizione. Piccin, 2003

Cozzani I. and Dainese E. “Biochimica degli alimenti e della nutrizione”. Piccin Editore, 2006

Giampietro M. “L’alimentazione per l’esercizio fisico e lo sport”. Il Pensiero Scientifico Editore, 2005

Mahan LK, Escott-Stump S.: “Krause’s foods, nutrition, and diet therapy” 10th ed. 2000

Mariani Costantini A., Cannella C., Tomassi G. “Fondamenti di nutrizione umana”. 1th ed. Il Pensiero Scientifico Editore, 1999

Nelson D.L., M. M. Cox M.M. Lehninger. Principles of biochemistry. 4th Edition. W.H. Freeman and Company, 2004

Stipanuk M.H.. “Biochemical and physiological aspects of human nutrition” W.B. Saunders Company-An imprint of Elsevier Science, 2000