Come ottimizzare la sintesi del glicogeno muscolare

Il glicogeno muscolare è un’importante riserva di energia negli esercizi prolungati di intensità medio-alta, importanza che aumenta nel caso di esercizi intervallati di alta intensità, comuni negli allenamenti di nuotatori, corridori, vogatori e negli sport di squadra, o in lavori di resistenza contro pesi. Se ad esempio si considera la maratona, circa l’80% dell’energia necessaria deriva dall’ossidazione dei carboidrati, per la maggior parte glicogeno muscolare.
La deplezione dei livelli di glicogeno muscolare è correlata con l’insorgenza della fatica, sebbene non siano ancora chiari i meccanismi molecolari alla base di questa relazione. Una delle ipotesi è che esista una concentrazione minima di glicogeno che viene “protetta” ed è resistente all’utilizzo durante l’esercizio, forse per assicurare una riserva di energia in caso di estrema necessità. Data la stretta relazione tra deplezione del glicogeno muscolare e fatica, la sua velocità di ripristino nel post-esercizio è uno dei fattori più importanti nel determinare il tempo necessario al recupero.
Infine l’atleta maggiormente allenato non solo ha depositi di glicogeno muscolare potenzialmente maggiori, ma è anche in grado di sintetizzarlo più velocemente grazie a enzimi più efficienti.

La struttura ramificata della molecola del glicogeno, i livelli, e la glicogeninaPer produrre glicogeno è indispensabile assumere carboidrati; ma quanti, quali, quando e con che frequenza?

INDICE

Bifasicità della sintesi del glicogeno muscolare

Nel tentativo di ripristinare il più velocemente possibile le riserve di glicogeno muscolare è utile conoscere l’andamento bifasico che può assumere la sua velocità di sintesi a seguito di allenamenti o gare che comportino deplezioni delle sue riserve muscolari pari ad almeno il 75% del valore a riposo e non a digiuno.
Conoscere e quindi sfruttare la tale bifasicità è importante per quegli atleti che siano impegnati in più allenamenti giornalieri, o che abbiano poco tempo a disposizione per il recupero tra un allenamento impegnativo e il successivo, ossia meno di 8 ore, al fine di massimizzarne la sintesi e ottenere la migliore performance nella sessione successiva.
Le due fasi sono caratterizzate da:

  • una diversa sensibilità all’insulina circolante;
  • una diversa velocità di sintesi.

La prima fase

La prima fase, immediatamente successiva al termine dell’attività e della durata di 30-60 minuti, è insulino-indipendente, ossia l’uptake del glucosio da parte della cellula muscolare come la sintesi della molecola al suo interno sono indipendenti dall’azione dell’ormone.
Questa fase è caratterizzata da una elevata velocità di sintesi che però si riduce rapidamente se non si assumono carboidrati: la massima velocità si registra nei primi 30 minuti, per poi ridursi a circa 1/5 dal 60° minuto, e a circa 1/9 al 120° minuto dal termine dell’esercizio.
Come è possibile sfruttare questa prima fase per ripristinare quanto più possibile le scorte muscolari di glicogeno? Facendo si che al muscolo arrivi la maggior quantità possibile di glucosio nei momenti immediatamente successivi al termine dell’attività, meglio se entro i primi 30 minuti.

  • Cosa assumere?
    Carboidrati a alto indice glicemico, ma di facile digestione e assorbimento.
    E’ quindi consigliabile sostituire cibi, magari anche ad alto indice glicemico, che necessitano di un certo tempo per la digestione e il successivo assorbimento, con soluzioni/gel contenenti ad esempio glucosio e/o saccarosio. Queste soluzioni/gel assicurano la massima velocità possibile di assorbimento e rifornimento di glucosio al muscolo in quanto contengono solo glucosio e sono prive di fibre o altro che rallenterebbero la digestione dei carboidrati e il successivo assorbimento dei monosaccaridi, sono cioè in grado di produrre elevate glicemie in un tempo relativamente breve.
    Da sottolineare ulteriormente che il ricorso nell’immediato post-esercizio a tali soluzioni/gel contenenti carboidrati a rapida disponibilità è consigliabile solo quando il tempo di recupero tra un esercizio che causa una forte deplezione del glicogeno muscolare e il successivo è breve, meno di 8 ore.
    Sarà possibile giocare anche sulla temperatura e concentrazione della soluzione per accelerarne il transito gastrico.
  • Assumere carboidrati, ma in che quantità?
    Sono stati condotti molti studi per cercare di definire la quantità ideale di carboidrati da assumere.
    Se nel post-esercizio l’atleta non si alimenta la velocità di sintesi del glicogeno è molto bassa, mentre se immediatamente dopo il termine del lavoro assume quantità adeguate di carboidrati la velocità può raggiungere valori oltre 20 volte maggiori.
    Dal confronto della letteratura sembra ragionevole affermare che, a seguito di allenamenti che riducano le scorte di glicogeno muscolare a valori inferiori al 75% dei valori a riposo e non a digiuno, la massima velocità di sintesi si ottenga con assunzioni di carboidrati, ad alto indice glicemico ed elevata velocità di digestione e assorbimento, pari a circa 1,2 g/kg di peso corporeo/h per le 4-5 ore successive dal termine dell’esercizio stesso.
    In questo modo si determina la produzione di una quantità di glicogeno maggiore del 150% rispetto all’ingestione di 0,8 g/kg/h.
    Poiché aumenti fino a 1,6 g/kg/h non hanno portato ulteriori incrementi, la quantità di carboidrati pari a 1,2 g/kg/h può essere considerata quella ottimale per massimizzare la velocità di risintesi delle scorte di glicogeno muscolare nel post-esercizio.
  • Con che frequenza?
    Riguardo alla frequenza di assunzione è stato osservato che se i carboidrati sono assunti di frequente, ogni 15-30 minuti, sembra ci sia un’ulteriore stimolazione dell’uptake del glucosio da parte del muscolo, come della ricostituzione del glicogeno muscolare rispetto ad assunzioni a intervalli di due ore. In particolare, le assunzioni nelle prime ore del post-esercizio sembrano ottimizzare livelli di glicogeno.

La seconda fase

La seconda fase delle sintesi del glicogeno muscolare ha inizio dalla fine della prima, perdura sino all’inizio del pasto precedente l’impegno successivo, dunque da alcune ore a giorni, ed è insulino-dipendente, ossia l’uptake del glucosio da parte della cellula muscolare come la sintesi del glicogeno al suo interno sono sensibili ai livelli circolanti dell’ormone.
Inoltre si osserva una significativa riduzione della velocità di sintesi del glicogeno muscolare: con un’assunzione adeguata di carboidrati la velocità si attesta su valori inferiori di circa il 10-30% rispetto a quelli della prima fase.
Questa fase può perdurare per diverse ore, ma tende a essere più breve se:

  • l’apporto di carboidrati è elevato;
  • la sintesi del glicogeno è più attiva;
  • i livelli di glicogeno muscolare sono aumentati.

Come è possibile sfruttare questa fase per ottimizzare la velocità di sintesi del glicogeno muscolare?
Le evidenze sperimentali indicano che pasti con carboidrati ad alto indice glicemico sono più efficaci di quelli con carboidrati a basso indice glicemico. Ma se tra un allenamento e il successivo passano giorni e non ore, non ci sono evidenze a favore di carboidrati ad alto indice glicemico rispetto a quelli a basso indice purché ne sia assunta una quantità adeguata.

Velocità di sintesi del glicogeno e assunzione di carboidrati e proteine

La contemporanea assunzione di carboidrati e proteine, o aminoacidi insulino-tropici liberi, permette di ottenere velocità di sintesi del glicogeno nel post-esercizio che non differiscono significativamente da quelle raggiunte con quantità maggiori di soli carboidrati. Questo potrebbe essere un vantaggio per l’atleta che ne potrà assumere quantità più contenute, limitando così l’insorgenza di eventuali complicazioni gastrointestinali comuni durante l’allenamento/gara dopo un loro consumo elevato.
Dall’analisi della letteratura sembra ragionevole affermare che, dopo un esercizio che comporti la deplezione di almeno il 75% delle riserve muscolari di glicogeno, si possano ottenere velocità di sintesi del glicogeno analoghe a quelle raggiunte con 1,2 g/kg/h di soli carboidrati, le maggiori ottenibili, con la coingestione di 0,8 g/kg/h di carboidrati e 0,4 g/kg/h di proteine, mantenendo le stesse tempistiche di ingestione, ossia ogni 15-30 minuti per le prime 4-5 ore del post-esercizio.

Le due fasi della sintesi del glicogeno muscolare: meccanismi molecolari

In entrambe le fasi l’aumento della sintesi del glicogeno è conseguenza di un aumento:

  • della velocità di trasporto del glucosio nella cellula;
  • dell’attività della glicogeno sintetasi, l’enzima che catalizza la sintesi del glicogeno.

Tuttavia i meccanismi molecolari che sottostanno a queste modificazioni sono differenti.
Nella prima fase l’aumento della velocità di trasporto del glucosio, indipendente dalla presenza dell’insulina, è mediato dalla traslocazione, indotta dalla contrazione, dei trasportatori del glucosio, detti GLUT4, sulla membrana plasmatica della cellula muscolare.
In aggiunta, anche i bassi livelli di glicogeno agiscono da stimolo al trasporto in quanto si ritiene che gran parte delle vescicole contenenti il trasportatore siano legate al glicogeno, e dunque potrebbero divenire disponibili quando i suoi livelli sono ridotti.
Infine bassi livelli di glicogeno muscolare vanno anche a stimolare l’attività della glicogeno sintetasi: è stato dimostrato che il livello del glicogeno muscolare è un regolatore dell’attività dell’enzima molto più potente di quanto sia l’insulina.
Nella seconda fase l’aumento della sintesi è dovuto all’azione dell’insulina sui trasportatori del glucosio e sull’attività della glicogeno sintetasi della cellula muscolare. Questa sensibilità all’azione dell’insulina circolante, che può persistere per 48 ore a seconda dell’assunzione di carboidrati e della quantità di glicogeno muscolare risintetizzato, ha suscitato grande attenzione: è infatti possibile, tramite opportuni interventi nutrizionali, incrementarne la secrezione al fine di migliorare la sintesi del glicogeno stesso ma anche l’anabolismo proteico, riducendo al contempo la velocità di degradazione delle proteine stesse.

Insulina e velocità di sintesi del glicogeno muscolare

La contemporanea assunzione di carboidrati e proteine, o aminoacidi liberi, aumenta la secrezione di insulina postprandiale rispetto ai soli carboidrati; in alcuni studi sono stati osservati incrementi nella secrezione dell’ormone di 2-3 volte rispetto ai soli carboidrati.
E’ stato supposto che, data la maggior quantità di insulina circolante, si potessero ottenere ulteriori aumenti della velocità di sintesi del glicogeno rispetto a quelli osservati con i soli carboidrati, ma in realtà non sembra essere così. Se infatti la quantità di carboidrati viene portata a 1,2 g/kg/h, più 0,4 g/kg/h di proteine, non si osservano ulteriori aumenti nella velocità di sintesi se paragonati a quelli ottenuti con l’ingestione dei soli carboidrati nella stessa quantità, ossia 1,2 g/kg/h, che come detto, al pari della coingestione di 0,8 g/kg/h di carboidrati e 0,4 g/kg/h di proteine, danno la massima velocità raggiungibile nel post-esercizio, o in quantità isoenergetica, quindi 1,6 g/kg.

Insulina e accumulo preferenziale dei carboidrati

I livelli più elevati di insulina circolante raggiunti con la coingestione di carboidrati e proteine, o aminoacidi liberi, potrebbero stimolare un accumulo dei carboidrati ingeriti nei tessuti maggiormente sensibili all’azione dell’ormone, quali il fegato e il muscolo che ha precedentemente lavorato.
In questo modo si verificherebbe un loro deposito più efficiente ai fini dell’attività sportiva, in quanto i carboidrati verrebbero accumulati preferenzialmente anche nel muscolo, dove saranno in seguito utilizzati.

Bibliografia

  1. Beelen M., Burke L.M., Gibala M.J., van Loon J.C. Nutritional strategies to promote postexercise recovery. Int J Sport Nutr Exerc Metab 2010:20(6);515-532. doi:10.1123/ijsnem.20.6.515
  2. Berardi J.M., Noreen E.E., Lemon P.W.R. Recovery from a cycling time trial is enhanced with carbohydrate-protein supplementation vs. isoenergetic carbohydrate supplementation. J Intern Soc Sports Nutrition 2008;5:24. doi:10.1186/1550-2783-5-24
  3. Betts J., Williams C., Duffy K., Gunner F. The influence of carbohydrate and protein ingestion during recovery from prolonged exercise on subsequent endurance performance. J Sports Sciences 2007;25(13):1449-1460. doi:10.1080/02640410701213459
  4. Howarth K.R., Moreau N.A., Phillips S.M., and Gibala M.J. Coingestion of protein with carbohydrate during recovery from endurance exercise stimulates skeletal muscle protein synthesis in humans. J Appl Physiol 2009:106;1394–1402. doi:10.1152/japplphysiol.90333.2008
  5. Jentjens R., Jeukendrup A. E. Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Medicine 2003:33(2);117-144. doi:10.2165/00007256-200333020-00004
  6. Millard-Stafford M., Childers W.L., Conger S.A., Kampfer A.J., Rahnert J.A. Recovery nutrition: timing and composition after endurance exercise. Curr Sports Med Rep 2008;7(4):193-201. doi:10.1249/JSR.0b013e31817fc0fd
  7. Price T.B., Rothman D.L., Taylor R., Avison M.J., Shulman G.I., Shulman R.G. Human muscle glycogen resynthesis after exercise: insulin-dependent and –independent phases. J App Physiol 1994:76(1);104–111. doi:10.1152/jappl.1994.76.1.104
  8. Schweitzer G.G., Kearney M.L., Mittendorfer B. Muscle glycogen: where did you come from, where did you go? J Physiol 2017;595(9):2771-2772. doi:10.1113/JP273536
  9. van Loon L.J.C., Saris W.H.M., Kruijshoop M., Wagenmakers A.J.M. Maximizing postexercise muscle glycogen synthesis: carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures. Am J Clin Nutr 2000;72: 106-111. doi:10.1093/ajcn/72.1.106